請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20500完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉雅瑄(Sofia Ya-Hsuan Liou) | |
| dc.contributor.author | An-Sheng Lee | en |
| dc.contributor.author | 李安昇 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:50:55Z | - |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-15 | |
| dc.identifier.citation | [1] A.Tessier, P.G.C.Campbell, M.Bisson, Sequential Extraction Procedure for the Speciation of Particulate Trace Metals, Anal. Chem. 51 (1979).
[2] K.C.Yu, L.J.Tsai, S.H.Chen, S.T.Ho, Chemical binding of heavy metals in anoxic river sediments, Water Res. 35 (2001) 4086–4094. doi:10.1016/S0043-1354(01)00126-9. [3] M.D.Krom, P.Carbo, S.Clerici, A.B.Cundy, I.M.Davies, Sources and timing of trace metal contamination to sediments in remote sealochs, N.W. Scotland, Estuar. Coast. Shelf Sci. 83 (2009) 239–251. doi:10.1016/j.ecss.2009.03.028. [4] X.Qiu, C.H.Marvin, R.A.Hites, Dechlorane Plus and Other Flame Retardants in a Sediment Core from Lake Ontario, (2007). doi:10.1021/ES070810B. [5] R.Pardo, E.Barrado, Determination and speciation of heavy metals in sediments of the Pisuerga river, WaL R¢s. 24 (1990) 373–379. [6] M.J.Kennish, Environmental threats and environmental future of estuaries, Environ. Conserv. 29 (2002) 78–107. doi:10.1017/S0376892902000061. [7] L.VanCauwenberghe, L.Devriese, F.Galgani, J.Robbens, C.R.Janssen, Microplastics in sediments: A review of techniques, occurrence and effects, Mar. Environ. Res. 111 (2015) 5–17. doi:10.1016/j.marenvres.2015.06.007. [8] S.Heim, J.Schwarzbauer, Pollution history revealed by sedimentary records: a review, Environ. Chem. Lett. 11 (2013) 255–270. doi:10.1007/s10311-013-0409-3. [9] I.Rodríguez-Germade, B.Rubio, D.Rey, XRF scanners as a quick screening tool for detecting toxic pollutant elements in sediments from Marín harbour in the Ría de Pontevedra (NW Spain), Mar. Pollut. Bull. 86 (2014) 458–467. doi:10.1016/j.marpolbul.2014.06.029. [10] N.Warren, I.J.Allan, J.E.Carter, W.A.House, A.Parker, Pesticides and other micro-organic contaminants in freshwater sedimentary environments—a review, Appl. Geochemistry. 18 (2003) 159–194. doi:10.1016/S0883-2927(02)00159-2. [11] L.J.Poppe, A.H.Eliason, J.J.Fredericks, R.R.Rendigs, D.Blackwood, C..Polloni, Chapter 1: grain-size analysis of marine sediments: methodology and data processing. U.S. geological survey open-file report, 2000. http://pubs.usgs.gov/of/2000/of00-358/text/chapter1.htm (accessed August22, 2016). [12] J.T.Sims, S.E.Heckendorn, Methods of soil analysis: University of Delaware Soil Testing Laboratory, (1991) 125. file://catalog.hathitrust.org/Record/011453763. [13] E.E.Schulte, C.Kaufmann, J.B.Peter, The influence of sample size and heating time on soil weight loss‐on‐ignition, Commun. Soil Sci. Plant Anal. 22 (1991) 159–168. doi:10.1080/00103629109368402. [14] J.D.B.Featherstone, S.Pearson, R.Z.LeGeros, An Infrared Method for Quantification of Carbonate in Carbonated Apatites, Caries Res. 18 (1984) 63–66. http://www.karger.com/DOI/10.1159/000260749. [15] D.Relić, D.Đorđević, S.Sakan, I.Anđelković, S.Miletić, J.Đuričić, Aqua regia extracted metals in sediments from the industrial area and surroundings of Pančevo, Serbia, J. Hazard. Mater. 186 (2011) 1893–1901. doi:10.1016/j.jhazmat.2010.12.086. [16] H.Miller, I.W.Croudace, J.M.Bull, C.J.Cotterill, J.K.Dix, R.N.Taylor, A 500 year sediment lake record of anthropogenic and natural inputs to Windermere (English Lake District) using double-spike lead isotopes, radiochronology, and sediment microanalysis, Env. Sci Technol. 