Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20541
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立昇(Li-Sheng Wang)
dc.contributor.authorYen-Lin Chenen
dc.contributor.author陳彥霖zh_TW
dc.date.accessioned2021-06-08T02:52:27Z-
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-14
dc.identifier.citation[1] 莊智清 and 黃國興, 電子導航. 全華, 2001.
[2] THURAYA. Can the Internet of Things (IoT) Survive without Satellite? Available: http://www.thuraya.com/content/can-internet-things-iot-survive-without-satellite
[3] J. F. Zumberge, M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H. Webb, 'Precise point positioning for the efficient and robust analysis of GPS data from large networks,' Journal of Geophysical Research: Solid Earth, vol. 102, 1997.
[4] T. Beran, 'Single-frequency, single-receiver terrestrial and spaceborne point positioning,' University of New Brunswick, Department of Geodesy and Geomatics Engineering, 2008.
[5] Y. Gao, Y. Zhang, and K. Chen, 'Development of a real-time single-frequency precise point positioning system and test results,' The University of Calgary, pp. 26-29, 2006.
[6] M. S. Grewal and A. P.Andrews, Kalman Filtering: Theory and Practice Using MATLAB, 2 ed. 2001.
[7] R. K. Mehra, 'Approached to adaptive filtering,' IEEE Transactions on Aerospace and Electronic Systems, 1972.
[8] 安守中, GPS定位原理及應用. 全華圖書, 2005.
[9] N. Beck, Guide to GPS positioning. Larry d Hothem, 1986.
[10] H.-W. Bernhard, L. Herbert, and W. Elmar, 'GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more,' ed: Springer-Verlag Wien: NewYork, NY, USA, 2008.
[11] E. Kaplan and C. Hegarty, Understanding GPS: principles and applications. Artech house, 2005.
[12] 楊開元, 'GPS/BDS 衛星導航之方法與效能,' 成功大學測量及空間資訊學系學位論文, pp. 1-130, 2014.
[13] (2014). Its Definition and Relationships with Local Geodetic Systems.
[14] K. Chen, Real-time precise point positioning, timing and atmospheric sensing. 2005.
[15] P. Misra and P. Enge, Global Positioning System: Signals, Measurements and Performance Second Edition. Lincoln, MA: Ganga-Jamuna Press, 2006.
[16] Hatch, 'The synergism of GPS code and carrier measurements,' International Geodetic Symposium on Satellite Doppler Positioning, 1982.
[17] J. F. Zumberge, M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H. Webb, 'Precise point positioning for the efficient and robust analysis of GPS data from large networks,' Journal of Geophysical Research: Solid Earth, vol. 102, no. B3, pp. 5005-5017, 1997.
[18] I. Martin, GNSS Precise Point Positioning. School of Civil Engineering and Geosciences Newcastle University, 2013.
[19] J. Kouba, 'A guide to using International GNSS Service (IGS) products,' ed, 2009.
[20] igs products.
[21] G. Xu and Dr.-Ing., GPS Theory, Algorithms and Applications, 2 ed. springer, 2007.
[22] A. Niell, 'Global mapping functions for the atmosphere delay at radio wavelengths,' Journal of Geophysical Research: Solid Earth, vol. 101, no. B2, pp. 3227-3246, 1996.
[23] R. Leandro, M. Santos, and R. B. Langley, 'UNB neutral atmosphere models: development and performance,' in Proceedings of ION NTM, 2006, vol. 52, no. 1, pp. 564-73.
[24] R. Wienia, 'Use of global ionospheric maps for precise point positioning: Developing an optimised procedure in using Global Ionospheric Maps for single-frequency standalone positioning with GPS,' TU Delft, Delft University of Technology, 2008.
[25] S. Schaer, W. Gurtner, and J. Feltens, 'IONEX: The ionosphere map exchange format version 1,' 1998.
[26] H. Hopfield, 'Two‐quartic tropospheric refractivity profile for correcting satellite data,' Journal of Geophysical research, vol. 74, no. 18, pp. 4487-4499, 1969.
[27] J. Saastamoinen, 'Atmospheric correction for the troposphere and stratosphere in radio ranging satellites,' The use of artificial satellites for geodesy, pp. 247-251, 1972.
[28] J. P. Collins and R. B. Langley, A tropospheric delay model for the user of the wide area augmentation system.
[29] R. Leandro, M. Santos, and R. B. Langley, 'UNB neutral atmosphere models: development and performance.'
[30] G. Petit and B. Luzum, 'IERS conventions (2010),' DTIC Document2010.
[31] G. Welch and G. Bishop, 'An Introduction to the Kalman Filter,' Department of Computer Science University of North Carolina at Chapel Hill, 2006.
[32] Y.Yang, H.He, and G.Xu, 'Adpative robust filtering for kinematic geodetic positiong,' Journal of Geodesy, 2001.
[33] Y. Yang and T. Xu, 'An Adaptive Kalman Filter Based on Sage Windowing Weights and Variance Components,' THE JOURNAL OF NAVIGATION, 2003.
[34] J. Farrell and M. Barth, The Global Positioning System and Inerial Navigation. McGraw-Hill, 1999.
[35] J. M. Codol and A. Moion, 'Improved triple difference GPS carrier phase for RTK-GPS positioning,' Nice, France, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20541-
dc.description.abstract隨著智慧生活與物聯網的崛起,未來對低功率、低耗能衛星定位系統的需求將會更高,因此本研究使用單頻的精密單點定位系統以及全球定位系統(Global Positioning System, GPS),並希望能達到精準即時動態定位之目的。
為了使估測最佳化,觀測量誤差部分使用IGS提供的Ultra-Rapid精密星曆修正GPS的衛星的鐘差與衛星軌道的計算;電離層誤差使用IGS所提供的全球電離層地圖而對流層誤差則是使用UNB3m的模型,兩者皆透過內插的方式來進行修正。
而為了能夠在動態上有更穩定、可靠度更高的定位結果。本研究使用載波平滑偽距(Carrier smooth code pseudorange)與都普勒頻移(Doppler shift)兩個觀測量來進行位置與速度的解算,並且使用適應性卡爾曼濾波器的演算法。在適應性部分採用累積狀態的殘差向量針對系統雜訊共變異矩陣進行估測,而觀測雜訊共變異矩陣的估測則是透過大數據處理的方式進行統計,找出趨勢並且進行迴歸。此外,本研究嘗試進行卡爾曼濾波器的精進,將估測結果重新進行微調。經過比較後可以發現不管在動態或靜態實驗中,適應性的效果對於定位結果有明顯的提升,而精進部分則對動態實驗中有不錯的效果。
zh_TW
dc.description.abstractWith the booming development of Internet of Things (IoT), the market demand for low-cost and low-energy-consuming positioning system will be grown up in the future. Therefore, in this work, we try to develop single-frequency precise point positioning algorithm for Global Positioning System (GPS), and hope to achieve the purpose of real-time positioning.
In order to optimize the estimates, we adopt the following model to eliminate measurement errors: the Ultra-Rapid ephemeris provided by International GNSS Service (IGS) was used to correct satellite clock errors and calculate satellite position; besides, ionospheric errors was corrected by the Global Ionospheric Map which is also provided by IGS; tropospheric error was corrected by UNB3m model.
In order to have a more stable and reliable positioning results, we combined Carrier smooth code (CSC) pseudorange and Doppler shift to estimate position and velocity and an adaptive Kalman filter was designed. The residual adaptive estimation was used to determine the state disturbance covariance matrix and big date analysis was performed to obtain the measurement noise covariance matrix. Moreover, this study attempts to perform the refinement of the extended Kalman filter. The applications of different algorithms to real experimental data show that the adaption method both on process disturbance and measurement noise covariance matrix can enhance the performance of positioning, and the refinement did well in the dynamic experiment.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:52:27Z (GMT). No. of bitstreams: 1
ntu-106-R04543061-1.pdf: 2653172 bytes, checksum: 8a8fe850cf8db990fb0363188279c188 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究方法簡介與成果 2
第二章 全球衛星導航系統 3
2.1 GPS定位系統 3
2.1.1 GPS定位系統組成部門 3
2.1.2 GPS時間系統 5
2.2 GNSS觀測量與定位原理 6
2.2.1 虛擬距離觀測量 6
2.2.2 載波相位觀測量 7
2.2.3 都普勒頻移觀測量 8
2.2.4 載波相位平滑偽距觀測量 9
2.2.4 精密單點定位原理 9
第三章 觀測量誤差分析 11
3.1 衛星相關誤差 11
3.1.1 衛星軌道誤差 11
3.1.2 衛星鐘差 12
3.1.3 衛星天線相位中心修正 13
3.1.4 相對論誤差 15
3.2 訊號傳遞誤差 16
3.2.1 電離層誤差 16
3.2.2 對流層誤差 19
3.2.3 地球自轉修正 26
3.2.4 多路徑效應 26
3.3 接收機相關誤差 27
3.3.1 接收機鐘差 27
3.3.2 其餘誤差項 28
第四章 定位演算法設計 29
4.1 卡爾曼濾波器 29
4.2 精進卡爾曼濾波器 35
4.3 適應性卡爾曼濾波器 38
4.3.1 系統雜訊共變異矩陣適應性模型 39
4.3.2 觀測雜訊共變異矩陣適應性模型 39
4.4 實驗系統模型 42
第五章 實驗與結果分析 46
5.1 靜態實驗 46
5.2 動態實驗 52
第六章 總結與未來工作 62
參考文獻 63
dc.language.isozh-TW
dc.title適應性卡爾曼濾波器在單頻GNSS精密單點定位之應用zh_TW
dc.titleThe Application of Adaptive Kalman Filter In GNSS Single Frequency Precise Point Positioningen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor王和盛(He-Sheng Wang)
dc.contributor.oralexamcommittee張帆人(Fan-ren Chang),卓大靖(Dah-Jing Jwo)
dc.subject.keyword單頻,精密單點定位,卡爾曼濾波器,適應性卡爾曼濾波器,全球衛星定位系統,精進卡爾曼濾波器,zh_TW
dc.subject.keywordsingle frequency,precise point positioning,Kalman Filter,Adaptive Kalman Filter,GNSS,refinement,en
dc.relation.page65
dc.identifier.doi10.6342/NTU201703177
dc.rights.note未授權
dc.date.accepted2017-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved