請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20451完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃聖懿(Shang-Yi Huang) | |
| dc.contributor.author | Yu-Chin Hung | en |
| dc.contributor.author | 洪郁欽 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:49:09Z | - |
| dc.date.copyright | 2017-09-12 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-17 | |
| dc.identifier.citation | 1. André T, Meuleman N, Stamatopoulos B, et al. Evidences of early senescence in multiple myeloma bone marrow mesenchymal stromal cells. PLoS One. 2013; 8(3): e59756.
2. Bayreuther K, Rodemann HP, Hommel R, et al. Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci. 1988 Jul;85(14):5112-6. 3. Beausejour CM, Krtolica A, Galimi F, et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 2003 Aug;22(16):4212-22. 4. Berg DJ, Lynch RG. Immune dysfunction in mice with plasmacytomas. I. Evidence that transforming growth factor-beta contributes to the altered expression of activation receptors on host B lymphocytes. J Immunol. 1991 Apr;146(8):2865-72. 5. Boncela J, Przygodzka P, Wyroba E, et al. Secretion of SerpinB2 from endothelial cells activated with inflammatory stimuli. Exp Cell Res. 2013 May;319(8):1213-9. 6. Brack C, Lithgow G, Osiewacz H, et al. EMBO WORKSHOP REPORT: Molecular and cellular gerontology Serpiano, Switzerland, September 18-22, 1999. EMBO J. 2000 May;19(9):1929-34. 7. Braig M, Lee S, Loddenkemper C, et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 2005 Aug;436(7051):660-5. 8. Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007 Sep;8(9):729-40. 9. Chen QM, Prowse KR, Tu VC, et al. Uncoupling the senescent phenotype from telomere shortening in hydrogen peroxide-treated fibroblasts. Exp. Cell Res. 2001 May;265(2):294-303. 10. Chen Z, Trotman LC, Shaffer D, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005 Aug;436(7051):725-30. 11. Choi J, Shendrik I, Peacocke M, et al. Expression of senescence-associated beta-galactosidase in enlarged prostates from men with benign prostatic hyperplasia. Urology. 2000 Jul;56(1):160-6. 12. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010 Oct;40(2):179-204. 13. Cochran BJ, Croucher DR, Lobov S, et al. Dependence on endocytic receptor binding via a minimal binding motif underlies the differential prognostic profiles of SerpinE1 and SerpinB2 in cancer. J Biol Chem. 2011 Jul;286(27):24467-75. 14. Collado M, Gil J, Efeyan A, et al. Tumour biology: senescence in premalignant tumours. Nature. 2005 Aug;436(7051):642. 15. Coppé JP, Desprez PY, Krtolica A, et al. The senescence-associated secretory phenotype: The dark side of tumor suppression. Annu Rev Pathol. 2010;5:99-118. 16. Corre J, Mahtouk K, Attal M, et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia. 2007 May;21(5):1079-88. 17. Courtois-Cox S, Genther Williams SM, Reczek EE, et al. A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell. 2006 Dec;10(6):459-72. 18. Courtois-Cox S, Jones SL, Cichowski K. Many roads lead to oncogene-induced senescence. Oncogene. 2008 May;27(20):2801-9. 19. d'Adda di Fagagna F, Reaper PM, Clay-Farrace LM, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003 Nov;426(6963):194-8. 20. Darnell GA, Antalis TM, Johnstone RW et al. Inhibition of Retinoblastoma Protein Degradation by Interaction with the Serpin Plasminogen Activator Inhibitor 2 via a Novel Consensus Motif. Molecular and Cellular Biology. 2003 Sep;23(18);6520-32. 21. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315-7. 22. Dong M, Blobe GC. Role of transforming growth factor-beta in hematologic malignancies. Blood. 2006 Jun;107(12):4589-96. 23. Frassanito MA, Rao L, Moschetta M, et al. Bone marrow fibroblasts parallel multiple myeloma progression in patients and mice: in vitro and in vivo studies. Leukemia. 2014 Apr;28(4):904-16. 24. Garayoa M, Garcia JL, Santamaria C, et al. Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia. 2009 Aug;23(8):1515-27. 25. Garcia-Gomez A, Sanchez-Guijo F, Del Cañizo MC, et al. Multiple myeloma mesenchymal stromal cells: Contribution to myeloma bone disease and therapeutics. World journal of stem cells. 2014 Jul;6(3): 322-43. 26. Garderet L, Mazurier C, Chapel A, et al. Mesenchymal stem cell abnormalities in patients with multiple myeloma. Leuk Lymphoma. 2007 Oct; 48(10):2032-41. 27. Geyh S, Öz S, Cadeddu R, et al. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia. 2013 Sep; 27(9):1841-51. 28. Gotoh M, Fujiwara Y, Yue J, et al. Controlling cancer through the autotaxin-lysophosphatidic acid receptor axis. Biochem Soc Trans. 2012 Feb;40(1):31-3. 29. Harris NLE, Vennin C, Conway JRW, et al. SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer. Oncogene. 2017 Jul;36(30):4288-4298. 30. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965 Mar;37:614-36. 31. Herbig U, Jobling WA, Chen BP, et al. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a. Mol Cell. 2004 May;14(4):501-13. 32. Hoare M, Ito Y, Kang TW, et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat cell biol. 2016 Sep;18(9):979-92. 33. Huang Z, Li H, Huang Q, et al. SERPINB2 down-regulation contributes to chemoresistance in head and neck cancer. Mol Carcinog. 2013 Oct;53(10):777-86. 34. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009 Oct;461(7267):1071-8. 35. Jacobs JJ, de Lange T. Significant role for p16INK4a in p53-independent telomere-directed senescence. Curr Biol. 2004 Dec;14(24):2302-8. 36. Jin T, Suk Kim H, Ki Choi S, et al. microRNA-200c/141 upregulates SerpinB2 to promote breast cancer cell metastasis and reduce patient survival. Oncotarget. 2017 May8(20):32769-32782. 37. Jurczyszyn A, Czepiel J, Gdula-Argasińska J, et al. The analysis of the relationship between multiple Myeloma cells and their Microenvironment. J Cancer. 2015 Jan; 6(2):160-8. 38. Kanehira M, Fujiwara T, Nakajima S, et al. A Lysophosphatidic acid receptors 1 and 3 axis governs cellular senescence of mesenchymal stromal cells and promotes growth and vascularization of multiple myeloma. Stem Cells. 2017 Mar;35(3):739-753. 39. Kanehira M, Kikuchi T, Ohkouchi S, et al. Targeting lysophosphatidic acid signaling retards culture-associated senescence of human marrow stromal cells. PLoS One. 2012;7(2): e32185. 40. Krtolica A, Parrinello S, Lockett S, et al. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging. Proc Natl Acad Sci. 2001 Oct;98(21):12072-7. 41. Kubiczkova L, Sedlarikova L, Hajek R, et al. TGF-β – an excellent servant but a bad master. J Trans Med. 2012 Sep;10:183. 42. Lataillade JJ, Pierre-Louis O. Hasselbalch HC, et al. Does primary myelofibrosis involve a defective stem cell niche? From concept to evidence. Blood. 2008 Oct;112(8):3026-35. 43. Lazzerini Denchi E, Attwool, C, Pasini D, et al. Deregulated E2F Activity Induces Hyperplasia and Senescence-Like Features in the Mouse Pituitary Gland. Mol Cell Biol. 2005 Apr;25(7):2660-72. 44. Lazzerini-Denchi E, Sfeir A. Stop pulling my strings — what telomeres taught us about the DNA damage response. Nat Rev Mol Cell Biol. 2016 Jun;17(6):364-78. 45. Liaw L, Reagan MR, Rosen CJ, et al. Dynamic interplay between bone and multiple myeloma: Emerging roles of the osteoblast. Bone. 2015 Jul;75:161-9. 46. Lin HH, Hwang SM, Wu SJ, et al. The osteoblastogenesis potential of adipose mesenchymal stem cells in myeloma patients who had received intensive therapy. PLoS One. 2014 Apr 10; 9(4):e94395. 47. Lin ME, Herr DR, Chun J. Lysophosphatidic acid (LPA) receptors: Signaling properties and disease relevance. Prostaglandins Other Lipid Mediat. 2010 Apr;91(3-4):130-8. 48. Liu S, Umezu-Goto M, Murph M, et al. Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell. 2009 Jun;15(6):539-50. 49. Lopane C, Agosti P, Gigante I, et al. Implications of the lysophosphatidic acid signaling axis in liver cancer. Biochim Biophys Acta. 2017 Jun;1868(1):277-282. 50. L Ramos T, Sánchez-Abarca LI, Muntión S, et al. MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun Signal. 2016 Jan;14:2. 51. Major LD, Partridge TS, Gardner J, et al. Induction of SerpinB2 and Th1/Th2 Modulation by SerpinB2 during Lentiviral Infections In Vivo. PLoS One. 2013;8(2):e57343. 52. Malaquin N, Martinez A, Rodier F. Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Exp Gerontol. 2016 Sep;82:39-49. 53. Manier S, Sacco A, Leleu X, et al. Bone marrow microenvironment in multiple myeloma progression. Journal of biomedicine & biotechnology. 2012; 2012:157496. 54. Massagué J, Blain SW, Lo RS. TGF-beta Signaling in Growth Control, Cancer, and Heritable Disorders. Cell. 2000 Oct;103(2):295-309. 55. Michaloglou C, Vredeveld LC, Soengas MS, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005 Aug;436(7051): 720-4. 56. Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer. 2003 Aug;3(8):582-91. 57. Moiseeva O, Mallette FA, Mukhopadhyay UK, et al. DNA Damage Signaling and p53-dependent Senescence after Prolonged beta-Interferon Stimulation. Mol Biol Cell. 2006 Apr;17:1583-92. 58. Ohuchida K, Mizumoto K, Murakami M, et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res. 2004 May;64(9):3215-22. 59. Olsen CL, Gardie B, Yaswen P, et al. Raf-1-induced growth arrest in human mammary epithelial cells is p16-independent and is overcome in immortal cells during conversion. Oncogene 2002 Sep;21(41):6328-39. 60. Özcan S, Alessio N, Acar M, et al. Myeloma cells can corrupt senescent mesenchymal stromal cells and impair their anti-tumor activity. Oncotarget. 2015 Nov;6(37): 39482-92. 61. Parrinello S, Coppe JP, Krtolica A, et al. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci. 2005 Feb;118(3):485-96. 62. Reagan MR, Ghobrial IM. Multiple myeloma mesenchymal stem cells: characterization, origin, and tumor-promoting effects. Clin Cancer Res. 2012 Jan;18(2):342-9. 63. Rocci A, Hofmeister C, Pichiorri F. The potential of miRNAs as biomarkers for multiple myeloma. Expert Rev Mol Diagn. 2014 Nov;14(8):947-59. 64. San-Miguel JF, Mateos MV. Can multiple myeloma become a curable disease? Haematologica. 2011 Sep;96(9):1246-8. 65. Sarkisian CJ, Keister BA, Stairs DB, et al. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol. 2007 May;9(5):493-505. 66. Sasagawa T, Okita M, Murakami J, et al. Abnormal serum lysophospholipids in multiple myeloma patients. Lipids. 1999 Jan;34(1):17‐21. 67. Serrano M, Lin AW, McCurrach ME, et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997 Mar;88(5):593-602. 68. Shawi M, Autexier C. Telomerase, senescence and ageing. Mech Ageing Dev. 2008 Jan-Feb;129(1-2):3-10. 69. Shea-Donohue T, Zhao A, Antalis TM. SerpinB2 mediated regulation of macrophage function during enteric infection. Gut Microbes. 2014 Mar;5(2):254-8. 70. Sherwood SW, Rush D, Ellsworth JL, et al. Defining cellular senescence in IMR-90 cells: A flow cytometric analysis. Proc Natl Acad Sci. 1988 Dec;85(23):9086-90. 71. Todoerti K, Lisignoli G, Storti P, et al. Distinct transcriptional profiles characterize bone microenvironment mesenchymal cells rather than osteoblasts in relationship with multiple myeloma bone disease. Experimental hematology. 2010 Feb; 38(2):141-53. 72. Tsai TL, Li WJ. Identification of bone marrow-derived soluble factors regulating human mesenchymal stem cells for bone regeneration. Stem Cell Reports. 2017 Feb;8(2):387-400. 73. Vizioli MG, Possik PA, Tarantino E, et al. Evidence of oncogene-induced senescence in thyroid carcinogenesis. Endocr Relat Cancer. 2011 Dec;18(6):743-57. 74. Willier S, Butt E, Grunewald TG. Lysophosphatidic acid (LPA) signaling in cell migration and cancer invasion: A focused review and analysis of LPA receptor gene expression on the basis of more than 1700 cancer microarrays. Biol Cell. 2013 Aug;105(8):317-333. 75. Yu S, Murph MM, Lu Y, et al. Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. J Natl Cancer Inst. 2008 Nov;100(22):1630-42. 76. Zhao A, Yang Z, Sun R, et al. SerpinB2 is Critical to Th2 immunity against enteric nematode Infection. The Journal of Immunology. 2013 Jun;190(11):5779-87. 77. Zöller M. CD44: Can a cancer-initiating cell profit from an abundantly expressed molecule? Na Rev Cancer. 2011 Apr;11(4):254-267. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20451 | - |
| dc.description.abstract | 骨髓間質幹細胞在多發性骨髓瘤的致病機轉與對治療的反應性都有重要角色,相較於健康人的骨髓間質幹細胞,骨髓瘤病患的骨髓間質幹細胞不論在基因表現、細胞激素表達、蛋白質製造甚至細胞型態、生長速度都有明顯差異。在體外培養下,骨髓瘤骨髓間質幹細胞生長速度比健康人的骨髓間質幹細胞顯著地慢上許多。雖然有代謝活性,但即使處於適當環境細胞也不再分裂,這樣的生理/病理現象稱作老化。骨髓瘤骨髓間質幹細胞較正常族群老化的現象已非新聞,但其中的病理機轉並未經過廣泛研究,對治療、預後的影響也尚未明朗。我們假設,骨髓間質幹細胞的老化可能在骨髓瘤的致病、治療扮演重要的角色並嘗試瞭解其中奧秘。我們蒐集健康骨髓捐贈者及骨髓瘤患者的骨髓間質幹細胞,在體外培養的環境下,比較兩個族群骨髓間質幹細胞老化的程度、訊息傳遞因子表現多寡,並針對老化相關基因進行DNA微陣列分析,同時比較同一檢體、不同分裂代數的間質幹細胞在特定基因表現有無差異,希望藉此找出骨髓瘤細胞造成骨髓間質幹細胞老化的機制;此外,我們也對骨髓間質幹細胞施加特定蛋白(lipocalin-2, prolactin),觀察這些分子是否能延緩或反轉老化。我們發現,骨髓瘤病患的骨髓間質幹細胞不論老化的表現型或基因型都與健康細胞明顯不同。藉由DNA微陣列分析搭配基因網絡分析軟體(Ingenuity Pathway Analysis),我們高度懷疑骨髓瘤骨髓間質幹細胞的老化與轉化生長因子-β(Transforming growth factor beta,TGF-β)訊息傳遞有關。此外,SERPINB2基因的表現量隨著細胞分裂次數增加而顯著增加。一般常見於老化分析的基因,如CDKN1A (p21)與CDKN2A (p16)表現則較不顯著。最後,本實驗尚無法重現lipocalin-2, prolactin分子降低老化表現的結果,這或許與細胞暴露藥物的時間不足有關。本研究發現TGF-β訊息傳遞與SERPINB2基因在骨髓瘤骨髓間質幹細胞的老化可能扮演重要角色。未來將針對這些標的進行基因轉殖、剔除等實驗,除了嘗試反轉骨髓瘤骨髓間質幹細胞的老化,也期待改變骨髓間質幹細胞能成為未來多發性骨髓瘤的治療標的之一。 | zh_TW |
| dc.description.abstract | Bone marrow mesenchymal stem cells (BMMSCs) play an important role in pathogenesis and even drug resistance of multiple myeloma (MM). There are several distinctions in BMMSCs between myeloma patients (MM-BMMSCs) and healthy donors (HD-BMMSCs), such as proliferation capacity, ability of osteoblastogenesis, gene expressions, and secretory cytokine profiles (secretome). Cellular senescence is defined as a state of irreversible cell cycle arrest even with adequate supply of growth factors. To date, cellular senescence of MM-BMMSCs has been widely noted while comparing to HD-BMMSCs. However, its molecular mechanism(s) or clinical significance (e.g. impact on treatment outcome) are so far largely unclear. We propose that the senescence and subsequent malfunction of MM-BMMSCs may contribute to the pathogenic abnormalities and lead to different prognosis of MM patients. To answer these questions, we collected 42 MM-BMMSCs and 16 HD-BMMSCs. We compared genotype by using senescence-specific cDNA PCR array between these two groups, as well as phenotype of senescence, expression levels of certain genes in different passages in vitro, levels of lysophosphatidic acid (LPA) and its receptors 1 & 3 (LPAR 1/3). Furthermore, we also treated MM- and HD-BMMSCs with lipocalin-2 and prolactin to see whether reversal of senescence possible. Our preliminary findings indicated that the genotype and phenotype of senescence were quite different between these two groups. By cDNA PCR array and Ingenuity Pathway Analysis (IPA) analysis, we highly suspected that the senescence of MM-BMMSCs might be regulated through TGF-β signaling. We also found expressions of SERPINB2 genes were highly correlated with the senescence of BMMSCs (and there was a trend for higher expression of SERPINB2 in MM-BMMSCs than in HD-BMMSCs). However, these changes were not seen in other senescence related genes, such as CDKN1A and CDKN2A. Finally, the impact of lipocalin-2 and prolactin on senescence were not evident in this study, which might be due to relatively short duration of exposure. Our results point out the role of TGF-β signaling and SERPINB2 gene in the molecular mechanism of senescence in MM-BMMSCs. In the future, we will perform further manipulations (e.g. knock-in or knock-out) to valid these findings and we hope to clarify molecular mechanism of senescence in MM-BMMSC and reverse the senescence if possible will shed light on the novel treatment paradigm in MM. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:49:09Z (GMT). No. of bitstreams: 1 ntu-106-P04421020-1.pdf: 2048260 bytes, checksum: 913a1abfb3b6e18ed2aa9ebccfc71131 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Table of contents
Verification letter from the Oral Examination Committee…………………………………………………………………………………………………………… i Chinese Abstract ……………………………………………………………………………………… ii English Abstract ……………………………………………………………………………………… iii Acknowledgments ………………………………………………………………………………………… iv Contents Chapter One Introduction………………………………………………………………………………1 Chapter Two Materials and methods………………………………………………………8 Chapter Three Results……………………………………………………………………………………11 Chapter Four Discussion…………………………………………………………………………… 15 Chapter Five Conclusion…………………………………………………………………………… 19 Bibliographies ………………………………………………………………………………………………… 20 Figures and tables ……………………………………………………………………………………… 26 | |
| dc.language.iso | zh-TW | |
| dc.title | 多發性骨髓瘤病患的骨髓間質幹細胞老化之臨床意義與分子機轉 | zh_TW |
| dc.title | Senescence of bone marrow mesenchymal stem cells in patients with multiple myeloma: clinical significance and molecular mechanism | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 田蕙芬(Hwei-Fang Tien),周文堅(Wen-Chien Chou) | |
| dc.contributor.oralexamcommittee | 楊宏志(Hung-Chih Yang) | |
| dc.subject.keyword | 多發性骨髓瘤,骨髓間質幹細胞,cDNA基因微陣列分析,老化,SERPINB2基因, | zh_TW |
| dc.subject.keyword | multiple myeloma,bone marrow mesenchymal stem cells,senescence,cDNA PCR array,SERPINB2 gene, | en |
| dc.relation.page | 44 | |
| dc.identifier.doi | 10.6342/NTU201703806 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
