Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20546
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張淑惠(Shu-Hui Chang)
dc.contributor.authorYa-Chih Shihen
dc.contributor.author施雅芝zh_TW
dc.date.accessioned2021-06-08T02:52:39Z-
dc.date.copyright2017-09-14
dc.date.issued2017
dc.date.submitted2017-08-11
dc.identifier.citationBandeen-Roche, K. and Ning, J. (2008). Nonparametric estimation of bivariate failure time associations in the presence of a competing risk. Biometrika 95, 221–232.
Bakal, J. A., McAlister, F. A., Liu, W., and Ezekowitz, J. A. (2014). Heart failure re-admission: measuring the ever shortening gap between repeat heart failure hospitalizations. PLoS One 9, e106494.
Clayton, D. G. (1978). A Model for Association in Bivariate Life Tables and Its Application in Epidemiological Studies of Familial Tendency in Chronic Disease Incidence. Biometrika 65, 141-151.
Chang, S. H. (2017). Semiparametric analysis of episode-trend associations for alternating bivariate gap time data. Technique Report, College of Public Health, National Taiwan University.
Chang, S. H., Su, D. H., and Hsieh, Y. T. (2016). Analysis of longitudinal association patterns of recurrent gap times. Technique Report, College of Public Health, National Taiwan University.
Chang, S. H., Shih, Y. C., and Su, D. H. (2017). Semiparametric analysis of time-dependent associations for alternating bivariate gap time data. Technique Report. College of Public Health, National Taiwan University.
Dey, S., Menkes, D. B., Obertova, Z., Chaudhuri, S., and Mellsop, G. (2016). Correlates of rehospitalisation in schizophrenia. Australasian Psychiatry 24, 356–359.
Fu, T. C., Su, D. H., and Chang, S. H. (2016). Serial association analyses of recurrent gap time data via Kendall's tau. Biostatistics 17, 188-202.
Hougaard, P. (2000). Analysis of multivariate survival data. New York: Springer.
Huster, W. J., Brookmeyer, R., and Self, S. G. (1989). Modelling paired survival data with covariates. Biometrics 45, 145-156.
Hu, T., Nan, B., Lin, X., and Robins, J. (2011). Time-dependent cross ratio estimation for bivariate failure times. Biometrika 98, 341–354.
Lee, L. (1979). Multivariate distributions having Weibull properties. J. Mult. Anal. 9, 267–77.
Lin, H. C., Tian, W. H., Chen, C. S., Liu, T. C., Tsai, S. Y., Lee, H. C. (2006). The association between readmission rates and length of stay for schizophrenia: A 3-years population-based study. Schizophrenia Research 83, 211-214.
Lakhal-Chaieb, L., Cook, R. J., and Lin, X. (2010). Inverse probability of censoring weighted estimated of Kendall’s tau for gap time analyses. Biometrics 66, 1145–1152.
Miettunen, J., Lauronen, E., Veijola, J., Koponen, H., Saarento, O., Isohanni, M. (2006). Patterns of psychiatric hospitalizations in schizophrenic psychoses within the Northern Finland 1966 Birth Cohort. Nord. J. Psychiatry 60, 286–293.
Murphy, R. P. and Patz, A. (1978). New concepts in management of retinal vascular disorder. In Ophthalmology Update, International Congress Series, No. 508, K. Mizuno and Y. Mitsui (eds), 111-125. Amsterdam: Excerpta Medica.
Nan, B., Lin, X., Lisabeth, L. D., and Harlow, S. D. (2006). Piecewise constant cross-ration estimation for association of age at a marker event and age at menopause. Journal of the American Statistical Association 101, 65–77.
Ning, J. and Bandeen-Roche, K. (2014). Estimation of time-dependent association for bivariate failure times in the presence of a competing risk. Biometrics 70, 10–20.
Oakes, D. (1986). Semiparametric inference in a model for association in bivariate survival data. Biometrika 73, 353–61.
Oakes, D. (1989). Bivariate survival models induced by frailties. Journal of the American Statistical Association 84, 487–493.
Oakes, D. (2008). On consistency of Kendall’s tau under censoring. Biometrika 95, 997–1001.
Pono, K., Pongpanich, S., and Boonyamalik, P. (2010). Association Of Length Of Stay And Readmission Rate Among Schizophrenic Patients In Nakhon Phanom Psychiatric Hospital, Nakhon Phanom, Thailand. J Health Res 24(suppl 2), 9-14.
Schaubel, D.E. and Cai, J. (2004). Regression Methods for Gap Time Hazard Functions of Sequentially Ordered Multivariate Failure Time Data. Biometrika 91, 291-303.