48 (2014) 7254–7263. doi:10.1021/es5008998. [17] J.G.Farmer, L.J.Eades, A.B.Mackenzie, A.Kirika, T.E.Bailey-Watts, Stable Lead Isotope Record of Lead Pollution in Loch Lomond Sediments since 1630 A.D, Environ. Sci. Technol. 30 (1996) 3080–3083. doi:10.1021/es960162o. [18] A.Thapalia, D.M.Borrok, P.C.VanMetre, J.Wilson, Zinc isotopic signatures in eight lake sediment cores from across the United States., Environ. Sci. Technol. 49 (2015) 132–40. doi:10.1021/es5036893. [19] U.Ghosh, J.S.Gillette, R.G.Luthy, R.N.Zare, Microscale Location, Characterization, and Association of Polycyclic Aromatic Hydrocarbons on Harbor Sediment Particles, Environ. Sci. Technol. 34 (2000) 1729–1736. doi:10.1021/ES991032T. [20] C.M.Preston, M.W.I.Schmidt, Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions, Biogeosciences. 3 (2006) 397–420. doi:10.5194/bg-3-397-2006. [21] N.F.Y.Tam, Y.S.Wong, Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps, Environ. Pollut. 110 (2000) 195–205. doi:10.1016/S0269-7491(99)00310-3. [22] F.Li, J.Huang, G.Zeng, X.Yuan, X.Li, J.Liang, X.Wang, X.Tang, B.Bai, Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China, J. Geochemical Explor. 132 (2013) 75–83. doi:10.1016/j.gexplo.2013.05.007. [23] S.Klein, E.Worch, T.P.Knepper, Occurrence and Spatial Distribution of Microplastics in River Shore Sediments of the Rhine-Main Area in Germany, Environ. Sci. Technol. 49 (2015) 6070–6076. doi:10.1021/acs.est.5b00492. [24] S.Sakan, D.Đorđević, G.Dević, D.Relić, I.Anđelković, J.Ðuričić, A study of trace element contamination in river sediments in Serbia using microwave-assisted aqua regia digestion and multivariate statistical analysis, Microchem. J. 99 (2011) 492–502. doi:10.1016/j.microc.2011.06.027. [25] A.Lintern, P.J.Leahy, H.Heijnis, A.Zawadzki, P.Gadd, G.Jacobsen, A.Deletic, D.T.Mccarthy, Identifying heavy metal levels in historical flood water deposits using sediment cores, Water Res. (2016). doi:10.1016/j.watres.2016.08.041. [26] A.Lintern, P.J.Leahy, A.Zawadzki, P.Gadd, H.Heijnis, G.Jacobsen, S.Connor, A.Deletic, D.T.McCarthy, Sediment cores as archives of historical changes in floodplain lake hydrology, Sci. Total Environ. 544 (2016) 1008–1019. doi:10.1016/j.scitotenv.2015.11.153. [27] L.Zhang, Z.Zhang, Y.Chen, Y.Fu, Sediment characteristics, floods, and heavy metal pollution recorded in an overbank core from the lower reaches of the Yangtze River, Environ. Earth Sci. 74 (2015) 7451–7465. doi:10.1007/s12665-015-4733-8. [28] L.Rosales-Hoz, A.B.Cundy, J.L.Bahena-Manjarrez, Heavy metals in sediment cores from a tropical estuary affected by anthropogenic discharges: Coatzacoalcos estuary, Mexico, Estuar. Coast. Shelf Sci. 58 (2003) 117–126. doi:10.1016/S0272-7714(03)00066-0. [29] K.Loska, D.Wiechuła, Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir, Chemosphere. 51 (2003) 723–733. doi:10.1016/S0045-6535(03)00187-5. [30] S.Wang, Y.Wang, R.Zhang, W.Wang, D.Xu, J.Guo, P.Li, K.Yu, Historical levels of heavy metals reconstructed from sedimentary record in the Hejiang River, located in a typical mining region of Southern China, Sci. Total Environ. 532 (2015) 645–654. doi:10.1016/j.scitotenv.2015.06.035. [31] H.Yang, N.Rose, Trace element pollution records in some UK lake sediments, their history, influence factors and regional differences, Environ. Int. 31 (2005) 63–75. doi:10.1016/j.envint.2004.06.010. [32] Y.Guo, S.Yang, Heavy metal enrichments in the Changjiang (Yangtze River) catchment and on the inner shelf of the East China Sea over the last 150years, Sci. Total Environ. 