Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20568
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭光成(Kuan-Chen Cheng)
dc.contributor.authorNessie Nathania Wardhanaen
dc.contributor.author溫惠琴zh_TW
dc.date.accessioned2021-06-08T02:53:33Z-
dc.date.copyright2017-08-20
dc.date.issued2017
dc.date.submitted2017-08-10
dc.identifier.citationAbiose, S. H., Allan, M. C., Wood, B. J. B. Microbiology and Biochemistry of Miso (Soy Paste) Fermentation. Adv. Appl. Microbiol. 1982, 28, 239-265.
Aidoo, K. E., Hendry, R., Wood, B. J. B. Solid Substrate Fermentations. 1982, 28, 201-237.
Alu'datt, M. H., Rababah, T., Ereifej, K., Alli, I. Distribution, antioxidant and characterisation of phenolic compounds in soybeans, flaxseed and olives. Food Chem. 2013, 139, 93-99
Amarowicz, R. and R. B. Pegg. Legumes as a source of natural antioxidants. Eur J Lipid Sci Technol. 2008, 110, 865-878.
Bhanja, T., Kumari, A., Banerjee, R. Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresour Technol. 2009, 100, 2861-2866
Bhatia, Y., Mishra, S., Bisaria, V. S. Microbial beta-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol. 2002, 22, 375-407.
Burt, Brian A. The use of sorbitol- and xylitol-sweetened chewing gum in caries control. J Am Dent Assoc. 2006, 137, 190-196.
Chang, P. K., Ehrlich, K. C. What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae. Int. J Food Microbiol. 2010, 138, 189-199.
Chen, F, Zhang, X., Li, Z. Safety of Fermented Products Based on Soybean. 2016, 311-318.
Chen, Z., Zheng, W., Custer, L. J., Dai, Q., Shu, X. O., Jin, F., Franke, A. A. Usual dietary consumption of soy foods and its correlation with the excretion rate of isoflavonoids in overnight urine samples among Chinese women in Shanghai. Nutr Cancer. 1999, 33, 82-87.

Chiou, R. Y. Y., Ferng, S., Beuchat, L. R. Fermentation of low-salt miso as affected by supplementation with ethanol. Int J Food Microbiol. 1999, 48, 11-20.
Cho, K., Hong, S., Math, R., Lee, J., Kambiranda, D., Kim, J., Islam, S., Yun, M., Cho, J., Lim, W. Soluble phenolics and antioxidant properties of soybean (Glycine max L.) cultivars with varying seed coat colours. J Funct Foods. 2013, 5,1065-1076.
Cho, Y. S., Kim, S. K., Ahn, C. B., Je, J. Y. Preparation, characterization, and antioxidant properties of gallic acid-grafted-chitosans. Carbohydr Polym. 2011, 83, 1617-1622.
Choi, J. H., Jeong, J. Y., Han, D. J., Choi, Y. S., Kim, H. Y., Lee, M. A., Lee, E. S., Paik, H. D., Kim, C. J. Effects of pork/beef levels and various casings on quality properties of semi-dried jerky. Meat Sci. 2008, 80, 278-286.
Christensen, M., Raper, K. B. Synoptic key to Aspergillus nidulans group species and related Emericella species. Trans. Br. Mycol. Soc. 1978, 71, 177-191.
Cluff. M., Kobane, I. A., Bothma, C., Hugo, C. J., Hugo, A. Intermediate added salt levels as sodium reduction strategy: Effects on chemical, microbial, textural and sensory quality of polony. Meat Sci. 2017, 133, 143-150.
Collignon, S., Korsten, L. Attachment and colonization by Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica subsp. Enterica serovar typhimurium, and Staphylococcus aureus on stone fruit surfaces and survival through a simulated commercial export chain. J. Food Prot. 2010, 73, 1247-1256.
Cutting, S. M. Bacillus probiotics. Food Microbiol. 2011. 28, 214-220.
Dan, S. Cloning, Expression, Characterization, and Nucleophile Identification of Family 3, Aspergillus niger beta -Glucosidase. J. Biol. Chem. 2000, 275, 4973-4980.
Devi, M. K. A., Gondi M., Sakthivelu, G., Giridhar, P., Rajasekaran, T., Ravishankar, G. A. Functional attributes of soybean seeds and products, with reference to isoflavone content and antioxidant activity. Food Chem. 2009, 114, 771-776.
Du, S., Batis, C., Wang, H., Zhang, B., Zhang, J., Popkin, B. M. Understanding the patterns and trends of sodium intake, potassium intake, and sodium to potassium ratio and their effect on hypertension in China. Am J Clin Nutr. 2014, 99, 334-343.

Dulf, F. V., Vodnar, D. C., Socaciu, C. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chem. 2016, 209, 27-36.
El-Shenawy, N. S., Abu Zaid, A., Amin, G. A. Preparation of different types of miso with mixture of starters and their effects on endogenous antioxidant of liver and kidney of mice. J Anim Physiol Anim Nutr (Berl). 2012, 96, 102-110.

Giri, A., Osako, K., Okamoto, A., Okazaki, E., Ohshima, T. Antioxidative properties of aqueous and aroma extracts of squid miso prepared with Aspergillus oryzae-inoculated koji. Food Res Int. 2011, 44, 317-325.
Gock, M. A., Hocking, A. D., Pitt, J. I., Poulos, P. G. Influence of temperature, water activity and pH on growth of some xerophilic fungi. Int. J Food Microbiol. 2003, 81, 11-19.
Han, B. Z.,Beumer, R. R., Rombouts, F. M., Nout, M. J. R. Microbial safety and quality of commercial sufu-a Chinese fermented soybean food. Food Control. 2001, 12, 541-547.
He, F. J. and MacGregor. G. A. A comprehensive review on salt and health and current experience of worldwide salt reduction programmes. J. Hum. Hypertens. 2009, 23, 363–384
Heiniö, R. L., Katina, K., Wilhelmson, A., Myllymäki, O., Rajamäki, T., Latva-Kala, K., Liukkonen, K. H., Poutanen, K. Relationship between sensory perception and flavour-active volatile compounds of germinated, sourdough fermented and native rye following the extrusion process. LWT - Food Science and Technology. 2003, 36, 533-545.

Hocking, A. D. and Miscamble, B. F. Water relations of some Zygomycetes isolated from food. Mycol. Res. 1995, 99, 1113-1118.
Hoeck, J. A., Fehr, W. R., Murphy, P. A., Welke, G. A. Influence of Genotype and Environment on Isoflavone Contents of Soybean.' Crop Sci. 2000, 40, 48.

Hole, A. S., Rud, I., Grimmer, S., Sigl, S., Narvhus, J. Sahlstrom, S. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. J Agric Food Chem. 2012, 60, 6369-6375.
Hwang, J., Kim, J. C., Moon, H. S., Yang, J. Y., Kim, M. K. Determination of sodium contents in traditional fermented foods in Korea. J Food Comp Anal. 2017, 56, 110-114.
Hunter, J. E., Zhang, J., Kris-Etherton, P. M. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review. Am J Clin Nutr. 2010, 91, 46-63.
Inguglia, E. S., Zhang, Z., Tiwari, B. K., Kerry, J. K., Burgess, C. M. Salt reduction strategies in processed meat products - A review. Trends Food Sci. Technol. 2017, 59, 70-78.
Israr, T., Rakha, A., Sohail, M., Rashid, S., Shehzad, A. Salt reduction in baked products: Strategies and constraints. Trends Food Sci. Technol. 2016, 51, 98-105.
Jay, J. M., Loessner, M. J., & Et Golden, D. A. Modern food microbiology (7th ed. New York: Springer. 2005, 545-634.
Jabeen, E., Janjua, N. K., Ahmed, S., Murtaza, I., Ali, T. Hameed, S. Radical scavenging propensity of Cu2+, Fe3+ complexes of flavonoids and in-vivo radical scavenging by Fe3+-primuletin. Spectrochim. Acta A Mo.l Biomol. Spectrosc. 2017, 171, 432-438.
Jorgensen, T.R. Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae. J Food Prot. 2007, 70, 2916–2934.

Kim, A. J. Metabolite Profiling and Bioactivity of Rice Koji Fermented by Aspergillus Strains. J Microbiol. Biotech. 2012, 22, 100-106.

Kim, J. Y. Molecular and Morphological Identification of Fungal Species Isolated from Bealmijang Meju. J. Microbiol. and Biotech. 2011, 21, 1270-1279.

Kimira, M., Arai, Y., Shimoi, K., Watanabe, S. Japanese Intake of Flavonoids and Isoflavonoids from Foods. J Epidemiol. 1998, 8, 168-175.
Kirschbaum, J., Rebscher, K., Brückner, H. Liquid chromatographic determination of biogenic amines in fermented foods after derivatization with 3,5-dinitrobenzoyl chloride. J. Chromatogr. A. 2000, 881, 517-530.

Nahin, R. L., Messina, M. J., Rader, J. I., Thompson, L. U., Badger, T. M., Dwyer, J. T., Kim, Y. S., Pontzer, C. H., Starke-Reed, P. E. Guidance from an NIH workshop on designing, implementing, and reporting clinical studies of soy interventions. J Nutr. 2010, 140, 1192S-1204S.

Kontiokari T, Uhari M, Koskela M. Effects of xylitol on growth of nasopharyngeal bacteria in vitro. Antimicrob Agents Chemother. 1995, 39, 1820–1823.
Kung, H. F., Tsai, Y. H., Wei, C. I. Histamine and other biogenic amines and histamine-forming bacteria in miso products. Food Chem. 2007, 101, 351-356.

Kuo, L. C. and Lee, K. T. Cloning, expression, and characterization of two beta-glucosidases from isoflavone glycoside-hydrolyzing Bacillus subtilis natto. J Agric. Food Chem. 2008, 56, 119-125.

Lee, C. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem. 2005, 90, 735-741.

Lee, J. H., Hwang, S. R., Lee, Y. H., Kim, K., Cho, K. M., Lee, Y. B. Changes occurring in compositions and antioxidant properties of healthy soybean seeds [Glycine max (L.) Merr.] and soybean seeds diseased by Phomopsis longicolla and Cercospora kikuchii fungal pathogens. Food Chem. 2015, 185, 205-211.
Lee, K.W., Lee, S.K., Lee, B.D. Aspergillus oryzae as probiotic in poultry: a review. Int. J. Poult. Sci. 2006, 5, 1–3.
Lepiniec, L., Debeaujon, I., Routaboul, J. M., Baudry, A., Pourcel, L., Nesi, N. Caboche, M. Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 2006, 57, 405-430.
Liu, X., Zhou, P., Tran, A., Labuza, T. P. Effects of polyols on the stability of whey proteins in intermediate-moisture food model systems. J Agric. Food Chem. 2009, 57, 2339-2345.
Lynn, T. M., Aye, K. N., Khaing, K. M. Study on the production of fermented soybean sauce by using Aspergillus oryzae and Aspergillus flavus. J Sci. Inn. Res. 2013, 2, 2.
Machida, M., Yamada, O., Gomi, K. Genomics of Aspergillus oryzae: learning from the history of koji mold and exploration of its future. DNA Research. 2008, 15, 173–183.
Makinen, K. K. Sugar alcohol sweeteners as alternatives to sugar with special consideration of xylitol. Med Princ. Pract. 2011, 20, 303-320.

Milgrom, P., Ly, K. A., Rothen, M. Xylitol and its vehicles for public health needs. Adv. Dent. Res. 2009, 21, 44-47.
Mitchell, J. H. and Collins A. R. Effects of a soy milk supplement on plasma cholesterol levels and oxidative DNA damage in men - a pilot study. Eur. J Nutr. 1999, 38, 143-138.
Mortensen, A., Kulling, S. E., Schwartz, H., Rowland, I., Ruefer, C. E., Rimbach, G., Cassidy, A., Magee, P., Millar, J., Hall, W. L. Analytical and compositional aspects of isoflavones in food and their biological effects. Mol. Nutr. Food Res. 2009, 53, S266-309.

Nampoothiri, K. M. and Pandey, A. Solid state fermentation for L-glutamic acid production using Brevibacterium sp. Biotechnol. Lett. 1996, 18, 199-204.

Nill, K. (2016). 'Soy Beans: Properties and Analysis.' 54-55.
Nyongesa, B. W., Okoth, S., Ayugi, V. Identification Key for Aspergillus Species Isolated from Maize and Soil of Nandi County, Kenya. Adv. Microbiol. 2015, 05, 205-229.
Okutsu, K, Yoshizaki, Y., Ikeda, N., Kusano, T., Hashimoto, F., Takamine, K. Antioxidants in heat-processed koji and the production mechanisms. Food Chem. 2015, 187, 364-369.

O’Sullivan, L., Ross, R. P., Hill, C. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie. 2002, 84, 593-604.

Pandey, A. Solid-state fermentation. J Biochem. Eng. 2003, 13, 81-84.

Pandey, A., Kavita, P., Selvakumar, P. Culture Conditions for Production of 2-1-β-D-Fructan-fructanohydrolase in Solid Culturing on Chicory (Cichorium intybus) Roots. Braz. Arch. of Biol. Technol. 1998, 41, 0-0.

Patriarca, A., Larumbe, G., Buera, M. P., Vaamonde, G. Stimulating effect of sorbitol and xylitol on germination and growth of some xerophilic fungi. Food Microbiol. 2011, 28, 1463-1467.

Prior, R. L., Wu, X., Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric. Food Chem. 2005, 53, 4290-4302.

Quinhone Junior, A. and Ida, E. I. Profile of the contents of different forms of soybean isoflavones and the effect of germination time on these compounds and the physical parameters in soybean sprouts. Food Chem. 2015, 166, 173-178.

Rahman Mazumder, M. A. and Hongsprabhas, P. Genistein as antioxidant and antibrowning agents in in vivo and in vitro: A review. Biomed. Pharmacother. 2016, 82, 379-392.

Raimbault, M. General and microbiological aspects of solid substrate fermentation. Electron. J Biotechnol. 1998, 1, 174-188.

Ramachandran, S., Patel, A. K., Nampoothiri, K. M., Francis, F., Nagy, V., Szakacs, G., Pandey, A. Coconut oil cake--a potential raw material for the production of alpha-amylase. Bioresour. Technol. 2004, 93, 169-174.

Ramos, S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr. Biochem. 2007, 18, 427-442.

Record, I. R., Dreosti, I. E., McInerney, J. K. The antioxidant activity of genistein in vitro. J Nutr. Biochem. 1995, 6, 481-485.

Rochus, K., Janssens, G. P., Hesta, M. Dietary fibre and the importance of the gut microbiota in feline nutrition: a review. Nutr. Res. Rev. 2014, 27, 295-307.

Salihi, A., Asoodeh, A., Aliabadian, M. Salihi, A., et al. Production and biochemical characterization of an alkaline protease from Aspergillus oryzae CH93. Int. J Biol. Macromol. 2016.

Sandhu, K. S., Punia, S., Kaur, M. Effect of duration of solid state fermentation by Aspergillus awamorinakazawa on antioxidant properties of wheat cultivars. LWT - Food Science and Technology. 2016, 71, 323-328.

Sanjukta, S., Rai, A. K., Muhammed, A., Jeyaram, K., Talukdar, N. C. Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation. J Func. Foods. 2015, 14, 650-658.
Selvakumar, P. and Pandey, A. Solid state fermentation for the synthesis of inulinase from Staphylococcus sp. and Kluyveromyces marxianus. Proc. Biochem. 1999, 34, 851-855.

Shin, E. C., Lee, J. H., Hwang, C. E., Lee B. W., Kim, H. T., Ko, J. M., Baek, I. Y., Shin, J. H., Nam, S. H., Seo, W. T., Cho, K. M. Enhancement of total phenolic and isoflavone-aglycone contents and antioxidant activities during Cheonggukjang fermentation of brown soybeans by the potential probiotic Bacillus subtilis CSY191. Food Sci. Biotechnol. 2014, 23, 531-538.

Silow, C., Axel, C., Zannini E., Arendt, E. K. Current status of salt reduction in bread and bakery products – A review. J Cereal Sci. 2016, 72, 135-145.
Soccol, C. R. and Vandenberghe, L. P. S. Overview of applied solid-state fermentation in Brazil. Biochem. Eng. J. 2003, 13, 205-218.
Tennant, D. R. Potential intakes of total polyols based on UK usage survey data. Food Addit. Contam. 2014, 31, 574-586.
Tikkanen, M. J., Wahala, K., Ojala, S., Vihma, V., Adlercreutz, H. Effect of soybean phytoestrogen intake on low density lipoprotein oxidation resistance. Proc. Natl. Acad. Sci. 1998, 95, 3106-3110.

Toldrá, F. and Barat, J. M. Low-salt Foods: Types and Manufacture. 2016, 576-578.

van Erp-Baart, M. A., Brants, H. A., Kiely, M., Mulligan, A., Turrini, A., Sermoneta, C., Kilkkinen, A., Valsta, L. M. Isoflavone intake in four different European countries: the VENUS approach. Br. J Nutr. 2003, 89, 25-30.
Wang, F., Wang, H., Wang, D., Fang, F., Lai, J, Wu, T., Tsao, R. Isoflavone, γ-aminobutyric acid contents and antioxidant activities are significantly increased during germination of three Chinese soybean cultivars. J Func. Foods. 2015, 14, 596-604.

Wang, L. J., Yin, L. J., Li, D., Zou, L., Saito, M., Tatsumi, E., Li, L. T. Influences of processing and NaCl supplementation on isoflavone contents and composition during douchi manufacturing. Food Chem. 2007, 101, 1247-1253.

Winterhalter, P. and Skouroumounis, G. K. Glycoconjugated aroma compounds: Occurrence, role and biotechnological transformation. 1997, 55, 73-105.

Xiao, Y., Xing, G., Rui, X., Li, W., Chen, X., Jiang, M., Dong, M. Enhancement of the antioxidant capacity of chickpeas by solid state fermentation with Cordyceps militaris SN-18. J Func. Foods. 2014, 10, 210-222.

Xu, L., Du, B., Xu, B. A systematic, comparative study on the beneficial health components and antioxidant activities of commercially fermented soy products marketed in China. Food Chem. 2015, 174, 202-213.

Yamabe, S., Kobayashi-Hattori, K., Kaneko, K., Endo, H., Takita, T. Effect of soybean varieties on the content and composition of isoflavone in rice-koji miso. Food Chem. 2007, 100, 369-374.
Yen, G. C., Chang, Y. C., Su, S. W. Antioxidant activity and active compounds of rice koji fermented with Aspergillus candidus. Food Chem. 2003, 83, 49-54.

Yoshizaki, Y., Kawasaki, C., Cheng, K. C., Ushikai, M., Amitani, H., Asakawa, A., Okutsu, K., Sameshima, Y., Takamine, K., Inui, A. Rice koji reduced body weight gain, fat accumulation, and blood glucose level in high-fat diet-induced obese mice. Peer J. 2014, 2, 540.

Zhang, J. H., Tatsumi, E., Ding, C. H., Li, L. T. Angiotensin I-converting enzyme inhibitory peptides in douchi, a Chinese traditional fermented soybean product. Food Chem. 2006, 98, 551-557.

Zhang, Q., Chen, G., Shen, W., Wang, Y., Zhang, W., Chi, Y. Microbial safety and sensory quality of instant low-salt Chinese paocai. Food Control. 2016, 59, 575-580.
Zhu, Y. and Tramper, J. Koji--where East meets West in fermentation. Biotechnol. Adv. 2013, 31, 1448-1457.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20568-
dc.description.abstract黃豆為人體攝取所需重要蛋白質的來源之一,於日常生活中攝取黃豆製品已被證實有利於人體健康,包括預防心血管疾病、抗癌、抗氧化、抗菌及抗糖尿病等。味噌是以米麴及黃豆兩階段發酵之黃豆發酵製品,味噌於發酵過程中添加鹽的目的是為了促進其風味及避免在發酵中腐敗菌之生長,但由於鈉的攝取量過多而會引發相關心血管疾病,因此鈉的攝取量已成為健康之考量之一。一般低鹽食物會減少其鹽濃度或添加糖醇為了降低食品之水活性,味噌製作過程中需添加 7-23%鹽,屬於高鹽食品。雖然有文獻指出可以利用乙醇製作低鹽味噌, 但糖醇在味噌的添加較少見。因此,本研究目的為以5%鹽製作低鹽味噌。另外實驗組會將5%的鹽再添加5-25%乙醇、山梨醇及木糖醇,以添加12%的鹽製作的味噌為控制組。味噌製作中所需的發酵菌株為麴菌,本研究中所篩選之菌株菌種鑑定結果為Aspergillus sp.。10%乙醇,15% 山梨醇及木糖醇可抑制金黃葡萄球菌及大腸桿菌之生長。以5%鹽及10%乙醇及15%山梨醇發酵的味噌則具有1.928及1.920 mg GAE/g總多酚量,與12%鹽的控制組無顯著差異。zh_TW
dc.description.abstractSoybean is an important source of protein. Daily consumption of soybean-based food has showed a lot advantages on human heath including prevention on cardiovascular diseases, anticancer, antimicrobial, and antidiabetic. Miso, is an Asian fermented soybean product which prepared by two-stage fermentation of rice koji and soybean. Salt is added later to enrich the flavor of miso and prevent the growth of undesirable microorganism during fermentation. In recent years, high sodium intake has been a world health concern as it may cause health risk thus production of low-salt food is needed. Low salt food is usually made by reducing salt amount or addition of sugar alcohols to reduce water activity. Miso contained 7-23% salt, which is considered as high. Previous study used ethanol to substitute salt in low-salt miso, but the addition of sugar alcohol such as sorbitol and xylitol has not been reported. The aim of this study is to observe antibacterial and antioxidant activity in low-salt miso with 5% salt, supplemented by ethanol, sorbitol and xylitol ranging from 5-25%. 12% salt miso is used as control. Results showed, fungal isolated from koji powder used in fermentation was identified as Aspergillus sp.. Inhibition toward Staphylococcus aureus and Escherichia coli was shown by 10% ethanol and 15% sorbitol and xylitol. Total phenolic content (TPC) of miso supplemented with 5% salt combined with 10% ethanol and 15% sorbitol showed 1.928 and 1.920 mg GAE/g miso respectively, with no significant difference compared with 12% salt miso. 5% salt with 10% ethanol miso showed highest DPPH and ABTS radical scavenging activity among the tested groups.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:53:33Z (GMT). No. of bitstreams: 1
ntu-106-R04641043-1.pdf: 3444490 bytes, checksum: 17d1313dca8acfc91bd48187f9ba07e2 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsACKNOWLEDGEMENT i
ABSTRACT ii
中文摘要 iii
LIST OF FIGURES vii
LIST OF TABLES ix
1.0 Introduction 1
2.0 Literature Review 3
2.1 Soybean 3
2.2 Biological Activity of Soybean 4
2.3 Soybean Phenolic Compound 6
2.4 Soybean Isoflavone 8
2.5 Miso 11
2.6 Production of Miso 13
2.7 Koji 16
2.8 Solid State Fermentation 17
2.9 Low salt food 19
2.10 Sorbitol and Xylitol 23
2.11 Aspergillus spp. 26
2.12 Safety of fermented soybean products 28
3.0 Material & Methods 29
3.1 Material 29
3.1.1 Medium 29
3.1.2 Chemicals 29
3.2 Medium Preparation 30
3.2.1 Potato Dextrose Broth (PDB) 30
3.2.2 Potato Dextrose Agar (PDA) 30
3.2.3 Aspergillus Flavus and Parasiticus Agar (AFPA) 30
3.2.4 Luria Bertani (LB) Broth 31
3.2.5 Luria Bertani (LB) Agar 31
3.3 Equipment 32
3.4 Methods 33
3.4.1 Isolation of fungal species from koji powder 33
3.4.2 Culture Growth 33
3.4.3 DNA Extraction and PCR Amplification 33
3.4.4 Gel Electrophoresis and Sequencing Analysis 34
3.4.5 Rice Koji Preparation 34
3.4.6 Determination of antibacterial activity 35
3.4.7 Soybean Preparation 35
3.4.8 Supplementation of salt, ethanol, sorbitol and xylitol 36
3.4.9 Determination of Water Activity 36
3.4.10 Miso Extraction 36
3.4.11 Determination of Total Phenolic Content 36
3.4.12 Antioxidant Activity by DPPH radical-scavenging assays 37
3.4.13 Antioxidant Activity by ABTS radical-scavenging assays 37
3.4.14 Antioxidant Activity by DPPH radical-scavenging assays 38
3.5 Experiment Design 39
3.5.1 Antioxidant Activity by DPPH radical-scavenging assays 39
3.5.2 Antioxidant Activity by DPPH radical-scavenging assays 40
3.5.3 Antioxidant Activity by DPPH radical-scavenging assays 41
4.0 Results and Discussion 42
4.1 Fungal Identification 42
4.2 Antibacterial activity of ethanol, sorbitol, and xylitol 47
4.3 Miso Production 59
4.4 Properties analysis 61
4.4.1 Analysis of microbial growth 61
4.4.2 Analysis on microbial growth of miso in AFPA medium 64
4.4.3 Analysis on Water Activity (Aw) 66
4.4.4 Analysis on Total Phenolic Content 69
4.4.5 Analysis on Antioxidant activity by DPPH radical scavenging activity 72
4.4.6 Analysis on Antioxidant activity by ABTS radical scavenging activity 75
4.5 Future Development of Low Salt Food 78
5.0 Conclusion 84
6.0 References 86
dc.language.isoen
dc.title低鹽味噌抗菌及抗氧化性之研究zh_TW
dc.titleStudy on Antibacterial and Antioxidant Activities of Low-Salt Misoen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂廷璋(Ting-Jang Lu),羅翊禎(Yi-Chen Lo),潘敏雄(Min-Hsiung Pan),王惠珠
dc.subject.keyword味噌,低鹽,糖醇,抗菌,抗氧化性,zh_TW
dc.subject.keywordMiso,Low Salt,Glycitol,Antibacterial,Antioxidant,en
dc.relation.page97
dc.identifier.doi10.6342/NTU201702951
dc.rights.note未授權
dc.date.accepted2017-08-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved