請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20534
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林文貞(Wen-Jen Lin) | |
dc.contributor.author | Hsin-Lin Huang | en |
dc.contributor.author | 黃心琳 | zh_TW |
dc.date.accessioned | 2021-06-08T02:52:11Z | - |
dc.date.copyright | 2017-09-08 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-14 | |
dc.identifier.citation | 1. Adiseshaiah PP, Hall JB, McNeil SE. Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(1):99-112.
2. Alai M, Lin WJ. A novel once daily microparticulate dosage form comprising lansoprazole to prevent nocturnal acid breakthrough in the case of gastro-esophageal reflux disease: preparation, pharmacokinetic and pharmacodynamic evaluation. J Microencapsul. 2013;30(6):519-29. 3. Alamgeer M, Peacock CD, Matsui W, Ganju V, Watkins DN. Cancer stem cells in lung cancer: Evidence and controversies. Respirology. 2013;18(5):757-64. 4. Ameringer T, Fransen P, Bean P, Johnson G, Pereira S, Evans RA, et al. Polymer coatings that display specific biological signals while preventing nonspecific interactions. J Biomed Mater Res A. 2011;100A(2):370-9. 5. Amoozgar Z, Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(2):219-33. 6. Arcaro A. Targeted therapies for small cell lung cancer: Where do we stand? Crit Rev Oncol Hematol. 2015;95(2):154-64. 7. ATCC. NCI-H69 [H69] (ATCC® HTB-119TM) https://www.atcc.org/Products/All/HTB-119.aspx#generalinformation 8. Bauer N, Fonseca AV, Florek M, Freund D, Jaszai J, Bornhauser M, et al. New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133). Cells Tissues Organs. 2008;188(1-2):127-38. 9. Bechara C, Sagan S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett. 2013;587(12):1693-702. 10. Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev Cancer. 2013;13(10):727-38. 11. Bonnie S Glisson, Lauren A Byers. Pathobiology and staging of small cell carcinoma of the lung. UpToDate. 2014. 12. Camila Tavares de Sousa, Gisele Rodrigues da Silva, Gérson Antônio Pianetti, Ana Gabriela Reis Solano. Spectrophotometric determination of etoposide from polymeric implant and application in the study of in vitro release profile. Rev. Bras. Farm. 2013; 94 (3): 295 – 301. 13. Castellone MD, Laukkanen MO, Teramoto H, Bellelli R, Ali G, Fontanini G, et al. Cross talk between the bombesin neuropeptide receptor and Sonic hedgehog pathways in small cell lung carcinoma. Oncogene. 2015;34(13):1679-87. 14. Cheng CJ, Saltzman WM. Enhanced siRNA delivery into cells by exploiting the synergy between targeting ligands and cell-penetrating peptides. Biomaterials. 2011;32(26):6194-203. 15. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440-6. 16. Codony-Servat J, Verlicchi A, Rosell R. Cancer stem cells in small cell lung cancer. Transl Lung Cancer Res. 2016;5(1):16-25. 17. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946-51. 18. Copolovici DM, Langel K, Eriste E, Langel U. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano. 2014;8(3):1972-94. 19. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123-33. 20. Dördelmann G, Kozlova D, Karczewski S, Lizio R, Knauer S and Epple M. Calcium phosphate increases the encapsulation efficiency of hydrophilic drugs (proteins, nucleic acids) into poly(D,L-lactide-co-glycolide acid) nanoparticles for intracellular delivery. J. Mater. Chem. B. 2014; 2: 7250-59. 21. Dissanayake S, Denny WA, Gamage S, Sarojini V. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J Control Release. 2017;250:62-76. 22. Elias DR, Poloukhtine A, Popik V, Tsourkas A. Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomedicine. 2013;9(2):194-201. 23. Elizabeth H Baldni, Gregoty P Kalemkerian. Limited stage small cell lung cancer: Initial management. UpToDate. 2016. 24. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550-62. 25. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008;15(3):504-14. 26. Espinoza I, Pochampally R, Xing F, Watabe K, Miele L. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther. 2013;6:1249-59. 27. Foged C, Nielsen HM. Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin Drug Deliv. 2008;5(1):105-17. 28. Fonseca SB, Pereira MP, Kelley SO. Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev. 2009;61(11):953-64. 29. Futaki S, Nakase I, Tadokoro A, Takeuchi T, Jones AT. Arginine-rich peptides and their internalization mechanisms. Biochem Soc Trans. 2007;35(Pt 4):784-7. 30. Gandhi L, Camidge DR, Ribeiro de Oliveira M, Bonomi P, Gandara D, Khaira D, et al. Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J Clin Oncol. 2011;29(7):909-16. 31. Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T, et al. Non-small-cell lung cancer. Nat Rev Dis Primers. 2015;1:15009. 32. Grosse-Gehling P, Fargeas CA, Dittfeld C, Garbe Y, Alison MR, Corbeil D, et al. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol. 2013;229(3):355-78. 33. Gullotti E, Yeo Y. Beyond the imaging: limitations of cellular uptake study in the evaluation of nanoparticles. J Control Release. 2012;164(2):170-6. 34. Janaya Shelly, Robert J. Cardnell, Fatemeh Masrorpour, Lixia Diao, Jing Wang, Lauren Byers. PARP and Bcl-2 co-inhibition in small cell lung cancer (SCLC). [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 7. 35. Kalemkerian, et al. NCCN clinical practice guidelines in oncology−small cell lung cancer. 2017. 36. Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12(11):967-77. 37. Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG. Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther. 2012;20(3):513-24. 38. Karen Kelly. Extensive stage small cell lung cancer: Initial management. UpToDate. 2017. 39. Kim HJ, Kim A, Miyata K, Kataoka K. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev. 2016;104:61-77. 40. Kolev VN, Wright QG, Vidal CM, Ring JE, Shapiro IM, Ricono J, et al. PI3K/mTOR dual inhibitor VS-5584 preferentially targets cancer stem cells. Cancer Res. 2015;75(2):446-55. 41. Langdon S, Sethi T, Ritchie A, Muir M, Smyth J, Rozengurt E. Broad spectrum neuropeptide antagonists inhibit the growth of small cell lung cancer in vivo. Cancer Res. 1992;52(16):4554-7. 42. Lee H, Lytton-Jean AK, Chen Y, Love KT, Park AI, Karagiannis ED, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol. 2012;7(6):389-93. 43. Letoha T, Keller-Pinter A, Kusz E, Kolozsi C, Bozso Z, Toth G, et al. Cell-penetrating peptide exploited syndecans. Biochim Biophys Acta. 2010;1798(12):2258-65. 44. Levina V, Marrangoni A, Wang T, Parikh S, Su Y, Herberman R, et al. Elimination of human lung cancer stem cells through targeting of the stem cell factor-c-kit autocrine signaling loop. Cancer Res. 2010;70(1):338-46. 45. Levina V, Marrangoni AM, DeMarco R, Gorelik E, Lokshin AE. Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One. 2008;3(8):e3077. 46. Lin WJ, Kao LT. Cytotoxic enhancement of hexapeptide-conjugated micelles in EGFR high-expressed cancer cells. Expert Opin Drug Deliv. 2014;11(10):1537-50. 47. Liu Y, Samsonova O, Sproat B, Merkel O, Kissel T. Biophysical characterization of hyper-branched polyethylenimine-graft-polycaprolactone-block-mono-methoxyl-poly(ethylene glycol) copolymers (hy-PEI-PCL-mPEG) for siRNA delivery. J Control Release. 2011;153(3):262-8. 48. MacKinnon AC, Tufail-Hanif U, Lucas CD, Jodrell D, Haslett C, Sethi T. Expression of V1A and GRP receptors leads to cellular transformation and increased sensitivity to substance-P analogue-induced growth inhibition. Br J Cancer. 2005;92(3):522-31. 49. Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem. 2010;21(5):797-802. 50. Mahmoud S, Staley J, Taylor J, Bogden A, Moreau JP, Coy D, et al. [Psi 13,14] bombesin analogues inhibit growth of small cell lung cancerin vitro and in vivo. Cancer Res. 1991;51(7):1798-802. 51. Malhotra M, Tomaro-Duchesneau C, Saha S, Kahouli I, Prakash S. Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA. Int J Nanomedicine. 2013;8:2041-52. 52. Micromedex. Etoposide: medication safety-adverse effects. http://www.micromedexsolutions.com/micromedex2/librarian/PFDefaultActionId/evidencexpert.DoIntegratedSearch# 53. Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today. 2012;17(15-16):850-60. 54. Moreira JN, Gaspar R. Antagonist G-mediated targeting and cytotoxicity of liposomal doxorubicin in NCI-H82 variant small cell lung cancer. Braz J Med Biol Res. 2004;37(8):1185-92. 55. Moreira JN, Gaspar R, Allen TM. Targeting Stealth liposomes in a murine model of human small cell lung cancer. Biochim Biophys Acta. 2001;1515(2):167-76. 56. Movassaghian S, Xie Y, Hildebrandt C, Rosati R, Li Y, Kim NH, et al. Post-Transcriptional Regulation of the GASC1 Oncogene with Active Tumor-Targeted siRNA-Nanoparticles. Mol Pharm. 2016;13(8):2605-21. 57. Nakada S, Katsuki Y, Imoto I, Yokoyama T, Nagasawa M, Inazawa J, et al. Early G2/M checkpoint failure as a molecular mechanism underlying etoposide-induced chromosomal aberrations. J Clin Invest. 2006;116(1):80-9. 58. O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106-10. 59. Ocejo-Garcia M, Ahmed SI, Coulson JM, Woll PJ. Use of RT-PCR to detect co-expression of neuropeptides and their receptors in lung cancer. Lung Cancer. 2001;33(1):1-9. 60. Paka GD, Ramassamy C. Optimization of Curcumin-Loaded PEG-PLGA Nanoparticles by GSH Functionalization: Investigation of the Internalization Pathway in Neuronal Cells. Mol Pharm. 2017;14(1):93-106. 61. Patil Y, Panyam J. Polymeric nanoparticles for siRNA delivery and gene silencing. Int J Pharm. 2009;367(1-2):195-203. 62. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751-60. 63. Planchard D, Le Pechoux C. Small cell lung cancer: new clinical recommendations and current status of biomarker assessment. Eur J Cancer. 2011;47 Suppl 3:S272-83. 64. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-11. 65. Rizzuti M, Nizzardo M, Zanetta C, Ramirez A, Corti S. Therapeutic applications of the cell-penetrating HIV-1 Tat peptide. Drug Discov Today. 2015;20(1):76-85. 66. Rodon J, Dienstmann R, Serra V, Tabernero J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol. 2013;10(3):143-53. 67. Saadati R, Dadashzadeh S. Marked effects of combined TPGS and PVA emulsifiers in the fabrication of etoposide-loaded PLGA-PEG nanoparticles: in vitro and in vivo evaluation. Int J Pharm. 2014;464(1-2):135-44. 68. Saez A, Guzman M, Molpeceres J, Aberturas MR. Freeze-drying of polycaprolactone and poly(D,L-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs. Eur J Pharm Biopharm. 2000;50(3):379-87. 69. Sarvi S, Mackinnon AC, Avlonitis N, Bradley M, Rintoul RC, Rassl DM, et al. CD133+ cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res. 2014;74(5):1554-65. 70. Sethi T, Langdon S, Smyth J, Rozengurt E. Growth of small cell lung cancer cells: stimulation by multiple neuropeptides and inhibition by broad spectrum antagonists in vitro and in vivo. Cancer Res. 1992;52(9 Suppl):2737s-42s. 71. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20-37. 72. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821-8. 73. Steinbach JM, Seo YE, Saltzman WM. Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization. Acta Biomater. 2016;30:49-61. 74. Tahir SK, Yang X, Anderson MG, Morgan-Lappe SE, Sarthy AV, Chen J, et al. Influence of Bcl-2 family members on the cellular response of small-cell lung cancer cell lines to ABT-737. Cancer Res. 2007;67(3):1176-83. 75. Takenobu H, Shimozato O, Nakamura T, Ochiai H, Yamaguchi Y, Ohira M, et al. CD133 suppresses neuroblastoma cell differentiation via signal pathway modification. Oncogene. 2011;30(1):97-105. 76. Teicher BA. Targets in small cell lung cancer. Biochem Pharmacol. 2014;87(2):211-9. 77. Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, La Noce M, et al. Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J. 2013;27(1):13-24. 78. Tran TH, Nguyen CT, Kim DP, Lee YK, Huh KM. Microfluidic approach for highly efficient synthesis of heparin-based bioconjugates for drug delivery. Lab Chip. 2012;12(3):589-94. 79. Travis WD. Advances in neuroendocrine lung tumors. Ann Oncol. 2010;21 Suppl 7:vii65-71. 80. van Meerbeeck JP, Fennell DA, De Ruysscher DK. Small-cell lung cancer. Lancet. 2011;378(9804):1741-55. 81. Vasconcelos A, Vega E, Perez Y, Gomara MJ, Garcia ML, Haro I. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery. Int J Nanomedicine. 2015;10:609-31. 82. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8(10):755-68. 83. Walls M, Baxi SM, Mehta PP, Liu KK, Zhu J, Estrella H, et al. Targeting small cell lung cancer harboring PIK3CA mutation with a selective oral PI3K inhibitor PF-4989216. Clin Cancer Res. 2014;20(3):631-43. 84. Walrant A, Bechara C, Alves ID, Sagan S. Molecular partners for interaction and cell internalization of cell-penetrating peptides: how identical are they? Nanomedicine (Lond). 2012;7(1):133-43. 85. Wartiovaara J, Ofverstedt LG, Khoshnoodi J, Zhang J, Makela E, Sandin S, et al. Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest. 2004;114(10):1475-83. 86. Waters CM, MacKinnon AC, Cummings J, Tufail-Hanif U, Jodrell D, Haslett C, et al. Increased gastrin-releasing peptide (GRP) receptor expression in tumour cells confers sensitivity to [Arg6,D-Trp7,9,NmePhe8]-substance P (6-11)-induced growth inhibition. Br J Cancer. 2003;88(11):1808-16. 87. Wittau N, Grosse R, Kalkbrenner F, Gohla A, Schultz G, Gudermann T. The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins. Oncogene. 2000;19(37):4199-209. 88. Wittrup A, Lieberman J. Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet. 2015;16(9):543-52. 89. Wojtalla A, Arcaro A. Targeting phosphoinositide 3-kinase signalling in lung cancer. Crit Rev Oncol Hematol. 2011;80(2):278-90. 90. Wojtalla A, Fischer B, Kotelevets N, Mauri FA, Sobek J, Rehrauer H, et al. Targeting the phosphoinositide 3-kinase p110-alpha isoform impairs cell proliferation, survival, and tumor growth in small cell lung cancer. Clin Cancer Res. 2013;19(1):96-105. 91. Xiao B, Ma L, Merlin D. Nanoparticle-mediated co-delivery of chemotherapeutic agent and siRNA for combination cancer therapy. Expert Opin Drug Deliv. 2017;14(1):65-73. 92. Xu Y, Kim CS, Saylor DM, Koo D. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories. J Biomed Mater Res B Appl Biomater. 2017;105(6):1692-716. 93. Yamashita T, Wang XW. Cancer stem cells in the development of liver cancer. J Clin Invest. 2013;123(5):1911-8. 94. Yang XZ, Dou S, Sun TM, Mao CQ, Wang HX, Wang J. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J Control Release. 2011;156(2):203-11. 95. Yang Z, Tang W, Luo X, Zhang X, Zhang C, Li H, et al. Dual-Ligand Modified Polymer-Lipid Hybrid Nanoparticles for Docetaxel Targeting Delivery to Her2/neu Overexpressed Human Breast Cancer Cells. J Biomed Nanotechnol. 2015;11(8):1401-17. 96. Yunbing Wang. Bioabsorbable stent with layers having different degradation rates. U.S. Patent 8,377,533 B2, Feb. 19, 2013. 97. Zeuner A, Todaro M, Stassi G, De Maria R. Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell. 2014;15(6):692-705. 98. Zhang K, Tang X, Zhang J, Lu W, Lin X, Zhang Y, et al. PEG-PLGA copolymers: their structure and structure-influenced drug delivery applications. J Control Release. 2014;183:77-86. 99. Zhang Z, Zhou Y, Qian H, Shao G, Lu X, Chen Q, et al. Stemness and inducing differentiation of small cell lung cancer NCI-H446 cells. Cell Death Dis. 2013;4:e633. 100. Zhao J, Mi Y, Feng SS. Targeted co-delivery of docetaxel and siPlk1 by herceptin-conjugated vitamin E TPGS based immunomicelles. Biomaterials. 2013;34(13):3411-21. 101. Zheng M, Pavan GM, Neeb M, Schaper AK, Danani A, Klebe G, et al. Targeting the blind spot of polycationic nanocarrier-based siRNA delivery. ACS Nano. 2012;6(11):9447-54. 102. 台灣衛生福利部. 105年死因統計結果分析. http://www.mohw.gov.tw/cp-16-33598-1.html. 2017. 103. 台灣衛生福利部國民健康署. 中華民國103年癌症登記報告. 2016. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20534 | - |
dc.description.abstract | 多年來,惡性腫瘤位居台灣十大死因之首,根據2016年衛生福利部統計,顯示氣管、支氣管和肺癌造成的死亡率最高。其中,小細胞肺癌(small cell lung carcinoma, SCLC)約佔肺癌的11~20%,為最具侵略性的肺癌,且有高復發率之特性以及較差的病人預後。目前臨床上的首選化療複方用藥為etoposide(ETP)及platinum類藥物。雖然病患起初對首選藥物的反應性很好;然而,大部分病患會於一年之內,對化療藥物產生抗藥性,而使腫瘤復發,因此目前針對具有抗藥性之小細胞肺癌,仍亟需發展新的治療策略。
本篇研究以聚乳酸−甘醇酸(poly(lactide-co-glycolide), PLGA)作為藥物載體的骨架,於上接枝聚乙二醇二胺(poly(ethylene glycol) bis(amine), PEG-diamine),然後將對小細胞肺癌細胞具標靶能力的胜肽配體antagonist G(AG)及有助於載體穿膜的TAT胜肽接枝於PLGA-PEG上,並分析此兩種胜肽修飾對於小細胞肺癌治療之助益。在本研究中使用兩種藥物:ETP和siPIK3CA,ETP用於抑制第二型拓樸異構酶(DNA topoisomerase II),而siPIK3CA可以專一性阻斷PIK3CA基因表現及PI3K p110-α蛋白生成,藉此抑制腫瘤細胞的增生。另外,從母群H69小細胞肺癌細胞中,篩選出CD133(+)細胞,作為具ETP抗藥性之癌幹細胞模型。 本實驗使用的奈米顆粒,皆是以溶媒揮發法製備而得,包覆ETP及siPIK3CA奈米顆粒之粒徑大小,分別落於201.0±1.9~206.5±0.7 nm及155.3±12.4~169.2±11.2 nm;表面電荷皆為正電,分別為36.3±2.4~39.6±1.0 mV及31.0±2.7~34.1±1.4 mV;而藥品包覆率可達61.1±6.0%及58.6±5.0%以上。於4˚C水中及冷凍乾燥後回溶於水之4週安定性試驗中,顯示奈米顆粒之粒徑皆可維持,並無明顯凝集現象。此外,在體外釋放試驗中,可知於pH 4.0環境下的奈米載體釋放藥物速度,較pH 7.4環境下為快。 除了對胜肽修飾的奈米顆粒進行物化性質分析之外,亦利用流式細胞儀針對G-protein coupled receptor(GPCR)高表現的母群、CD133(+) H69小細胞肺癌細胞以及GPCR低表現的A549非小細胞肺癌細胞,進行兩小時的細胞吞噬實驗。實驗結果顯示,於母群及CD133(+) H69細胞中,具AG、TAT或雙胜肽修飾之奈米顆粒皆比未修飾之奈米載體,具有更佳的細胞吞噬能力(母群細胞:85.7±2.1%、76.3±4.1%、78.3±0.3% vs. 65.3±2.7%;CD133(+)細胞:46.5±2.2%、56.7±2.2%、51.7±2.3% vs. 32.5±0.8%);於A549細胞中,經AG修飾與未修飾之奈米載體的細胞吞噬能力,並無顯著差異(69.4±2.2% vs. 73.7±1.3%),可知AG具有GPCR標的能力;而經TAT修飾之奈米載體,雖可以增加載體進入細胞效率,但TAT並無細胞選擇性。 此外,本研究分析單獨給予ETP或siPIK3CA之奈米載體以及合併投予兩種藥物之奈米載體,對於H69細胞造成的毒殺性。從實驗結果可得知,在不具抗藥性之母群H69細胞,經AG修飾之奈米顆粒有最佳的細胞毒殺性(ETP奈米載體:IC50為19.8±0.8 μg/mL;siPIK3CA奈米載體:IC50為152.3±8.3 ng/mL),而TAT的效用較不顯著;相對的,於具抗藥性之CD133(+) H69細胞中,TAT顯現其可以克服多重抗藥性的優勢,結果發現雙胜肽AG及TAT修飾之奈米顆粒,具有最大細胞毒殺能力(ETP奈米載體:IC50為15.0±2.9 μg/mL;siPIK3CA奈米載體:IC50為169.7±17.1 ng/mL)。 於合併給藥之結果中,顯示加上siPIK3CA之輔佐,合併給藥比單獨給予相同ETP濃度之包覆ETP奈米顆粒,有著更高的細胞毒性。對於母群H69細胞而言,以經AG修飾之奈米劑型共同給藥,有較高的細胞毒性;而對於CD133(+) H69細胞,則以雙胜肽修飾之奈米劑型最佳,其次為AG修飾之奈米劑型。由上述結果可知,合併投予包覆ETP及siPIK3CA之雙胜肽修飾奈米顆粒,將有潛力作為針對抗藥性小細胞肺癌的治療方法。 | zh_TW |
dc.description.abstract | Cancer is ranked first in the top ten causes of death in Taiwan. According to statistics from the Ministry of Health and Welfare, it was revealed tracheal, bronchial and lung cancers resulted in the highest mortality. Small cell lung carcinoma (SCLC) is a highly aggressive form of malignancy with rapid recurrence and poor prognosis, accounting for 11~20% of all lung cancers. Nowadays first-line combination chemotherapy for SCLC is etoposide (ETP) and platinum-based. Patients respond well to the combination chemotherapy at the beginning, but tumors relapse in less than one year because of drug resistance. Therefore, novel therapeutic strategies against drug-resistant SCLC are urgently required.
In our study, poly(lactide-co-glycolide) (PLGA) acted as the main polymer and was conjugated with poly(ethylene glycol) bis(amine) (PEG-diamine). In addition, we used SCLC targeting ligand (antagonist G (AG) peptide) and cell penetrating peptide TAT to modify PLGA-PEG. We produced dual peptide-modified PLGA-PEG nanoparticles (NPs) consisting of ETP and PIK3CA small interfering RNA (siPIK3CA). The ETP was applied to deactivate DNA topoisomerase II in nuclei. The siPIK3CA can selectively inhibit expression of PIK3CA gene, encoding phosphoinositide 3-kinase (PI3K) p110-α protein, to block SCLC cell proliferation. In our experiment, CD133(+) H69 SCLC cells were sorted from parent H69 cells, serving as ETP-resistant SCLC cell model. All NPs were prepared with solvent evaporation method. The particle sizes of ETP and siRNA loaded NPs were 201.0±1.9~206.5±0.7 nm and 155.3±12.4~169.2±11.2 nm. The zeta potentials of ETP and siRNA loaded NPs were 36.3±2.4~39.6±1.0 mV and 31±2.7~34.1±1.4 mV. The encapsulation efficiencies (EE) were above 61.1±6.0% and 58.6±5.0%, respectively. These formulations exhibited good stability at 4˚C and after lyophilized for 28 days. Furthermore, in the in vitro release study, both drugs released faster from NPs in pH 4.0 than pH 7.4. Cellular uptake study for 2 hours was applied in parent and CD133(+) H69 cells with G-protein coupled receptor (GPCR) high expression and A549 cells with GPCR low expression by flow cytometry. It was suggested AG or TAT and dual peptide-modified NPs had better cellular uptake ability than unmodified NPs in H69 cells (parent cells: 85.7±2.1%, 76.3±4.1%, 78.3±0.3% vs. 65.3±2.7% ; CD133(+) cells: 46.5±2.2%, 56.7±2.2%, 51.7±2.3% vs. 32.5±0.8%). However, there was no significance of cellular uptake ability between AG and unmodified NPs in A549 cells (69.4±2.2% vs. 73.7±1.3%). Therefore, it was indicated that AG could be the GPCR targeting ligand. Additionally, TAT-modified NPs improved cellular uptake, no matter which kinds of cells. It was implied TAT had no cellular selectivity. In addition, we also analyzed cytotoxicity of ETP and siRNA loaded NPs individually and in combination treatment. The results showed drug loaded PLGA-PEG-AG NPs were better than PLGA-PEG NPs on parent H69 cells (IC50 of AG-NPs-ETP = 19.8±0.8 μg/mL;IC50 of AG-NPs-siRNA = 152.3±8.3 ng/mL), while dual peptide-modified NPs were the best formulation in CD133(+) H69 cells (IC50 of A/T-NPs-ETP = 15.0±2.9 μg/mL ; IC50 of A/T-NPs-siRNA = 169.7±17.1 ng/mL). TAT modification could overcome multidrug resistance, as shown in drug-resistant CD133(+) H69 cells, but not in drug-sensitive parent H69 cells. Furthermore, it was revealed combination treatments with the aid of siPIK3CA had more cytotoxicity than ETP loaded NPs alone. From the results form combination treatments, AG-NPs were better formulations in parent H69 cells, while A/T-NPs showed the best cytotoxicity in CD133(+) H69 cells. In conclusion, co-delivery of ETP and siPIK3CA with dual peptide-modified NPs could be a potential approach for improving SCLC therapy in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:52:11Z (GMT). No. of bitstreams: 1 ntu-106-R04423008-1.pdf: 16980480 bytes, checksum: 93638dcf9b2a712b0bfee906c2c27cfc (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………………………………..…..I
致謝 II 中文摘要 III Abstract V 目錄 VIII 圖目錄 XIV 表目錄 XXI 中英文縮寫表 XXIV 第一章 緒論 1 一、 小細胞肺癌(small cell lung carcinoma, SCLC) 1 (一) 流行病學 1 (二) 臨床症狀與腫瘤分期 2 (三) 治療方式 2 二、 癌幹細胞(cancer stem cells, CSCs) 7 (一) 癌幹細胞標記(cancer stem cell marker)─ CD133蛋白 8 (二) 標的於CSCs的治療 10 三、 神經胜肽(neuropeptides)與SCLC之關聯性 11 (一) 神經胜肽及其細胞訊息傳遞路徑 11 (二) 神經胜肽與抗癌藥物的發展 12 四、 細胞穿透胜肽(cell-penetrating peptides, CPPs) 14 (一) 種類及其特性 14 (二) TAT胜肽 14 五、 小分子干擾核糖核酸(small interfering RNA, siRNA) 17 (一) 結構與功能 17 (二) 臨床應用之障礙及解決辦法 17 六、 應用於癌症之奈米劑型遞送策略 20 (一) 被動型及主動型標的(passive and active targeting) 20 (二) 常見之奈米劑型材料 22 第二章 實驗動機與目的 24 第三章 實驗試劑與儀器 26 一、 藥品 26 二、 細胞實驗材料 29 三、 儀器 30 四、 耗材 32 五、 藥品溶液與緩衝溶液製備 33 第四章 實驗方法 35 一、 PLGA-PEG之合成 37 (一) PLGA之活化 (Lin and Kao, 2014) 37 (二) PLGA-PEG-NH2之合成 (Lin and Kao, 2014) 39 二、 AG-FITC胜肽之細胞株篩選試驗 43 三、 PLGA-PEG接枝AG-FITC及TAT-TAMRA之合成與奈米劑型的製備 45 (一) PLGA-PEG接枝AG-FITC之合成 45 (二) PLGA-PEG接枝TAT-TAMRA之合成 47 (三) PLGA-PEG-AG-FITC與PLGA-PEG-TAT-TAMRA物性分析 49 (四) PLGA-PEG NPs、PLGA-PEG-AG NPs、PLGA-PEG-TAT NPs及PLGA-PEG-A/T NPs之製備 52 (五) 奈米劑型的物性分析 54 四、 包覆藥物之奈米劑型的製備 55 (一) 包覆抗癌藥物ETP之奈米劑型的製備 55 (二) 包覆siPIK3CA之奈米劑型的製備 60 (三) 奈米劑型的物性分析 68 五、 小細胞肺癌H69細胞與其CD133表現 69 (一) 細胞表面之CD133表現量與ETP的關聯 69 (二) CD133(+) H69細胞篩選 71 六、 PLGA-PEG NPs、PLGA-PEG-AG NPs、PLGA-PEG-TAT NPs及PLGA-PEG-A/T NPs之細胞吞噬實驗 73 (一) 流式細胞儀分析 73 (二) 螢光顯微鏡分析 75 七、 PLGA-PEG-AG NPs、PLGA-PEG-TAT NPs及PLGA-PEG-A/T NPs進入細胞之途徑探討 76 八、 藥物體外釋放試驗 77 (一) 包覆ETP之奈米劑型的體外釋放試驗 77 (二) 包覆siRNA之奈米劑型的體外釋放試驗 79 (三) 不同劑型之體外釋放之動力學模式及其差異性 81 九、 細胞存活率試驗 83 (一) Free ETP對於母群及CD133(+) H69細胞之毒性 84 (二) 包覆ETP之奈米顆粒 84 (三) 包覆siRNA之奈米顆粒 85 (四) 合併給予包覆ETP與siRNA之奈米顆粒 86 (五) 未包覆藥物之奈米載體 87 十、 統計方法 87 第五章 實驗結果 88 一、 PLGA-PEG之合成 88 (一) PLGA之活化 88 (二) PLGA-PEG之製備 90 二、 AG-FITC胜肽之細胞株篩選試驗 96 三、 PLGA-PEG接枝AG-FITC及TAT-TAMRA之合成與奈米劑型的製備 98 (一) PLGA-PEG接枝AG-FITC之合成 98 (二) PLGA-PEG接枝TAT-TAMRA之合成 101 (三) PLGA-PEG NPs、PLGA-PEG-AG NPs、PLGA-PEG-TAT NPs及PLGA-PEG-A/T NPs之製備 103 四、 包覆藥物之奈米劑型的製備 106 (一) 包覆抗癌藥物ETP之奈米劑型的製備 106 (二) 包覆siRNA之奈米劑型的製備 111 五、 小細胞肺癌H69細胞與其CD133表現 118 (一) 細胞表面之CD133表現量及其與抗癌藥物ETP的關聯 118 (二) CD133(+) H69細胞篩選 120 六、 PLGA-PEG NPs、PLGA-PEG-AG NPs、PLGA-PEG-TAT NPs及PLGA-PEG-A/T NPs之細胞吞噬實驗 125 (一) 流式細胞儀分析 125 (二) 螢光顯微鏡分析 129 七、 PLGA-PEG-AG NPs、PLGA-PEG-TAT NPs及PLGA-PEG-A/T NPs進入細胞之途徑探討 134 (一) PLGA-PEG-AG NPs 134 (二) PLGA-PEG-TAT NPs 134 (三) PLGA-PEG-A/T NPs 135 八、 藥物體外釋放試驗 137 (一) 包覆ETP之奈米劑型的體外釋放試驗 137 (二) 包覆siRNA之奈米劑型的體外釋放試驗 143 九、 細胞存活率試驗 150 (一) Free ETP對於母群及CD133(+) H69細胞之毒性 150 (二) 包覆ETP之奈米顆粒 151 (三) 包覆siPIK3CA之奈米顆粒 156 (四) 合併給予包覆ETP與siPIK3CA之奈米顆粒 161 (五) 未包覆藥物之奈米載體 175 第六章 討論 178 一、 PLGA-PEG與其接枝AG-FITC、TAT-TAMRA之合成 178 (一) PLGA-PEG之合成 178 (二) PLGA-PEG-AG-FITC與PLGA-PEG-TAT-TAMRA之合成 179 二、 AG-FITC胜肽之細胞株篩選試驗 179 三、 奈米劑型製備 180 (一) 奈米顆粒之粒徑及表面電荷分析 180 (二) 奈米顆粒之穿透式電子顯微鏡影像 181 (三) 奈米顆粒之安定性試驗 181 四、 CD133(+) H69細胞篩選 182 五、 奈米劑型之細胞吞噬試驗 182 六、 體外釋放試驗 183 七、 細胞存活率試驗 184 第七章 結論 188 一、 PLGA-PEG與其接枝胜肽之合成實驗 188 (一) PLGA-PEG之合成 188 (二) PLGA-PEG-AG-FITC之合成 188 (三) PLGA-PEG-TAT-TAMRA之合成 188 二、 PLGA-PEG與其胜肽修飾之奈米劑型 189 (一) 未包覆藥物之奈米載體 189 (二) 包覆ETP之奈米顆粒 189 (三) 包覆siRNA之奈米顆粒(細胞存活率試驗用) 189 三、 小細胞肺癌H69細胞與其CD133表現 190 四、 奈米劑型之細胞吞噬能力與其進入細胞的途徑 190 (一) AG-FITC胜肽之主動標靶功能 190 (二) 奈米顆粒之細胞吞噬能力比較 190 (三) 經胜肽修飾之奈米顆粒進入細胞的途徑 191 五、 細胞存活率試驗 191 (一) 包覆ETP奈米顆粒之細胞毒性比較 191 (二) 包覆siRNA奈米顆粒之細胞毒性比較 192 (三) 合併給藥 192 第八章 參考文獻 194 | |
dc.language.iso | zh-TW | |
dc.title | 雙胜肽修飾之奈米載體應用於抗藥性小細胞肺癌的藥物治療 | zh_TW |
dc.title | Dual peptide-modified nanoparticles for improving chemotherapy against drug-resistant small cell lung carcinoma | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳韻晶,方嘉佑 | |
dc.subject.keyword | 小細胞肺癌,抗藥性,PLGA-PEG,奈米顆粒,胜?修飾, | zh_TW |
dc.subject.keyword | small cell lung carcinoma,drug-resistance,PLGA-PEG,nanoparticles,peptide modification, | en |
dc.relation.page | 202 | |
dc.identifier.doi | 10.6342/NTU201702517 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-08-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 16.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。