543 (2016) 105–115. doi:10.1016/j.scitotenv.2015.11.012. [33] U.Forstner, Sediments chemistry and toxicity of in-place pollutants: Inorganic sediment chemistry and elemental speciation, Book, Lewis Publishers, Chelsea, MI, 1990. [34] S.C.Williams, H.J.Simpson, C.R.Olsen, R.F.Bopp, Sources of heavy metals in sediments of the Hudson River Estuary, Mar. Chem. 6 (1978) 195–213. doi:10.1016/0304-4203(78)90030-0. [35] J.Miranda, E.Andrade, A.López-Suárez, R.Ledesma, T.A.Cahill, P.H.Wakabayashi, A receptor model for atmospheric aerosols from a southwestern site in Mexico City, Atmos. Environ. 30 (1996) 3471–3479. doi:10.1016/1352-2310(95)00477-7. [36] H.Yongming, D.Peixuan, C.Junji, E.S.Posmentier, Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China, Sci Total Env. 355 (2006) 176–186. doi:10.1016/j.scitotenv.2005.02.026. [37] A.A.Moreno Blas L Valero-Garcés AE Penélope González-Sampériz AE Mayte Rico, Flood response to rainfall variability during the last 2000 years inferred from the Taravilla Lake record (Central Iberian Range, Spain), doi:10.1007/s10933-008-9209-3. [38] C.Martin-Puertas, R.Tjallingii, M.Bloemsma, A.Brauer, Varved sediment responses to early Holocene climate and environmental changes in Lake Meerfelder Maar (Germany) obtained from multivariate analyses of micro X-ray fluorescence core scanning data, J. Quat. Sci. (2017) doi:10.1002/jqs.2935. [39] Ø.Hammer, D.A.T.Harper, Paleontological data analysis, Book, Blackwell Publisher, 2006. [40] H.F.Kaiser, The Application of Electronic Computers to Factor Analysis, Educ. Psychol. Meas. 20 (1960) 141–151. doi:10.1177/001316446002000116. [41] J.Mckenna, An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis, Environ. Model. Softw. 18 (2003) 205–220. doi:10.1016/S1364-8152(02)00094-4. [42] J.H.Ward, Hierarchical Grouping to Optimize an Objective Function, J. Am. Stat. Assoc. 58 (1963) 236–244. doi:10.1080/01621459.1963.10500845. [43] S.Shrestha, F.Kazama, Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan, Environ. Model. Softw. 22 (2007) 464–475. doi:10.1016/j.envsoft.2006.02.001. [44] Shu Hui Zhang, The Integrated Action Plan of Primary Rivers Pollution Improvement Implementation, Environmental Protection Administration Executive Yuan, R.O.C.(Taiwan), 2013. [45] L.Lin, Industrial and Social Development in Taoyuan from 1966 to 1996, Master's Thesis, National Central University, 2007. [46] C.C.Lee, Yih Min Sun, Chien Jung Tien, The Environmental Survey of Toxic Chemicals in Taiwan, 2014-2015, NCKU Research and Development Foundation, 2014. [47] C.Po-lin, Beyond Beauty - TAIWAN FROM ABOVE, Activator Marketing Co., Ltd., Taiwan, 2013. [48] 陳建霖, 廢水汙染南崁溪 中油桃煉廠遭罰27萬, Epoch Times Taiwan. (2013). http://www.epochtimes.com.tw/n68533/廢水汙染南崁溪-中油桃煉廠遭罰27萬.html (accessed July7, 2017). [49] 林近, 高腐蝕恐致癌 電鍍鉻酸污染南崁溪, Lib. Times Net. (2015). http://news.ltn.com.tw/index.php/news/local/paper/883866 (accessed July7, 2017). [50] 謝武雄, 又見「藍色多瑙河」 敬鵬公司釀禍, Lib. Times Net. (2016). http://news.ltn.com.tw/news/local/paper/1065247 (accessed July7, 2017). [51] 張萱萱, 疑上游工廠偷排廢水 南崁溪魚群暴斃, NTDTV.com. (2014). http://www.ntdtv.com/xtr/b5/2014/08/21/a1131950.html (accessed July7, 2017). [52] 邱奕統, 竹圍漁港魚群暴斃 環局追查, Lib. Times Net. (2015). http://news.ltn.com.tw/news/local/paper/934570 (accessed July7, 2017). [53] S.J.Dadson, N.Hovius, H.Chen, W.B.Dade, M.-L.Hsieh, S.D.Willett, J.-C.Hu, M.-J.Horng, M.-C.Chen, C.P.Stark, D.Lague, J.-C.Lin, Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature. 426 (2003) 648–651. doi:http://www.nature.com/nature/journal/v426/n6967/suppinfo/nature02150_S1.html. [54] Taoyuan Industrial Statistical Report from 1998 to 2014, Industrial Development Bureau, Ministry of Economic Affairs, 2014. [55] G.J.Weltje, M.R.Bloemsma, R.Tjallingii, D.Heslop, U.Röhl, I.W.Croudace, Prediction of Geochemical Composition from XRF Core Scanner Data: A New Multivariate Approach Including Automatic Selection of Calibration Samples and Quantification of Uncertainties, in: I.W.Croudace, R.G.Rothwell (Eds.), Micro-XRF Stud. Sediment Cores Appl. a Non-Destructive Tool Environ. Sci., Springer Netherlands, Dordrecht, 2015: pp. 507–534. doi:10.1007/978-94-017-9849-5_21. [56] I.W.Croudace, A.Rindby, R.G.Rothwell, ITRAX: description and evaluation of a new multi-function X-ray core scanner, New Tech. Sediment Core Anal. 267 (2006) 51–63. doi:10.1144/GSL.SP.2006.267.01.04. [57] B.Zolitschka, C.Rolf, F.Bittmann, F.Binot, M.Frechen, T.Wonik, N.Froitzheim, C.Ohlendorf, Pleistocene climatic and environmental variations inferred from a terrestrial sediment record – the Rodderberg Volcanic Complex near Bonn, Germany , Zeitschrift Der Dtsch. Gesellschaft Für Geowissenschaften. 165 (2014) 407–424. doi:10.1127/1860-1804/2014/0071. [58] I.W.Croudace, P.E.Warwick, J.E.Morris, Evidence for the Preservation of Technogenic Tritiated Organic Compounds in an Estuarine Sedimentary Environment, Environ. Sci. Technol. 46 (2012) 5704–5712. doi:10.1021/es204247f. [59] R.Tjallingii, U.Röhl, M.Kölling, T.Bickert, Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments, Geochemistry, Geophys. Geosystems. 8 (2007) n/a-n/a. doi:10.1029/2006GC001393. [60] H.R.Rollinson, Using Geochemical Data: Evaluation, Presentation, Interpretation, Book, Pearson Education, Upper Saddle River, New Jersey, 1993. [61] S.E.Calvert, Geochemistry of Pleistocene sapropels and associated sediments from the Eastern Mediterranean, Oceanologica Acta 6 (1983) 255–267. [62] L.Löwemark, H.F.Chen, T.N.Yang, M.Kylander, E.F.Yu, Y.W.Hsu, T.Q.Lee, S.R.Song, S.Jarvis, Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes, J. Asian Earth Sci. 40 (2011) 1250–1256. doi:10.1016/j.jseaes.2010.06.002. [63] V.Pawlowsky-Glahn, J.J.Egozcue, Compositional data and their analysis: an introduction, Compos. Data Anal. Geosci. from Theory to Pract. 264 (2006) 1–10. doi:10.1144/GSL.SP.2006.264.01.01. [64] J.Aitchison, The Statistical Analysis of Compositional Data. Book, Chapman & Hall Ltd., London (UK), 1986. (Reprinted in 2003 with additional material by The Blackburn Press). 416 p. [65] C.Leng, H.Yuan, C.Xu, Y.Hao, G.Zhao, Applications of Logarithm Ratio Transformation to Extraction of the Sensitive Grain Size of East Asian Winter Monsson By the Method of Favtor Analysis: A Case Study of Core H07 from the Central Mud Area of the South Yellow Sea, Mar. Geol. Quternary Geol. 37 (2017). [66] N.M.S.Rock, N.M.S., Numerical Geology: A Source Guide, Glossary and Selective Bibliography to Geological Uses of Computers and Statistics, Lect. Notes Earth Sci. 18 (1988). [67] D.Zhou, Geological compositional data analysis: difficaulty and solutions, Earth Sci. - J. China Univ. Geosci. 23 (1998) 147–152. [68] R.G.Rothwell, F.R.Rack, New techniques in sediment core analysis: an introduction, Geol. Soc. London, Spec. Publ. 267 (2006) 1–29. doi:10.1144/GSL.SP.2006.267.01.01. [69] H.Pälike, N.J.Shackleton, U.Röhl, Astronomical forcing in Late Eocene marine sediments, Earth Planet. Sci. Lett. 193 (2001) 589–602. doi:10.1016/S0012-821X(01)00501-5. [70] P.A.Vlag, P.P.Kruiver, M.J.Dekkers, Evaluating climate change by multivariate statistical techniques on magnetic and chemical properties of marine sediments (Azores region), Palaeogeogr. Palaeoclimatol. Palaeoecol. 212 (2004) 23–44. doi:10.1016/j.palaeo.2004.05.015. [71] A.Bahr, H.W.Arz, F.Lamy, G.Wefer, Late glacial to Holocene paleoenvironmental evolution of the Black Sea, reconstructed with stable oxygen isotope records obtained on ostracod shells, 2006. doi:10.1016/j.epsl.2005.10.036. [72] J.Aitchison, The Statistical Analysis of Compositional Data, J. R. Stat. Soc. Ser. B. 44 (1982) 139–177. [73] G.J.Weltje, R.Tjallingii, Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application, 2008. doi:10.1016/j.epsl.2008.07.054. [74] M.R.Bloemsma, M.Zabel, J.B.W.Stuut, R.Tjallingii, J.A.Collins, G.J.Weltje, Modelling the joint variability of grain size and chemical composition in sediments, Sediment. Geol. 280 (2012) 135–148. doi:10.1016/j.sedgeo.2012.04.009. [75] M.Faith, M.K., Centered Log-Ratio (clr) Transformation and Robust Principal Component Analysis of Long-Term NDVI Data Reveal Vegetation Activity Linked to Climate Processes, Climate. 3 (2015) 135–149. doi:10.3390/cli3010135. [76] R.G.Garrett, The “rgr” package for the R Open Source statistical computing and graphics environment - a tool to support geochemical data interpretation, Geochemistry Explor. Environ. Anal. 13 (2013) 355–378. doi:10.1144/geochem2011-106. [77] H.Guyard, E.Chapron, G.St-Onge, F.S.Anselmetti, F.Arnaud, O.Magand, P.Francus, M.-A.Mélières, High-altitude varve records of abrupt environmental changes and mining activity over the last 4000 years in the Western French Alps (Lake Bramant, Grandes Rousses Massif), Quat. Sci. Rev. 26 (2007) 2644–2660. doi:10.1016/j.quascirev.2007.07.007. [78] I.N.McCave, J.P.M.Syvitski, Principles and methods of particle size analysis, in: J.P.M.Syvitski (Ed.), Princ. Methods, Appl. Part. Size Anal., Cambridge University Press, New York, 1991: pp. 3–21. [79] H.Blatt, G.Middleton, R.Murray, Origin of Sedimentary Rocks: Englewood Cliffs, Book, Prentice-Hall, New Jersey, 1972. [80] V.Sandroni, C.M.M.Smith, A.Donovan, Microwave digestion of sediment, soils and urban particulate matter for trace metal analysis, Talanta. 60 (2003) 715–723. [81] S.Melaku, R.Dams, L.Moens, Determination of trace elements in agricultural soil samples by inductively coupled plasma-mass spectrometry: Microwave acid digestion versus aqua regia extraction, Anal. Chim. Acta. 543 (2005) 117–123. doi:10.1016/j.aca.2005.04.055. [82] US.Environmental Protection Agency, METHOD 3051A Method 3051A Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils, 2007. https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf (accessed May3, 2017). [83] S.Melaku, I.Gelaude, F.Vanhaecke, L.Moens, R.Dams, Comparison of Pyrolysis and Microwave Acid Digestion Techniques for the Determination of Mercury in Biological and Environmental Materials, Microchim. Acta. 142 (2003) 7–12. doi:10.1007/s00604-002-0948-y. [84] US.Environmental Protection Agency, Method 3050B (SW-846): Acid Digestion of Sediments, Sludges, and Soils, 1996. https://www.epa.gov/sites/production/files/2015-06/documents/epa-3050b.pdf (accessed May3, 2017). [85] S.Gaudino, C.Galas, M.Belli, S.Barbizzi, P.deZorzi, R.Jaćimović, Z.Jeran, A.Pati, U.Sansone, The role of different soil sample digestion methods on trace elements analysis: a comparison of ICP-MS and INAA measurement results, Accredit. Qual. Assur. 12 (2007) 84–93. doi:10.1007/s00769-006-0238-1. [86] R.Falciani, E.Novaro, M.Marchesini, M.Gucciardi, Multi-element analysis of soil and sediment by ICP-MS after a microwave assisted digestion method, J. Anal. At. Spectrom. 15 (2000) 561–565. doi:10.1039/b000742k. [87] V.Sandroni, C.M..Smith, Microwave digestion of sludge, soil and sediment samples for metal analysis by inductively coupled plasma–atomic emission spectrometry, Anal. Chim. Acta. 468 (2002) 335–344. doi:10.1016/S0003-2670(02)00655-4. [88] S.J.H.H.M. Kingston, Microwave-Enhanced Chemistry, Fundamentals, Sample Preparation and Applications, Book, Washington DC, 1997. [89] M.Chen, L.Q.Ma, Comparison of Three Aqua Regia Digestion Methods for Twenty Florida Soils, Soil Sci. Soc. Am. J. 65 (2001) 491. doi:10.2136/sssaj2001.652491x. [90] M.Bettinelli, G..Beone, S.Spezia, C.Baffi, Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis, Anal. Chim. Acta. 424 (2000) 289–296. doi:10.1016/S0003-2670(00)01123-5. [91] V.Chand, S.Prasad, ICP-OES assessment of heavy metal contamination in tropical marine sediments: A comparative study of two digestion techniques, Microchem. J. 111 (2013) 53–61. doi:10.1016/j.microc.2012.11.007. [92] ICP or ICP-MS? Which technique should I use? An elementary overview of elemental analysis, Book, Thermo Elemental, 2001. [93] J.Sastre, A.Sahuquillo, M.Vidal, G.Rauret, Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction, Anal. Chim. Acta. 462 (2002) 59–72. doi:10.1016/S0003-2670(02)00307-0. [94] J.M.Cook, M.J.Gardner, A.H.Griffiths, M.A.Jessep, J.E.Ravenscroft, R.Yates, The comparability of sample digestion techniques for the determination of metals in sediments, Mar. Pollut. Bull. 34 (1997) 637–644. doi:10.1016/S0025-326X(96)00186-5. [95] Soil Quality & Fertilizer Analysis, Book, Agilent Technologies, 2011. [96] N.J.Geboy, M.A.Engle, Quality Assurance and Quality Control of Geochemical Data: A Primer for the Research Scientist, Book, U.S. Geological Survey, 2011. [97] M.Eriksen, S.Mason, S.Wilson, C.Box, A.Zellers, W.Edwards, H.Farley, S.Amato, Microplastic pollution in the surface waters of the Laurentian Great Lakes, Mar. Pollut. Bull. 77 (2013) 177–182. doi:10.1016/j.marpolbul.2013.10.007. [98] P.Ahmedzade, B.Sengoz, Evaluation of steel slag coarse aggregate in hot mix asphalt concrete, J. Hazard. Mater. 165 (2009) 300–305. doi:10.1016/j.jhazmat.2008.09.105. [99] T.Boonfueng, L.Axe, Y.Xu, Properties and structure of manganese oxide-coated clay, J. Colloid Interface Sci. 281 (2005) 80–92. doi:10.1016/j.jcis.2004.08.048. [100] J.A.Robbins, D.N.Edgington, Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137, Geochim. Cosmochim. Acta. 39 (1975) 285–304. doi:10.1016/0016-7037(75)90198-2. [101] J.A.Robbins, Geochemical and geophysical applications of radioactive lead isotopes, in: J.O.Nriagu (Ed.), Biochem. Lead, Elsevier, Amsterdam, 1978: pp. 285–393. [102] C.C.Su, J.Y.Tseng, H.H.Hsu, C.S.Chiang, H.S.Yu, S.Lin, J.T.Liu, Records of submarine natural hazards off SW Taiwan, Geol. Soc. London, Spec. Publ. 361 (2012) 41–60. doi:10.1144/SP361.5. [103] U.Röhl, H.Brinkhuis, A.Sluijs, M.Fuller, On the search for the Paleocene/Eocene boundary in the Southern Ocean: Exploring ODP Leg 189 holes 1171D and 1172D, Tasman Sea, in: American Geophysical Union, 2004: pp. 113–125. doi:10.1029/151GM08. [104] R.Marsh, R.A.Mills, D.R.H.Green, I.Salter, S.Taylor, Controls on sediment geochemistry in the Crozet region, Deep Sea Res. Part II Top. Stud. Oceanogr. 54 (2007) 2260–2274. doi:10.1016/j.dsr2.2007.06.004. [105] T.Caley, B.Malaizé, S.Zaragosi, L.Rossignol, J.Bourget, F.Eynaud, P.Martinez, J.Giraudeau, K.Charlier, N.Ellouz-Zimmermann, New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon, Earth Planet. Sci. Lett. 308 (2011) 433–444. doi:10.1016/j.epsl.2011.06.019. [106] J.Ren, H.Jiang, M.-S.Seidenkrantz, A.Kuijpers, A diatom-based reconstruction of Early Holocene hydrographic and climatic change in a southwest Greenland fjord, Mar. Micropaleontol. 70 (2009) 166–176. doi:10.1016/j.marmicro.2008.12.003. [107] S.J.Malcolm, N.B.Price, The Behavior of Iodine and Bromine in Estuarine Surface Sediments, Mar. Chem. Elsevier Sci. Publ. B.V. 15 (1984) 263–271. [108] L.M.Mayer, L.L.Schick, M.A.Allison, K.C.Ruttenberg, S.J.Bentley, Marine vs. terrigenous organic matter in Louisiana coastal sediments: The uses of bromine:organic carbon ratios, Mar. Chem. 107 (2007) 244–254. doi:10.1016/j.marchem.2007.07.007. [109] 黃厚源, 我家鄉桃園縣, (1994). http://nrch.culture.tw/twpedia.aspx?id=22203. [110] Environmental Protection Agency, R.O.C.(Taiwan), Agricultural soil quality control standards, (2017). https://sgw.epa.gov.tw/public/misc/service/pollutant?method=Soil. [111] Canadian Council of Ministors of the Environment, Canadian agricultural soil quality guidelines for the protection of environmental and human health, (2017). [112] Central Weather Bureau Typhoon database, (n.d.). http://rdc28.cwb.gov.tw/TDB/ntdb/pageControl/rain (accessed August4, 2017). [113] M.A.Tiffany, J.W.Winchester, R.H.Loucks, Natural and Pollution Sources of Iodine, Bromine, and Chlorine in the Great Lakes, J. (Water Pollut. Control Fed. 41 (1969) 1319–1329. http://www.jstor.org/stable/25036681. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20500 | - |
| dc.description.abstract | 桃園南崁溪因流經發展了60年以上的人口密集城市、大範圍農地與數個工業區;尤其工業區的大量電路板、金屬處理工廠排放廢汙水相當嚴重,致使該河流嚴重污染,然而該河流底泥中污染物的縱向分布以及污染物相了解尚未有完整研究。本研究於南崁溪中游與出海口兩地採集數根岩芯,使用Itrax-XRF 岩芯掃描儀(以下簡稱Itrax-XRF)掃描而取得高解析半定量多種化學元素組成圖譜,並利用ICP-OES 針對特定污染潛勢區間進行重金屬(鉻、銅、錳、鎳、鉛、鋅)定量分析確認以及粒徑、孔隙水中重金屬含量分析。多變量分析步驟係先將原始Itrax-XRF數據進行中心對數比轉換(centred Log-ratio transformation),再以主成分分析(principal component analysis)進行資料結構的簡化,求出較少之維度來描述底泥特性;並依據其結果利用群集分析(cluster analysis)將底泥進行分群,解析出各元素之相關特性與分布。根據多變量統計分析結果顯示南崁溪底泥中可能受到重金屬相關污染,搭配視覺化之呈現可以清楚看出不同污染潛勢熱區之分布;重金屬污染熱區中重金屬含量明顯超標且與細顆粒底泥、錳共伴存在,另有可能與含鉛汽油、農藥相關的污染。底泥與孔隙水中重金屬含量的測定顯示重金屬主要以穩定固態相存在而非溶解於水中。雖有鉛-210進行定年分析,然因河川沉積特性而無法得到可信年代。藉由多變量統計分析可以充發揮 Itrax -XRF 資料高解析度之優點,將岩芯污染物詳細分層解析出相關特性,並透過一系列沉積物特性分析技術得到確認。 | zh_TW |
| dc.description.abstract | Decades of economic development has cost most rivers in Taiwan polluted at various levels. The Nankan River, as the main river in Tauyuan City, Taiwan, flows through several concentrated industrial areas, crowded cities and a wide range of agricultures. The electronic and mechanical manufacturers in this area are highly productive. Nevertheless, pollutants in sediments and water bodies have not been well surveyed. Two series of sediment cores were taken along the Nankan River in sections of stable deposition. High-resolution physico-chemical properties of these cores were yielded from Itrax-XRF Core Scanner and grain size analysis. The data were pretreated with centred log-ratio transformation to mitigate the asymmetry problem of ratio and to achieve normality of data distribution, and then subjected to multivariate analyses. The results of principal component analysis and cluster analysis exhibit the spatial distribution of heavy metals (Cr, Cu, Mn, Ni, Pb and Zn) in sediment as well as the affinity of heavy metals to fine grains and manganese. Meanwhile, the level of heavy metals pollution in sediment of the Nankan River was assessed. We found that the heavy metals have remained in solid phase stably. The Pb-210 dating was carried out but difficult to make reliable chronology. In conclusion, the combination of sediment analysis and multivariate analysis provides a high-resolution pattern showing the occurrence and distribution of potential metal polutions in sediments of the Nankan River. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:50:55Z (GMT). No. of bitstreams: 1 ntu-106-R04224110-1.pdf: 7818022 bytes, checksum: fda1699b85898db399296bb9aad5e37a (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III ABSTRACT IV Chapter 1: Motivation 1 Chapter 2: Literature review 2 2-1 Sediment pollution 2 2-2 Sediment characteristic analysis 4 2-2-1 Physical property analysis 4 2-2-2 Chemical property analysis 5 2-2-3 Pollutant property analysis 6 2-2-4 Horizontal and vertical distribution 7 2-3 Heavy metals in sediment 8 2-4 Multivariate analysis 10 2-4-1 Principal component analysis (PCA) 10 2-4-2 Cluster analysis (CA) 13 Chapter 3: Materials and methods 14 3-1 Research area 14 3-2 Research structure 17 3-3 Sediment sampling 17 3-4 Itrax-XRF core scanning 20 3-5 Multivariate analysis 24 3-5-1 Data transformation 24 3-5-2 Principal component analysis (PCA) 30 3-5-3 Cluster analysis (CA) 30 3-6 Sediment analysis 31 3-6-1 Grain size analysis 31 3-6-2 Microwave assisted aqua regia digestion followed by ICP-OES measurement 32 3-6-3 Heavy metals concentration analysis in pore-water 42 3-6-4 Scanning Electron Microscope (SEM) 42 3-7 Lead-210 Radioactive dating 43 Chapter 4: QA/QC of microwave assisted aqua regia digestion followed by ICP-OES measurement 45 Chapter 5: Core at the estuary (NKE-1) 49 5-1 Data transformation 49 5-2 Sediment characteristics results and discussion 55 5-2-1 Additive log-ratio transformed NKE-1 data 57 5-2-2 Centred log-ratio transformed NKE-1 data 61 5-3 Heavy metals concentration analysis in pore-water 71 5-4 Dating age determination 72 Chapter 6: Core at the midstream (NKD-1) 75 6-1 Data transformation 75 6-2 Sediment characteristics results and discussion 80 6-3 Lead-210 radioactive dating 89 Chapter 7: Conclusions 90 References 92 | |
| dc.language.iso | en | |
| dc.title | 桃園南崁溪沉積物岩芯中重金屬分布之研究 | zh_TW |
| dc.title | Study of heavy metal distribution in sediment cores of the Nankan River, Taoyuan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏國彥(Kuo-Yen Wei),駱尚廉(Shang-Lien Lo),Bernd Zolitschka | |
| dc.subject.keyword | 河川與出海口底泥,重金屬污染,主成份分析,群集分析,對數比轉換, | zh_TW |
| dc.subject.keyword | Riverine and estuary sediments,Heavy metals,Pollution,Principal component analysis,Cluster analysis,Centred log-ratio transformation, | en |
| dc.relation.page | 103 | |
| dc.identifier.doi | 10.6342/NTU201703435 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-08-16 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 7.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
