Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 腦與心智科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20515
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾文毅(Wen-Yih Isaac Tseng)
dc.contributor.authorChang-Le Chenen
dc.contributor.author陳長樂zh_TW
dc.date.accessioned2021-06-08T02:51:28Z-
dc.date.copyright2017-09-12
dc.date.issued2017
dc.date.submitted2017-08-14
dc.identifier.citationAbbott A (2011) Dementia: a problem for our age. Nature 475 (7355):S2-S4
Abdi H, Williams LJ (2010) Principal component analysis. Wiley interdisciplinary reviews: computational statistics 2 (4):433-459
Abe O, Yamasue H, Yamada H, Masutani Y, Kabasawa H, Sasaki H, Takei K, Suga M, Kasai K, Aoki S (2010) Sex dimorphism in gray/white matter volume and diffusion tensor during normal aging. NMR in Biomedicine 23 (5):446-458
Alexander AL, Hurley SA, Samsonov AA, Adluru N, Hosseinbor AP, Mossahebi P, Tromp do PM, Zakszewski E, Field AS (2011a) Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect 1 (6):423-446. doi:10.1089/brain.2011.0071
Alexander AL, Hurley SA, Samsonov AA, Adluru N, Hosseinbor AP, Mossahebi P, Tromp DP, Zakszewski E, Field AS (2011b) Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain connectivity 1 (6):423-446
Alexander DC (2008) A general framework for experiment design in diffusion MRI and its application in measuring direct tissue‐microstructure features. Magnetic Resonance in Medicine 60 (2):439-448
Amlien I, Fjell A (2014) Diffusion tensor imaging of white matter degeneration in Alzheimer’s disease and mild cognitive impairment. Neuroscience 276:206-215
Amlien IK, Fjell AM, Walhovd KB, Selnes P, Stenset V, Grambaite R, Bjørnerud A, Due-Tønnessen P, Skinningsrud A, Gjerstad L (2013) Mild cognitive impairment: cerebrospinal fluid tau biomarker pathologic levels and longitudinal changes in white matter integrity. Radiology 266 (1):295-303
Andreone N, Tansella M, Cerini R, Rambaldelli G, Versace A, Marrella G, Perlini C, Dusi N, Pelizza L, Balestrieri M (2007) Cerebral atrophy and white matter disruption in chronic schizophrenia. European archives of psychiatry and clinical neuroscience 257 (1):3-11
Avram AV, Sarlls JE, Barnett AS, Ozarslan E, Thomas C, Irfanoglu MO, Hutchinson E, Pierpaoli C, Basser PJ (2016) Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure. Neuroimage 127:422-434. doi:10.1016/j.neuroimage.2015.11.027
Bartres-Faz D, Clemente I, Junque C (2000) White matter changes and cognitive performance in aging. Revista de neurologia 33 (4):347-353
Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT‐MRI data. Magnetic resonance in medicine 44 (4):625-632
Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiological reviews 81 (2):871-927
Bennett IJ, Madden DJ (2014) Disconnected aging: cerebral white matter integrity and age-related differences in cognition. Neuroscience 276:187-205
Bennett IJ, Madden DJ, Vaidya CJ, Howard DV, Howard JH, Jr. (2010) Age-related differences in multiple measures of white matter integrity: A diffusion tensor imaging study of healthy aging. Hum Brain Mapp 31 (3):378-390. doi:10.1002/hbm.20872
Bowen J, Teri L, Kukull W, McCormick W, McCurry SM, Larson EB (1997) Progression to dementia in patients with isolated memory loss. The Lancet 349 (9054):763-765
Broome MR, Woolley JB, Tabraham P, Johns LC, Bramon E, Murray GK, Pariante C, McGuire PK, Murray RM (2005) What causes the onset of psychosis? Schizophrenia research 79 (1):23-34
Burzynska AZ, Preuschhof C, Backman L, Nyberg L, Li SC, Lindenberger U, Heekeren HR (2010) Age-related differences in white matter microstructure: region-specific patterns of diffusivity. Neuroimage 49 (3):2104-2112. doi:10.1016/j.neuroimage.2009.09.041
Caligiuri ME, Perrotta P, Augimeri A, Rocca F, Quattrone A, Cherubini A (2015) Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: A review. Neuroinformatics 13 (3):261-276
Caserta MT, Bannon Y, Fernandez F, Giunta B, Schoenberg MR, Tan J (2009) Normal brain aging: clinical, immunological, neuropsychological, and neuroimaging features. International review of neurobiology 84:1-19
Chen YJ, Lo YC, Hsu YC, Fan CC, Hwang TJ, Liu CM, Chien YL, Hsieh MH, Liu CC, Hwu HG, Tseng WY (2015) Automatic whole brain tract-based analysis using predefined tracts in a diffusion spectrum imaging template and an accurate registration strategy. Hum Brain Mapp 36 (9):3441-3458. doi:10.1002/hbm.22854
Cole JH, Leech R, Sharp DJ, Alzheimer's Disease Neuroimaging I (2015) Prediction of brain age suggests accelerated atrophy after traumatic brain injury. Ann Neurol 77 (4):571-581. doi:10.1002/ana.24367
Cole JH, Poudel RP, Tsagkrasoulis D, Caan MW, Steves C, Spector TD, Montana G (2016) Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. arXiv preprint arXiv:161202572
Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26 (2):375-385. doi:10.1002/jmri.20969
Einstein A (1905) On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Annalen der physik 17:549-560
Filley CM, Kleinschmidt-DeMasters B (2001) Toxic leukoencephalopathy. New England Journal of Medicine 345 (6):425-432
Franke K, Gaser C, Manor B, Novak V (2013) Advanced BrainAGE in older adults with type 2 diabetes mellitus. Frontiers in aging neuroscience 5
Franke K, Ziegler G, Kloppel S, Gaser C, Alzheimer's Disease Neuroimaging I (2010) Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 50 (3):883-892. doi:10.1016/j.neuroimage.2010.01.005
Fritzsche KH, Laun FB, Meinzer H-P, Stieltjes B (2010) Opportunities and pitfalls in the quantification of fiber integrity: what can we gain from Q-ball imaging? NeuroImage 51 (1):242-251
Gaser C, Franke K, Kloppel S, Koutsouleris N, Sauer H, Alzheimer's Disease Neuroimaging I (2013) BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer's Disease. PLoS One 8 (6):e67346. doi:10.1371/journal.pone.0067346
Gorczewski K, Mang S, Klose U (2009) Reproducibility and consistency of evaluation techniques for HARDI data. Magma 22 (1):63
Grundman M, Petersen RC, Ferris SH, Thomas RG, Aisen PS, Bennett DA, Foster NL, Jack Jr CR, Galasko DR, Doody R (2004) Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Archives of neurology 61 (1):59-66
Gunning-Dixon FM, Brickman AM, Cheng JC, Alexopoulos GS (2009) Aging of cerebral white matter: a review of MRI findings. Int J Geriatr Psychiatry 24 (2):109-117. doi:10.1002/gps.2087
Hinman JD, Peters A, Cabral H, Rosene DL, Hollander W, Rasband MN, Abraham CR (2006) Age‐related molecular reorganization at the node of Ranvier. Journal of Comparative Neurology 495 (4):351-362
Hsu Y-C, Hsu C-H, Tseng W-YI (2012) A large deformation diffeomorphic metric mapping solution for diffusion spectrum imaging datasets. NeuroImage 63 (2):818-834
Hsu YC, Lo YC, Chen YJ, Wedeen VJ, Isaac Tseng WY (2015) NTU‐DSI‐122: A diffusion spectrum imaging template with high anatomical matching to the ICBM‐152 space. Human brain mapping 36 (9):3528-3541
Inano S, Takao H, Hayashi N, Abe O, Ohtomo K (2011) Effects of age and gender on white matter integrity. American Journal of Neuroradiology 32 (11):2103-2109
Inano S, Takao H, Hayashi N, Yoshioka N, Mori H, Kunimatsu A, Abe O, Ohtomo K (2013) Effects of age and gender on neuroanatomical volumes. Journal of Magnetic Resonance Imaging 37 (5):1072-1076
Jankelowitz S, McNulty P, Burke D (2007) Changes in measures of motor axon excitability with age. Clinical Neurophysiology 118 (6):1397-1404
Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging. Magnetic resonance in medicine 53 (6):1432-1440
Jonasson L, Hagmann P, Thiran J, Wedeen V Fiber tracts of high angular resolution diffusion MRI are easily segmented with spectral clustering. In: Proceedings of 13th Annual Meeting ISMRM, Miami, 2005. vol EPFL-CONF-87232. SPIE, p 1310
Kirkwood TB (2005) Understanding the odd science of aging. Cell 120 (4):437-447
Kochunov P, Glahn DC, Rowland LM, Olvera RL, Winkler A, Yang Y-H, Sampath H, Carpenter WT, Duggirala R, Curran J (2013) Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression. Biological psychiatry 73 (5):482-491
Kodiweera C, Alexander AL, Harezlak J, McAllister TW, Wu Y-C (2016) Age effects and sex differences in human brain white matter of young to middle-aged adults: a DTI, NODDI, and q-space study. NeuroImage 128:180-192
Konradi C, Heckers S (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacology & therapeutics 97 (2):153-179
Kumar R, Chavez AS, Macey PM, Woo MA, Harper RM (2013) Brain axial and radial diffusivity changes with age and gender in healthy adults. Brain research 1512:22-36
Kuo LW, Chen JH, Wedeen VJ, Tseng WY (2008) Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system. Neuroimage 41 (1):7-18. doi:10.1016/j.neuroimage.2008.02.016
Lemm S, Blankertz B, Dickhaus T, Muller KR (2011) Introduction to machine learning for brain imaging. Neuroimage 56 (2):387-399. doi:10.1016/j.neuroimage.2010.11.004
Liu H, Wang L, Geng Z, Zhu Q, Song Z, Chang R, Lv H (2016) A voxel-based morphometric study of age-and sex-related changes in white matter volume in the normal aging brain. Neuropsychiatric disease and treatment 12:453
Liu H, Yang Y, Xia Y, Zhu W, Leak RK, Wei Z, Wang J, Hu X (2017) Aging of cerebral white matter. Ageing Res Rev 34:64-76. doi:10.1016/j.arr.2016.11.006
Luders E, Cherbuin N, Gaser C (2016) Estimating brain age using high-resolution pattern recognition: younger brains in long-term meditation practitioners. Neuroimage 134:508-513
Martin J (2012) Neuroanatomy text and atlas. McGraw Hill Professional,
Mayer D, Butler D (1993) Statistical validation. Ecological modelling 68 (1-2):21-32
Medina D, DeToledo-Morrell L, Urresta F, Gabrieli JD, Moseley M, Fleischman D, Bennett DA, Leurgans S, Turner DA, Stebbins GT (2006) White matter changes in mild cognitive impairment and AD: A diffusion tensor imaging study. Neurobiol Aging 27 (5):663-672. doi:10.1016/j.neurobiolaging.2005.03.026
Melo J (2012) Gaussian processes for regression: a tutorial. Technical Report
Mukoyama M (1973) Age Changes in Internodal Length in the Human Spinal Roots: Nerve Teasing Study.
Mwangi B, Hasan KM, Soares JC (2013) Prediction of individual subject's age across the human lifespan using diffusion tensor imaging: a machine learning approach. Neuroimage 75:58-67. doi:10.1016/j.neuroimage.2013.02.055
Ota M, Obata T, Akine Y, Ito H, Ikehira H, Asada T, Suhara T (2006) Age-related degeneration of corpus callosum measured with diffusion tensor imaging. Neuroimage 31 (4):1445-1452
Ozarslan E, Koay CG, Shepherd TM, Komlosh ME, Irfanoglu MO, Pierpaoli C, Basser PJ (2013) Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. Neuroimage 78:16-32. doi:10.1016/j.neuroimage.2013.04.016
Peters R (2006) Ageing and the brain. Postgrad Med J 82 (964):84-88. doi:10.1136/pgmj.2005.036665
Petersen RC (2011) Mild cognitive impairment. New England Journal of Medicine 364 (23):2227-2234
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Archives of neurology 56 (3):303-308
Rasmussen CE, Williams CK (2004) Gaussian processes in machine learning. Lecture notes in computer science 3176:63-71
Raz N (2000) Aging of the brain and its impact on cognitive performance: Integration of structural and functional findings.
Reese T, Heid O, Weisskoff R, Wedeen V (2003) Reduction of eddy‐current‐induced distortion in diffusion MRI using a twice‐refocused spin echo. Magnetic resonance in medicine 49 (1):177-182
Refaeilzadeh P, Tang L, Liu H (2009) Cross-validation. In: Encyclopedia of database systems. Springer, pp 532-538
Reuter-Lorenz PA, Lustig C (2005) Brain aging: reorganizing discoveries about the aging mind. Curr Opin Neurobiol 15 (2):245-251. doi:10.1016/j.conb.2005.03.016
Ryan J, Artero S, Carrière I, Scali J, Maller JJ, Meslin C, Ritchie K, Scarabin P-Y, Ancelin M-L (2014) Brain volumes in late life: gender, hormone treatment, and estrogen receptor variants. Neurobiology of aging 35 (3):645-654
Salat D, Tuch D, Hevelone N, Fischl B, Corkin S, Rosas H, Dale A (2005) Age‐related changes in prefrontal white matter measured by diffusion tensor imaging. Annals of the New York Academy of Sciences 1064 (1):37-49
Schmahmann JD, Smith EE, Eichler FS, Filley CM (2008) Cerebral white matter. Annals of the New York Academy of Sciences 1142 (1):266-309
Schnack HG, van Haren NE, Nieuwenhuis M, Hulshoff Pol HE, Cahn W, Kahn RS (2016) Accelerated Brain Aging in Schizophrenia: A Longitudinal Pattern Recognition Study. Am J Psychiatry 173 (6):607-616. doi:10.1176/appi.ajp.2015.15070922
Sheffield JM, Repovs G, Harms MP, Carter CS, Gold JM, MacDonald III AW, Ragland JD, Silverstein SM, Godwin D, Barch DM (2015) Evidence for accelerated decline of functional brain network efficiency in schizophrenia. Schizophrenia bulletin 42 (3):753-761
Steffener J, Habeck C, O'Shea D, Razlighi Q, Bherer L, Stern Y (2016) Differences between chronological and brain age are related to education and self-reported physical activity. Neurobiology of aging 40:138-144
Sugiyama I, Tanaka K, Akita M, Yoshida K, Kawase T, Asou H (2002) Ultrastructural analysis of the paranodal junction of myelinated fibers in 31‐month‐old‐rats. Journal of neuroscience research 70 (3):309-317
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15 (1):273-289
Wedeen VJ, Hagmann P, Tseng WYI, Reese TG, Weisskoff RM (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic resonance in medicine 54 (6):1377-1386
Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G, Pandya DN, Hagmann P, D'Arceuil H, de Crespigny AJ (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41 (4):1267-1277. doi:10.1016/j.neuroimage.2008.03.036
Wright SN, Kochunov P, Chiappelli J, McMahon RP, Muellerklein F, Wijtenburg SA, White MG, Rowland LM, Hong LE (2014) Accelerated white matter aging in schizophrenia: role of white matter blood perfusion. Neurobiology of aging 35 (10):2411-2418
Wu TC, Wilde EA, Bigler ED, Yallampalli R, McCauley SR, Troyanskaya M, Chu Z, Li X, Hanten G, Hunter JV (2010) Evaluating the relationship between memory functioning and cingulum bundles in acute mild traumatic brain injury using diffusion tensor imaging. Journal of neurotrauma 27 (2):303-307
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20515-
dc.description.abstract基於醫學影像的腦年齡預測提供了一種嶄新的方式來評估相對於健康族群的個人化腦年齡資訊。腦年齡預測模型估計的”腦年齡”具有做為臨床上神經退化性疾病的生物標記之潛在價值。過去有關腦年齡預測的研究,往往使用腦部較為巨觀的變化,如灰質、白質的體積改變等。然而,一些研究表示,白質神經束的微結構變化,像是神經束完整性,對於老化的進程更為敏銳。因此,本研究旨在開發基於白質神經束微結構的腦年齡預測模型。利用擴散頻譜造影獲得腦部白質神經纖維束的擴散資訊,此擴散資訊可以反映出神經束的微結構特徵。再者,腦年齡預測模型所預測出的年齡若與實際年齡有所差異,可能反映出潛在神經相關性疾病的存在。過去研究報告指出,輕度認知障礙和思覺失調症對於腦部皆會造成加速老化的現象。因此,本研究除了建構腦年齡預測模型外,並將預測模型應用於輕度認知障礙患者與思覺失調症患者上,觀察模型所預測的年齡是否能反映出加速老化的現象,作為腦年齡預測模型的潛在臨床應用開發。
本研究中採用了四組獨立樣本: 192名健康成年人(年齡範圍:31至92歲),作為訓練模型組、30名健康成年人(年齡範圍:31至80歲),作為測試模型組、35名輕度認知障礙患者(年齡範圍:61至83歲)與44名思覺失調症患者(年齡範圍:32至62歲),作為臨床測試組。透過MAP-MRI組件將擴散頻譜造影的影像資料重建為七種擴散指標,包含概化部分不等向性(GFA)、軸向擴散係數(AD)、徑向擴散係數(RD)、平均擴散係數(MD)、非高斯係數(NG)、正交非高斯係數(NGO)以及平行非高斯係數(NGP)。其後,利用全腦白質自動化神經束分析,獲得大腦主要76條白質神經數的七種擴散指標所構成的三維腦聯結圖(3D-connectogram)。為了從三維腦聯結圖提取和年齡相關的特徵,作為建模時候的變數,我們在三維腦聯結圖上的每一個資料點建構與年齡相關的迴歸模型,將與年齡有關的顯著片段提取出來,而後利用主成分分析減少特徵的維度,再將降維後的變數代入高斯過程迴歸模型(GPR model),以擴散指標為預測因子,將年齡作為反應變數,進行監督式機械學習。因建構模型是在每一種擴散指標上進行,其後我們將每一種擴散指標所得到的預測年齡進行加權平均,得到最後的預測年齡。此外我們建構模型時使用了六重交叉驗證,以檢驗訓練組的代表性與模型估計參數的表現。評量模型預測能力的一致性與準確性我們主要利用皮爾森相關係數(r)與平均絕對誤差(MAE)作為衡量的依據。而在臨床應用的試驗中,通過從預測年齡減去實際年齡來計算的預測年齡差異(PAD),評估不同臨床疾病組相較於健康對照組是否出現年齡高估的現象。PAD越高,表示年齡高估越多,可以反映加速老化的現象。PAD在臨床疾病組與對照組中我們使用共變數分析(ANCOVA)檢驗族群差異,並控制性別因子。
模型評估的實驗結果中,訓練組(r = 0.86, MAE = 5.6年)與健康測試組(r = 0.92, MAE = 4.3年)的表現皆十分準確。在臨床應用模型試驗中,輕度認知障礙患者(r = 0.69, MAE = 6.8年)與思覺失調症患者(r = 0.61, MAE = 9.4年)在PAD的反映上,與健康對照組(平均PAD = -1.92年)相比,輕度認知障礙患者(平均PAD = 2.96年)與思覺失調症患者(平均PAD = 8.65年)皆顯著性高估於對照組。 臨床疾病組的腦年齡高估,可能反映出加速老化的現象。
我們的研究結果顯示透過GPR建模的方式在訓練組與測試組中,獲得了相當高的準確性。而在臨床疾病組中,平均預測的腦年齡有高估的趨勢,反映出加速老化的情形,和過去文獻的結果一致。總結: 基於白質微結構特徵的腦年齡預測模型在健康族群中能有高準確度的預測,可以個體化進行腦年齡評估。此外,該模型具有助於發掘在個體上加速老化效應的潛在價值。
zh_TW
dc.description.abstractImaging-based brain-age prediction provides a promising approach to assess an individual’s brain age relative to healthy populations. The estimated “brain-age” potentially offers clinically relevant biomarkers of neurodegenerative diseases which often manifest accelerated aging process. Studies on brain-age prediction depend on morphological changes of cerebral macrostructure, like volumes in gray or white matter. However, some studies suggest that alterations of white matter microstructure, like tract integrity, are more sensitive to aging effects. Therefore, we aimed to develop a brain-age prediction model based on white matter microstructure, using diffusion spectrum imaging to acquire characteristics of white matter. In addition, the disparity between chronological age and the corresponding predicted brain age might signal the presence of neurodegenerative disease. Studies reported that mild cognitive impairment (MCI) and schizophrenia were both engaged in accelerated aging of the brain. Therefore, to explore the potential clinical applications of the prediction model, we applied the prediction model to MCI and schizophrenia patients. We aimed to investigate whether the overestimated brain age could be observed in these two patient groups, reflecting the effect of accelerated aging.
Four independent samples were recruited in the study: 192 healthy controls (age: 31–92 years) as the training set, 30 healthy controls (age: 31–80 years) as the model testing set, 35 MCI patients (age: 61–83 years) and 44 patients with schizophrenia (age: 32–62 years) as the clinical testing sets. MAP-MRI framework was used to reconstruct diffusion spectrum imaging (DSI) datasets into 7 diffusion indices, namely generalized fractional anisotropy (GFA), axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), non-Gaussianity (NG), NG orthogonal (NGO), and NG parallel (NGP). Whole-brain tract-based automatic analysis was implemented to obtain 3D-connectograms of the 7 diffusion indices. To extract age-related features, general linear models were estimated at each step of the connectograms using linear and quadratic age as the independent variables. Continuous steps with significant aging effect were selected as segments. The segments underwent principal component analysis to reduce the dimensions. Gaussian process regression (GPR) models were employed to fit each diffusion index using the age as the response variable and the principal segments as the predictors. An integrative model was defined to integrate the GPR models for each diffusion index into a unified model. Six-fold cross-validation on the training set was conducted to validate the robustness of the model. Model performance was assessed by Pearson’s correlation coefficient and mean absolute error (MAE) between the predicted age and chronological age. In the model test for clinical applications, predicted age difference (PAD) was calculated by subtracting chronological age from predicted age. The higher the PAD, the more overestimation of the brain age is. The PAD scores were used to test group differences among the three study groups using analysis of covariance (ANCOVA), controlling sex.
In the model assessment, Pearson’s correlation coefficients and MAE in the training and testing sets were r = 0.86, MAE = 5.6 years, and r = 0.92, MAE = 4.3 years, respectively. In the model test for clinical applications, Pearson’s correlation coefficients and MAE in the MCI and schizophrenia groups were, r = 0.69, MAE = 6.8 years and r = 0.61, MAE = 9.4 year, respectively. Compared to the healthy controls (-1.92 years), the MCI and schizophrenia groups had significantly increased PAD by 2.96 and 8.65 years, respectively
Our results showed that the GPR modeling approach achieved equally high accuracy in the training group and the testing group of healthy controls. In the MCI and schizophrenia groups, the average predicted brain age was overestimated with respect to their chronological age. The results are consistent with previous studies that MCI and schizophrenia may accelerate the aging process. In summary, a model of brain age prediction based on white matter microstructural properties was developed with high accuracy in the healthy population, allowing brain age assessment on individual basis. Moreover, this model might be helpful in detecting individuals with accelerated aging effects.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:51:28Z (GMT). No. of bitstreams: 1
ntu-106-R04454003-1.pdf: 2536178 bytes, checksum: 4ed81f3d6b258bbf3b3e9f92464ac803 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員審定書 ………………………………………………………………………………………………… i
誌謝 ……………………………………………………………………………………………………………………… ii
中文摘要 …………………………………………………………………………………………………………… iii
Abstract ……………………………………………………………………………………………………………… v
Chapter 1 Introduction ………………………………………………………………………… 1
1.1 Background …………………………………………………………………………………… 1
1.2 Cerebral white matter in aging ……………………………… 1
1.3 Disease-related conditions hasten aging process…………………………………………… 6
1.4 Diffusion indices reflect age-related dynamic changes ………………………………………… 8
1.5 Brain age prediction ……………………………………………………… 10
1.6 Motivation and purpose ………………………………………………… 12
Chapter 2 Materials and Methods ……………………………………………… 14
2.1 Participants …………………………………………………………………………… 14
2.2 Imaging technique: Diffusion spectrum imaging (DSI) …………………………………………… 14
2.3 MRI data acquisition ……………………………………………………… 15
2.4 Imaging analysis ………………………………………………………………… 16
2.4.1 Image quality assurance ……………………………………………… 16
2.4.2 Diffusion data reconstruction ……………………………… 18
2.4.3 Tract-based automatic analysis …………………………… 19
2.5 Predictive modeling ………………………………………………………… 22
2.5.1 Connectogram preprocessing ……………………………………… 23
2.5.2 Feature extraction …………………………………………………………… 24
2.5.3 Principal component analysis (PCA) ………………… 24
2.5.4 Gaussian process regression …………………………………… 25
2.5.5 Integrative modeling ……………………………………………………… 29
2.5.6 K-fold cross validation………………………………………………… 30
2.6 Model assessment ………………………………………………………………… 31
Chapter 3 Results …………………………………………………………………………………… 33
3.1 The training data (6-fold cross validation) and the testing data ………………… 33
3.2 The test for clinical application …………………… 34
Chapter 4 Discussion …………………………………………………………………………… 37
4.1 Brief summary ………………………………………………………………………… 37
4.2 Brain-age predictive model ……………………………………… 37
4.3 Limitation and future work ……………………………………… 40
4.4 Conclusion ………………………………………………………………………………… 40
References ……………………………………………………………………………………………………… 42
Appendix …………………………………………………………………………………………………………… 48
dc.language.isoen
dc.title藉由大腦白質微結構特性建構腦年齡預測模型及其潛在臨床應用zh_TW
dc.titlePrediction of Brain Age Based on Cerebral White Matter Microstructural Properties and Its Potential Clinical Applicationsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳文超(Wen-Chau Wu),曾明宗(Ming-Tsung Tseng)
dc.subject.keyword擴散頻譜造影,白質微結構特性,高斯過程迴歸,輕度認知障礙,思覺失調症,zh_TW
dc.subject.keywordDiffusion spectrum imaging,White matter microstructural property,Gaussian process regression,Mild cognitive impairment,Schizophrenia,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201703294
dc.rights.note未授權
dc.date.accepted2017-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept腦與心智科學研究所zh_TW
顯示於系所單位:腦與心智科學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
2.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved