請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20479完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林泰元 | - |
| dc.contributor.author | Meng-Shiue Wu | en |
| dc.contributor.author | 吳孟學 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:50:08Z | - |
| dc.date.copyright | 2017-09-14 | - |
| dc.date.issued | 2016 | - |
| dc.date.submitted | 2017-08-16 | - |
| dc.identifier.citation | 1. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7.
2. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringdén O. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. The Lancet. 2008;371(9624):1579-86. 3. Ciccocioppo R, Bernardo ME, Sgarella A, Maccario R, Avanzini MA, Ubezio C, Minelli A, Alvisi C, Vanoli A, Calliada F, Dionigi P, Perotti C, Locatelli F, Corazza GR. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn's disease. Gut. 2011;60(6):788-98. 4. Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du M-Q, Luan S-L, Altmann DR, Thompson AJ, Compston A, Scott MA, Miller DH, Chandran S. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. The Lancet Neurology. 2012;11(2):150-6. 5. Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S, Sun X, Chen J, Yang S, Cai J, Gao X, Pileggi A, Ricordi C. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA : the journal of the American Medical Association. 2012;307(11):1169-77. 6. Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, Tracy M, Ghersin E, Johnston PV, Brinker JA, Breton E, Davis-Sproul J, Schulman IH, Byrnes J, Mendizabal AM, Lowery MH, Rouy D, Altman P, Wong Po Foo C, Ruiz P, Amador A, Da Silva J, McNiece IK, Heldman AW, George R, Lardo A. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA : the journal of the American Medical Association. 2012;308(22):2369-79. 7. Chou ML, Bailey A, Avory T, Tanimoto J, Burnouf T. Removal of transmissible spongiform encephalopathy prion from large volumes of cell culture media supplemented with fetal bovine serum by using hollow fiber anion-exchange membrane chromatography. PloS one. 2015;10(4):e0122300. 8. Selvaggi TA, Walker RE, Fleisher TA. Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus-infected patients given syngeneic lymphocyte infusions. Blood. 1997;89(3):776-9. 9. Mackensen A, Drager R, Schlesier M, Mertelsmann R, Lindemann A. Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol Immunother. 2000;49(3):152-6. 10. Tuschong L, Soenen SL, Blaese RM, Candotti F, Muul LM. Immune response to fetal calf serum by two adenosine deaminase-deficient patients after T cell gene therapy. Hum Gene Ther. 2002;13(13):1605-10. 11. Muul LM, Tuschong LM, Soenen SL, Jagadeesh GJ, Ramsey WJ, Long Z, Carter CS, Garabedian EK, Alleyne M, Brown M, Bernstein W, Schurman SH, Fleisher TA, Leitman SF, Dunbar CE, Blaese RM, Candotti F. Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial. Blood. 2003;101(7):2563-9. 12. Sakamoto N, Tsuji K, Muul LM, Lawler AM, Petricoin EF, Candotti F, Metcalf JA, Tavel JA, Lane HC, Urba WJ, Fox BA, Varki A, Lunney JK, Rosenberg AS. Bovine apolipoprotein B-100 is a dominant immunogen in therapeutic cell populations cultured in fetal calf serum in mice and humans. Blood. 2007;110(2):501-8. 13. Sensebe L, Fleury-Cappellesso S. Biodistribution of mesenchymal stem/stromal cells in a preclinical setting. Stem Cells Int. 2013;2013:678063. 14. Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, Fries JW, Tiemann K, Bohlen H, Hescheler J, Welz A, Bloch W, Jacobsen SE, Fleischmann BK. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood. 2007;110(4):1362-9. 15. Meyerrose TE, De Ugarte DA, Hofling AA, Herrbrich PE, Cordonnier TD, Shultz LD, Eagon JC, Wirthlin L, Sands MS, Hedrick MA, Nolta JA. In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models. Stem cells (Dayton, Ohio). 2007;25(1):220-7. 16. Toupet K, Maumus M, Peyrafitte JA, Bourin P, van Lent PL, Ferreira R, Orsetti B, Pirot N, Casteilla L, Jorgensen C, Noel D. Long-term detection of human adipose-derived mesenchymal stem cells after intraarticular injection in SCID mice. Arthritis and rheumatism. 2013;65(7):1786-94. 17. Vodicka P, Smetana K, Jr., Dvorankova B, Emerick T, Xu YZ, Ourednik J, Ourednik V, Motlik J. The miniature pig as an animal model in biomedical research. Annals of the New York Academy of Sciences. 2005;1049:161-71. 18. Ferreira L, Karp JM, Nobre L, Langer R. New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell. 2008;3(2):136-46. 19. Frangioni JV, Hajjar RJ. In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation. 2004;110(21):3378-83. 20. Kircher MF, Gambhir SS, Grimm J. Noninvasive cell-tracking methods. Nat Rev Clin Oncol. 2011;8(11):677-88. 21. Templin C, Zweigerdt R, Schwanke K, Olmer R, Ghadri JR, Emmert MY, Muller E, Kuest SM, Cohrs S, Schibli R, Kronen P, Hilbe M, Reinisch A, Strunk D, Haverich A, Hoerstrup S, Luscher TF, Kaufmann PA, Landmesser U, Martin U. Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression. Circulation. 2012;126(4):430-9. 22. Leblond F, Davis SC, Valdes PA, Pogue BW. Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. J Photochem Photobiol B. 2010;98(1):77-94. 23. de Almeida PE, van Rappard JR, Wu JC. In vivo bioluminescence for tracking cell fate and function. Am J Physiol Heart Circ Physiol. 2011;301(3):H663-71. 24. Vaijayanthimala V, Tzeng YK, Chang HC, Li CL. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. Nanotechnology. 2009;20(42):425103. 25. Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc. 2005;127(50):17604-5. 26. Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, Wei PK, Tsao PH, Chang HC, Fann W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(3):727-32. 27. Wu TJ, Tzeng YK, Chang WW, Cheng CA, Kuo Y, Chien CH, Chang HC, Yu J. Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat Nanotechnol. 2013;8(9):682-9. 28. Igarashi R, Yoshinari Y, Yokota H, Sugi T, Sugihara F, Ikeda K, Sumiya H, Tsuji S, Mori I, Tochio H, Harada Y, Shirakawa M. Real-time background-free selective imaging of fluorescent nanodiamonds in vivo. Nano Lett. 2012;12(11):5726-32. 29. Hegyi A, Yablonovitch E. Molecular imaging by optically detected electron spin resonance of nitrogen-vacancies in nanodiamonds. Nano Lett. 2013;13(3):1173-8. 30. Sarkar SK, Bumb A, Wu X, Sochacki KA, Kellman P, Brechbiel MW, Neuman KC. Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence. Biomed Opt Express. 2014;5(4):1190-202. 31. Fehrer C, Lepperdinger G. Mesenchymal stem cell aging. Experimental gerontology. 2005;40(12):926-30. 32. Vaananen HK. Mesenchymal stem cells. Annals of medicine. 2005;37(7):469-79. 33. Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, Tukun A, Uckan D, Can A. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem cells (Dayton, Ohio). 2007;25(2):319-31. 34. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem cells (Dayton, Ohio). 2005;23(2):220-9. 35. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem cells (Dayton, Ohio). 2004;22(7):1330-7. 36. Parolini O, Alviano F, Bagnara GP, Bilic G, Buhring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz CB, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi TA, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom SC. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem cells (Dayton, Ohio). 2008;26(2):300-11. 37. Barlow S, Brooke G, Chatterjee K, Price G, Pelekanos R, Rossetti T, Doody M, Venter D, Pain S, Gilshenan K, Atkinson K. Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem cells and development. 2008;17(6):1095-107. 38. Dimitrov R, Kyurkchiev D, Timeva T, Yunakova M, Stamenova M, Shterev A, Kyurkchiev S. First-trimester human decidua contains a population of mesenchymal stem cells. Fertility and sterility. 2010;93(1):210-9. 39. Huang YC, Yang ZM, Chen XH, Tan MY, Wang J, Li XQ, Xie HQ, Deng L. Isolation of mesenchymal stem cells from human placental decidua basalis and resistance to hypoxia and serum deprivation. Stem cell reviews. 2009;5(3):247-55. 40. In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem cells (Dayton, Ohio). 2004;22(7):1338-45. 41. Macias MI, Grande J, Moreno A, Dominguez I, Bornstein R, Flores AI. Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layers. American journal of obstetrics and gynecology. 2010;203(5):495 e9- e23. 42. Lin CS, Ning H, Lin G, Lue TF. Is CD34 truly a negative marker for mesenchymal stromal cells? Cytotherapy. 2012;14(10):1159-63. 43. Busser H, Najar M, Raicevic G, Pieters K, Velez Pombo R, Philippart P, Meuleman N, Bron D, Lagneaux L. Isolation and Characterization of Human Mesenchymal Stromal Cell Subpopulations: Comparison of Bone Marrow and Adipose Tissue. Stem cells and development. 2015;24(18):2142-57. 44. Levi B, James AW, Nelson ER, Vistnes D, Wu B, Lee M, Gupta A, Longaker MT. Human adipose derived stromal cells heal critical size mouse calvarial defects. PloS one. 2010;5(6):e11177. 45. Gellersen B, Brosens IA, Brosens JJ. Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Seminars in reproductive medicine. 2007;25(6):445-53. 46. Sakai N, Maruyama T, Sakurai R, Masuda H, Yamamoto Y, Shimizu A, Kishi I, Asada H, Yamagoe S, Yoshimura Y. Involvement of histone acetylation in ovarian steroid-induced decidualization of human endometrial stromal cells. The Journal of biological chemistry. 2003;278(19):16675-82. 47. Thellin O, Coumans B, Zorzi W, Igout A, Heinen E. Tolerance to the foeto-placental 'graft': ten ways to support a child for nine months. Current opinion in immunology. 2000;12(6):731-7. 48. Munro SK, Farquhar CM, Mitchell MD, Ponnampalam AP. Epigenetic regulation of endometrium during the menstrual cycle. Molecular human reproduction. 2010;16(5):297-310. 49. Scotchie JG, Fritz MA, Mocanu M, Lessey BA, Young SL. Proteomic analysis of the luteal endometrial secretome. Reproductive sciences. 2009;16(9):883-93. 50. Pavlicev M, Wagner GP, Chavan AR, Owens K, Maziarz J, Dunn-Fletcher C, Kallapur SG, Muglia L, Jones H. Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface. Genome Res. 2017;27(3):349-61. 51. Pitti RM, Marsters SA, Lawrence DA, Roy M, Kischkel FC, Dowd P, Huang A, Donahue CJ, Sherwood SW, Baldwin DT, Godowski PJ, Wood WI, Gurney AL, Hillan KJ, Cohen RL, Goddard AD, Botstein D, Ashkenazi A. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature. 1998;396(6712):699-703. 52. Yu KY, Kwon B, Ni J, Zhai Y, Ebner R, Kwon BS. A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. The Journal of biological chemistry. 1999;274(20):13733-6. 53. Migone TS, Zhang J, Luo X, Zhuang L, Chen C, Hu B, Hong JS, Perry JW, Chen SF, Zhou JX, Cho YH, Ullrich S, Kanakaraj P, Carrell J, Boyd E, Olsen HS, Hu G, Pukac L, Liu D, Ni J, Kim S, Gentz R, Feng P, Moore PA, Ruben SM, Wei P. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity. 2002;16(3):479-92. 54. Lin WW, Hsieh SL. Decoy receptor 3: a pleiotropic immunomodulator and biomarker for inflammatory diseases, autoimmune diseases and cancer. Biochemical pharmacology. 2011;81(7):838-47. 55. Sung HH, Juang JH, Lin YC, Kuo CH, Hung JT, Chen A, Chang DM, Chang SY, Hsieh SL, Sytwu HK. Transgenic expression of decoy receptor 3 protects islets from spontaneous and chemical-induced autoimmune destruction in nonobese diabetic mice. The Journal of experimental medicine. 2004;199(8):1143-51. 56. Wu SF, Liu TM, Lin YC, Sytwu HK, Juan HF, Chen ST, Shen KL, Hsi SC, Hsieh SL. Immunomodulatory effect of decoy receptor 3 on the differentiation and function of bone marrow-derived dendritic cells in nonobese diabetic mice: from regulatory mechanism to clinical implication. Journal of leukocyte biology. 2004;75(2):293-306. 57. Chen SJ, Wang YL, Kao JH, Wu SF, Lo WT, Wu CC, Tao PL, Wang CC, Chang DM, Sytwu HK. Decoy receptor 3 ameliorates experimental autoimmune encephalomyelitis by directly counteracting local inflammation and downregulating Th17 cells. Molecular immunology. 2009;47(2-3):567-74. 58. Ka SM, Sytwu HK, Chang DM, Hsieh SL, Tsai PY, Chen A. Decoy receptor 3 ameliorates an autoimmune crescentic glomerulonephritis model in mice. Journal of the American Society of Nephrology : JASN. 2007;18(9):2473-85. 59. Chen HF, Chen JS, Shun CT, Tsai YF, Ho HN. Decoy receptor 3 expression during the menstrual cycle and pregnancy, and regulation by sex steroids in endometrial cells in vitro. Human reproduction. 2009;24(6):1350-8. 60. Saleh L, Otti GR, Fiala C, Pollheimer J, Knofler M. Evaluation of human first trimester decidual and telomerase-transformed endometrial stromal cells as model systems of in vitro decidualization. Reproductive biology and endocrinology : RB&E. 2011;9:155. 61. Hay DL. Placental histology and the production of human choriogonadotrophin and its subunits in pregnancy. Br J Obstet Gynaecol. 1988;95(12):1268-75. 62. Fiddes JC, Goodman HM. The gene encoding the common alpha subunit of the four human glycoprotein hormones. J Mol Appl Genet. 1981;1(1):3-18. 63. Boorstein WR, Vamvakopoulos NC, Fiddes JC. Human chorionic gonadotropin beta-subunit is encoded by at least eight genes arranged in tandem and inverted pairs. Nature. 1982;300(5891):419-22. 64. Fiddes JC, Goodman HM. The cDNA for the beta-subunit of human chorionic gonadotropin suggests evolution of a gene by readthrough into the 3'-untranslated region. Nature. 1980;286(5774):684-7. 65. Rull K, Hallast P, Uuskula L, Jackson J, Punab M, Salumets A, Campbell RK, Laan M. Fine-scale quantification of HCG beta gene transcription in human trophoblastic and non-malignant non-trophoblastic tissues. Molecular human reproduction. 2008;14(1):23-31. 66. Lapthorn AJ, Harris DC, Littlejohn A, Lustbader JW, Canfield RE, Machin KJ, Morgan FJ, Isaacs NW. Crystal structure of human chorionic gonadotropin. Nature. 1994;369(6480):455-61. 67. Berndt S, Blacher S, Munaut C, Detilleux J, Perrier d'Hauterive S, Huhtaniemi I, Evain-Brion D, Noel A, Fournier T, Foidart JM. Hyperglycosylated human chorionic gonadotropin stimulates angiogenesis through TGF-beta receptor activation. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2013;27(4):1309-21. 68. Gregory CA, Gunn WG, Peister A, Prockop DJ. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem. 2004;329(1):77-84. 69. Guasti L, Prasongchean W, Kleftouris G, Mukherjee S, Thrasher AJ, Bulstrode NW, Ferretti P. High plasticity of pediatric adipose tissue-derived stem cells: too much for selective skeletogenic differentiation? Stem Cells Transl Med. 2012;1(5):384-95. 70. Yuan Y, Chen Y, Liu J-H, Wang H, Liu Y. Biodistribution and fate of nanodiamonds in vivo. Diamond and Related Materials. 2009;18(1):95-100. 71. Vaijayanthimala V, Cheng PY, Yeh SH, Liu KK, Hsiao CH, Chao JI, Chang HC. The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials. 2012;33(31):7794-802. 72. Billinton N, Knight AW. Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal Biochem. 2001;291(2):175-97. 73. Cole LA. hCG, the wonder of today's science. Reproductive biology and endocrinology : RB&E. 2012;10:24. 74. Krampera M, Galipeau J, Shi Y, Tarte K, Sensebe L, Therapy MSCCotISfC. Immunological characterization of multipotent mesenchymal stromal cells--The International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy. 2013;15(9):1054-61. 75. Zhukareva V, Obrocka M, Houle JD, Fischer I, Neuhuber B. Secretion profile of human bone marrow stromal cells: donor variability and response to inflammatory stimuli. Cytokine. 2010;50(3):317-21. 76. Francois M, Romieu-Mourez R, Li M, Galipeau J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Molecular therapy : the journal of the American Society of Gene Therapy. 2012;20(1):187-95. 77. Yang CR, Hsieh SL, Teng CM, Ho FM, Su WL, Lin WW. Soluble decoy receptor 3 induces angiogenesis by neutralization of TL1A, a cytokine belonging to tumor necrosis factor superfamily and exhibiting angiostatic action. Cancer research. 2004;64(3):1122-9. 78. Coltrini D, Di Salle E, Ronca R, Belleri M, Testini C, Presta M. Matrigel plug assay: evaluation of the angiogenic response by reverse transcription-quantitative PCR. Angiogenesis. 2013;16(2):469-77. 79. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6(2):230-47. 80. Lin J, Xiang D, Zhang JL, Allickson J, Xiang C. Plasticity of human menstrual blood stem cells derived from the endometrium. Journal of Zhejiang University Science B. 2011;12(5):372-80. 81. Cakouros D, Isenmann S, Cooper L, Zannettino A, Anderson P, Glackin C, Gronthos S. Twist-1 induces Ezh2 recruitment regulating histone methylation along the Ink4A/Arf locus in mesenchymal stem cells. Molecular and cellular biology. 2012;32(8):1433-41. 82. Bork S, Pfister S, Witt H, Horn P, Korn B, Ho AD, Wagner W. DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging cell. 2010;9(1):54-63. 83. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual review of pathology. 2010;5:99-118. 84. Kirschvink N, Reinhold P. Use of alternative animals as asthma models. Curr Drug Targets. 2008;9(6):470-84. 85. Adegani FJ, Langroudi L, Arefian E, Shafiee A, Dinarvand P, Soleimani M. A comparison of pluripotency and differentiation status of four mesenchymal adult stem cells. Molecular biology reports. 2013;40(5):3693-703. 86. Stanko P, Kaiserova K, Altanerova V, Altaner C. Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia. 2013. 87. Bianco P, Cao X, Frenette PS, Mao JJ, Robey PG, Simmons PJ, Wang CY. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med. 2013;19(1):35-42. 88. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nature reviews Immunology. 2008;8(9):726-36. 89. Jin HJ, Bae YK, Kim M, Kwon SJ, Jeon HB, Choi SJ, Kim SW, Yang YS, Oh W, Chang JW. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. International journal of molecular sciences. 2013;14(9):17986-8001. 90. Menard C, Pacelli L, Bassi G, Dulong J, Bifari F, Bezier I, Zanoncello J, Ricciardi M, Latour M, Bourin P, Schrezenmeier H, Sensebe L, Tarte K, Krampera M. Clinical-grade mesenchymal stromal cells produced under various good manufacturing practice processes differ in their immunomodulatory properties: standardization of immune quality controls. Stem cells and development. 2013;22(12):1789-801. 91. Denu RA, Nemcek S, Bloom DD, Goodrich AD, Kim J, Mosher DF, Hematti P. Fibroblasts and Mesenchymal Stromal/Stem Cells Are Phenotypically Indistinguishable. Acta Haematol. 2016;136(2):85-97. 92. Hsu TL, Chang YC, Chen SJ, Liu YJ, Chiu AW, Chio CC, Chen L, Hsieh SL. Modulation of dendritic cell differentiation and maturation by decoy receptor 3. Journal of immunology. 2002;168(10):4846-53. 93. Chang YC, Hsu TL, Lin HH, Chio CC, Chiu AW, Chen NJ, Lin CH, Hsieh SL. Modulation of macrophage differentiation and activation by decoy receptor 3. Journal of leukocyte biology. 2004;75(3):486-94. 94. Yang CR, Hsieh SL, Ho FM, Lin WW. Decoy receptor 3 increases monocyte adhesion to endothelial cells via NF-kappa B-dependent up-regulation of intercellular adhesion molecule-1, VCAM-1, and IL-8 expression. Journal of immunology. 2005;174(3):1647-56. 95. Tateishi K, Miura Y, Hayashi S, Takahashi M, Kurosaka M. DcR3 protects THP-1 macrophages from apoptosis by increasing integrin alpha4. Biochemical and biophysical research communications. 2009;389(4):593-8. 96. Hsieh SL, Lin WW. Decoy receptor 3: an endogenous immunomodulator in cancer growth and inflammatory reactions. J Biomed Sci. 2017;24(1):39. 97. Lee CS, Hu CY, Tsai HF, Wu CS, Hsieh SL, Liu LC, Hsu PN. Elevated serum decoy receptor 3 with enhanced T cell activation in systemic lupus erythematosus. Clinical and experimental immunology. 2008;151(3):383-90. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20479 | - |
| dc.description.abstract | 間葉細胞(Mesenchymal stromal cells, MSCs)已知存在於許多不同的組織中,目前被認為有希望以細胞治療的形式作為再生醫學藥物。在機制上,MSCs具有抗發炎作用以及可能透過旁分泌(paracrine effect)各類生長因子來幫助改善血管新生和修復受損組織。雖然目前有許多基於MSCs治療的臨床試驗已經完成,但是對於改善MSCs的應用性,有許多議題仍值得進一步探討,包括有效製備合格的MSCs、MSCs在各種動物模型中用於臨床前試驗的生物分佈和相關的藥物動力學研究評估、鑑定不同來源MSCs中特別的生物標誌和訊息傳遞路徑等。在本研究中,我們開發了一種新型的無血清、無異種材料且具選擇性的培養方法,並成功於人類胎盤的母體部分分離出MSCs,我們將此一具有免疫調節能力的MSCs命名為placenta choriodecidual membrane-derived mesenchymal stromal cells(pcMSCs)。pcMSCs是一種新型的MSCs,在無血清培養條件下可長期於體外擴大培養(> 20次繼代培養)同時保持MSCs特點的穩定性,因此更容易取得大量細胞來供應予臨床使用,我們也因為此分離培養方法的進步性而獲得了專利申請通過。獲得了穩定供應的細胞來源後,接下來我們使用白蛋白結合的螢光納米鑽石(Fluorescent nanodiamond, FNDs),利用其生物相容性和光穩定性,將標記FND後的pcMSCs靜脈注射入迷你豬體內,而後精確定量pcMSCs於器官和組織的數量並追蹤其位置。此外,為了找出pcMSCs的特異性生物標誌和特別的訊息傳遞路徑,我們分析了pcMSCs和骨髓來源的MSCs(Bone marrow derived MSCs, BMMSCs)的全基因組基因表達譜。結果顯示,pcMSCs具有雌激素受體及黃體激素受體表現,但不表現人類絨毛膜促性腺激素(hCG)受體,然而,以上三種受體BMMSCs均不表現。另一方面,基因表達分析亦顯示,pcMSCs表現Decoy receptor 3 (DcR3),一種屬於腫瘤壞死因子受體超家族(tumor necrosis factor receptor superfamily)的可溶性蛋白,已知可抑制被Fas ligand (FasL)誘導的細胞凋亡。目前臨床研究觀察到DcR3表現量會於月經週期中變化,並在子宮內膜細胞株的體外試驗中,發現DcR3可受性荷爾蒙調節。分析人類妊娠組織也發現蛻膜的DcR3蛋白在正常妊娠比無胚胎妊娠(anembryonic pregnancy)更高。雖然pcMSCs不表現hCG受體,但我們很驚訝的發現,添加hCG會導致pcMSCs的DcR3表現量升高並積累在細胞內,此現象可能是通過TGF-β訊息傳遞路徑所引發。同時,當pcMSCs受IFN-γ和TNF-α誘導刺激後,DcR3也會升高。據我們所知,本研究是首次描述DcR3在間葉細胞上的表現、調控以及其生理功能的報告。整體而言,我們認為pcMSCs相較於其他已知的MSCs,具有特別的訊息傳遞調控,並且具有應用於治療嚴重發炎性疾病的潛力。 | zh_TW |
| dc.description.abstract | Mesenchymal stromal cells (MSCs) have been identified from different tissues and regarded as promising sources for cell therapy and regeneration medicine. The potential of anti-inflammatory properties and paracrine effects of MSCs may help to improve angiogenesis and to repair damaged tissue. Although different clinical trials of MSCs-based therapy have been executing, some basic information are still necessary to clarify to improve the applicability of MSCs, including the effective preparation of qualified MSCs, the biodistribution and associated pharmacokinetics studies of MSCs in various animal models for preclinical evaluation, and identification of novel biomarkers and significant signaling pathway of MSCs in different MSCs. In this study, we have successfully developed a novel serum free and xeno-free selective culture protocol to isolate MSCs from the maternal part of human term placenta and named placenta choriodecidual membrane derived MSCs (pcMSCs) which also have immunomodulatory ability. Compared with different types of MSCs, pcMSCs was a new type of MSCs and exhibited advantages for easy availability of abundance of cells number by long-term in vitro expansion process (>20 subculture) in the serum-free culture conditions and kept the stability of MSCs characteristics, that were able to an adequate supply for clinical use. The protocol and related technique have obtained the patents already. We also used a new platform using albumin-conjugated fluorescent nanodiamonds (FNDs) as biocompatible and photostable labels for quantitative tracking of pcMSCs in miniature pigs by magnetic modulation in order to precisely determine the numbers as well as positions of the transplanted FND-labeled pcMSCs in organs and tissues of the miniature pigs after intravenous administration. Furthermore, to reveal the specific biomarkers and significant signaling pathway of pcMSCs, we analyzed whole-genome gene expression profiles of pcMSCs and bone marrow derived MSCs (BMMSCs). The results indicated that pcMSCs expressed estrogen receptor, progesterone receptor and did not express human chorionic gonadotropin (hCG) receptor, however, all these receptors were not identified of BMMSCs. Additionally, genes expression analysis also revealed that pcMSCs could express Decoy receptor 3 (DcR3), a soluble protein of the tumor necrosis factor receptor superfamily which inhibits Fas ligand-induced apoptosis. Nevertheless, clinical study showed that DcR3 expression varies during the menstrual cycle and was regulated by sex steroid hormones in vitro in endometrial cells. Human gestational tissues also showed a differential production of DcR3 while decidual DcR3 protein was lower in anembryonic than normal pregnancies. Surprisingly, although hCG receptor did not express in pcMSCs, add-ins of hCG for pcMSCs would cause DcR3 overexpression accumulated intracellularly of pcMSCs, and, this signaling pathway maybe via TGF-β signaling pathway. Meanwhile, DcR3 also commendable increased when pcMSCs were primed with IFN-γ and TNF-α. To our knowledge, this is the first report about DcR3 expression, regulation and physiological function in MSCs. Taken altogether, we proposed that pcMSCs have novel signaling regulation rather than the other type of MSCs and have the potential for therapeutic application in severe inflammatory disease. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:50:08Z (GMT). No. of bitstreams: 1
ntu-105-D99443002-1.pdf: 3049884 bytes, checksum: 9cde3fbb109f0c95d03807ac7fea197a (MD5) Previous issue date: 2016 | en |
| dc.description.provenance | Item withdrawn by admin ntu (admin@lib.ntu.edu.tw) on 2021-09-23T08:15:13Z
Item was in collections: 藥理學科所 (ID: 45d9a064-605a-4083-af48-f0f6c64bf0d7) No. of bitstreams: 1 ntu-105-1.pdf: 3049884 bytes, checksum: 9cde3fbb109f0c95d03807ac7fea197a (MD5) | en |
| dc.description.provenance | Item withdrawn by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-26T01:38:17Z Item was in collections: 藥理學科所 (ID: 45d9a064-605a-4083-af48-f0f6c64bf0d7) No. of bitstreams: 1 ntu-105-1.pdf: 3049884 bytes, checksum: 9cde3fbb109f0c95d03807ac7fea197a (MD5) | en |
| dc.description.provenance | Item reinstated by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-26T01:38:21Z Item was in collections: 藥理學科所 (ID: 45d9a064-605a-4083-af48-f0f6c64bf0d7) No. of bitstreams: 1 ntu-105-1.pdf: 3049884 bytes, checksum: 9cde3fbb109f0c95d03807ac7fea197a (MD5) | en |
| dc.description.tableofcontents | 中文摘要 iv
Abstract vi Chapter 1 Introduction - 1 - 1.1 Mesenchymal stem/stromal cells (MSCs) - 2 - 1.2 MSCs production - 2 - 1.3 Biodistribution - 3 - 1.4 MSCs identification - 5 - 1.5 MSCs in human decidua - 7 - 1.6 The relevance of DcR3 and human reproduction - 8 - 1.7 Human chorionic gonadotropin - 9 - 1.8 Aim of study - 11 - Chapter 2 Materials and methods - 12 - 2.1 Cells isolation from placenta tissue - 13 - 2.2 Inmunophenotypic characterization - 14 - 2.3 In vitro differentiation - 14 - 2.4 Fluorescence in situ hybridization (FISH) - 15 - 2.5 HSA-FNDs labeling for pcMSCs - 15 - 2.6 Cell viability assay - 16 - 2.7 Cell proliferation assay - 16 - 2.8 Immunomodulation assay - 17 - 2.9 Animal experiments of Miniature pig - 18 - 2.10 Fluorescence imaging - 20 - 2.11 Biodistribution measurement - 20 - 2.12 Hormones and cytokines induction - 21 - 2.13 Real-time PCR analysis - 21 - 2.14 Western blot assay - 23 - 2.15 Endothelial cell coculture and tube formation assay - 23 - 2.16 Matrigel plug assay - 24 - 2.17 Statistics - 25 - Chapter 3 Results - 26 - 3.1 MSCs isolation from human term placenta - 27 - 3.2 Characterization of FND-labeled pcMSCs - 28 - 3.3 Quantitative tracking of FND-labeled pcMSCs in vivo - 29 - 3.4 pcMSCs in vitro decidualization - 32 - 3.5 The comparisons of pcMSCs and BMMSCs in mRNA expression array - 33 - 3.6 DcR3 expression and regulation via hormones - 34 - 3.7 hCG enhance DcR3 expression in pcMSCs through TGF-β signaling pathway - 36 - 3.8 Inflammatory signals promote expression of immune-modulatory genes and DcR3 in pcMSCs - 37 - 3.9 pcMSCs enhance angiogenesis ability via increasing DcR3 expression - 38 - Chapter 4 Discussion - 40 - 4.1 The advantages of pcMSCs - 41 - 4.2 Quantitative tracking of FND-labeled pcMSCs in vivo - 42 - 4.3 Specific characteristics of pcMSCs - 44 - 4.4 The DcR3 expression and regulation of pcMSCs - 45 - Chapter 5 Figures and legends - 48 - Figure 1. Preference of cells adherent on different coating material. - 49 - Figure 2. Characterization of pcMSCs. - 50 - Figure 3. Karyotypical characteristics of pcMSCs isolated from male newborn’s placenta. - 51 - Figure 4. Characterization of HSA-FND-labeled pcMSCs. - 53 - Figure 5. Quantitative tracking of HSA-FND-labeled pcMSCs in miniature pigs. - 55 - Figure 6. Fluorescence imaging of HSA-FND-labeled pcMSCs in pig tissues. - 57 - Figure 7. In vitro decidualization of pcMSCs. - 59 - Figure 8. Clustering analysis of BMMSCs and pcMSCs by mRNA expression array…… - 61 - Figure 9. The expression of reproductive hormone receptors in pcMSCs were different from BMMSCs. - 63 - Figure 10. DcR3 was expressed in pcMSCs and it could be regulated by reproductive hormones and inflammatory cytokines. - 65 - Figure 11. DcR3 expression in pcMSCs was regulated by hCG via the TGF-β receptor. - 67 - Figure 12. TGF-β1 stimulated DcR3 down regulation in both of intracellular content and secretion level of pcMSCs. - 69 - Figure 13. The inflammatory cytokines stimulated pcMSCs’ DcR3 expression without costimulatory effect of anfiogenic factors. - 70 - Figure 14. In vitro tube formation assay demonstrated pcMSCs promote angiogenesis via DcR3. - 71 - Figure 15. pcMSCs promote angiogenesis via DcR3 in vivo. - 73 - Table 1. Antibodies for flow cytometry and western blot - 75 - Table 2. Real time PCR human primer sequences - 75 - Chapter 6 References - 77 - | - |
| dc.language.iso | en | - |
| dc.title | 人類胎盤絨毛膜蛻膜間葉細胞的分離、鑑別與應用 | zh_TW |
| dc.title | The isolation, identification, and application of human placenta choriodecidual-derived mesenchymal stromal cells (pcMSCs) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 105-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 何弘能,林琬琬,謝世良,鄧哲明,陳耀昌 | - |
| dc.subject.keyword | 間葉細胞,無血清培養,生物分布,雌激素受體,黃體激素受體, | zh_TW |
| dc.subject.keyword | Mesenchymal stromal cells,serum-free culture system,biodistribution,estrogen receptor,progesterone receptor, | en |
| dc.relation.page | 86 | - |
| dc.identifier.doi | 10.6342/NTU201703661 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2017-08-16 | - |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