張淑惠 (2016). 重複性交替發生雙間隔時間資料之相關性分析。期末報告,中華民國科技部專題研究計畫。
張淑惠 (2017). 重複交替雙間隔時間之相依結構分析。期中報告,中華民國科技部專題研究計畫。
傅宗襁 (2009). 具誘導訊息設限之二元有序間隔時間的排序相關係數估計。國立台灣大學公共衛生學院流行病學研究所生物醫學統計組碩士論文。
喻承俊 (2016). 復發有序二元間隔時間資料的事件別相關性分析。國立台灣大學共同教育中心統計碩士學位學程碩士論文。
施雅芝、蘇登煌、張淑惠 (2017). 二元事件時間之時間相依交叉比的半參數估計方法。技術報告,國立臺灣大學公共衛生學院生物醫學統計組張淑惠教授存活分析研究室。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20546-
dc.description.abstract在許多醫學研究中,時常會觀察到多元事件的資料。在長期追蹤研究下,觀察個體可能會反覆經歷多個有序多元事件的序列,舉例來說,在慢性疾病的進程,病患可能會重複發生住院與出院兩種情況。本文感興趣的是兩事件之間的二元間隔時間,例如,在醫院的住院天數與從醫院出院到再入院間的時間區間。由於每一個體可能反覆發生多個二元間隔時間的序列,此種資料稱為序列二元間隔時間資料。本研究目的為在序列二元間隔時間資料下,估計二元間隔時間之時間區塊的相關性。交叉比是一個常用的相關性測度,用來測量二元間隔時間隨時間變化的相關性。本文考慮對數交叉比與時間區塊相關的參數迴歸模式,來估計時間區塊的交叉比,並推廣Chang(2017)所考慮的三個半參數估計方法到參數迴歸函數下,估計時間區塊交叉比,以及使用倒數機率設限權重來解決誘導相依設限的問題。最後,本文利用三種不同聯合分布的蒙地卡羅模擬,來探討三種方法估計量的估計表現。zh_TW
dc.description.abstractMultiple events data are frequently encountered in many medical studies. For a long-term follow-up study, subjects may experience several series of ordered multiple events alternately over time. For instance, patients may have repeated hospitalizations and discharges in the progress of chronic diseases. In the study, the time variables of interest are the bivariate gap times between bivariate events, for example, the length of stay in hospital and the time interval between the discharge from a hospital and readmission. Since each subject may have several episodes of bivariate gap times over time, such data are called the serial bivariate gap time data. The aim of the study is to estimate the time-segment association of bivariate gap times for serial bivariate gap time data. The cross ratio is a common measure to quantify the time-varying association between bivariate gap times. To estimate the time-segment cross ratios, we consider the parametric regression model which specifies an explicit relation between the log cross ratio and the time segments. Three semi-parametric estimation methods considered by Chang (2017) are extended to estimate the time-segment cross ratios via the parametric regression function, in which the inverse probability of censoring weight is used to deal with the induced dependent censoring. Finally, the performance of the estimators obtained from three estimation methods is investigated by conducting the Monte-Carlo simulations with three different joint distributions.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:52:39Z (GMT). No. of bitstreams: 1
ntu-106-R04849016-1.pdf: 3327962 bytes, checksum: 9ba4891a7ff75c9fcf2272f65c8aac6b (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
第一章 序論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 3
2.1 二元事件時間資料的相關性測量與估計 3
2.1.1交叉比 3
2.1.2時間相依交叉比 4
2.2 有序間隔時間資料的相關性測量與估計 8
第三章 方法 11
3.1 符號定義與假設 11
3.2 交叉比定義與模式 12
3.3 時間區塊常數交叉比模式 14
3.4 估計方法 15
3.4.1 動差估計法 15
3.4.2 擬部分概似估計法 16
3.4.3 擬概似估計法 17
3.5 時間區塊交叉比之參數模式與估計 20
第四章 模擬 21
4.1  Clayton分布的時間區塊常數交叉比模式 21
4.1.1 Clayton分布的資料生成 22
4.1.2 Clayton分布的時間區塊常數交叉比模式之模擬結果 23
4.2  Bivariate lognormal分布的時間區塊交叉比模式 31
4.2.1 Bivariate lognormal分布的資料生成 31
4.2.2 Bivariate lognormal分布的時間區塊交叉比模式之模擬結果 32
4.3  Positive stable分布的時間區塊交叉比模式 43
4.3.1 Positive stable分布的資料生成 43
4.3.2 Positive stable分布的時間區塊交叉比模式之模擬結果 45
第五章 結果及討論 55
參考文獻 57
附錄 60
dc.language.isozh-TW
dc.title序列二元間隔時間之時間區塊交叉比的半參數估計方法zh_TW
dc.titleSemi-parametric Methods for Estimating Time-Segment
Cross Ratios of Serial Bivariate Gap Times
en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee丘政民(Jeng-Min Chiou),鄭宗記(Tsung-Chi Cheng),杜裕康(Yu-Kang Tu)
dc.subject.keyword序列事件資料,間隔時間,交叉比,半參數方法,誘導相依設限,倒數機率設限權重,zh_TW
dc.subject.keywordSerial event data,Gap times,Cross ratio,Semi-parametric methods,Induced dependent censoring,Inverse probability of censoring weight,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201702962
dc.rights.note未授權
dc.date.accepted2017-08-12
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved