Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20427
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈湯龍(Tang-Long Shen)
dc.contributor.authorPin-Jou Wuen
dc.contributor.author吳品柔zh_TW
dc.date.accessioned2021-06-08T02:48:21Z-
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-18
dc.identifier.citationAchuo, E. A., Prinsen, E., and Höfte, M. 2006. Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathology 55:178-186.
Adkar-Purushothama, C. R., Brosseau, C., Giguere, T., Sano, T., Moffett, P., and Perreault, J. P. 2015. Small RNA Derived from the Virulence Modulating Region of the Potato spindle tuber viroid Silences callose synthase Genes of Tomato Plants. The Plant cell 27:2178-2194.
Asselbergh, B., Achuo, A. E., Hofte, M., and Van Gijsegem, F. 2008. Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Mol Plant Pathol 9:11-24.
Bari, R., and Jones, J. D. 2009. Role of plant hormones in plant defence responses. Plant molecular biology 69:473-488.
Chae, S. H., Yoneyama, K., Takeuchi, Y., and Joel, D. M. 2004. Fluridone and norflurazon, carotenoid-biosynthesis inhibitors, promote seed conditioning and germination of the holoparasite Orobanche minor. Physiologia Plantarum 120:328-337.
Chan, Z. 2012. Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis. Genomics 100:110-115.
Chellappan, P., Vanitharani, R., Ogbe, F., and Fauquet, C. M. 2005. Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol 138:1828-1841.
Dalakouras, A., Dadami, E., and Wassenegger, M. 2013. Viroid-induced DNA methylation in plants. Biomol Concepts 4:557-565.
Ding, B. 2009. The biology of viroid-host interactions. Annual review of phytopathology 47:105-131.
Flores, R., Hernandez, C., Martinez de Alba, A. E., Daros, J. A., and Di Serio, F. 2005. Viroids and viroid-host interactions. Annual review of phytopathology 43:117-139.
G Nyland, a., and Goheen, A. C. 1969. Heat Therapy of Virus Diseases of Perennial Plants. Annual review of phytopathology 7:331-354.
Hoth, S., Morgante, M., Sanchez, J.-P., Hanafey, M. K., Tingey, S. V., and Chua, N.-H. 2002. Genome-wide gene expression profiling in <em>Arabidopsis thaliana</em> reveals new targets of abscisic acid and largely impaired gene regulation in the <em>abi1-1</em> mutant. Journal of Cell Science 115:4891.
Itaya, A., Folimonov, A., Matsuda, Y., Nelson, R. S., and Ding, B. 2001. Potato spindle tuber viroid as Inducer of RNA Silencing in Infected Tomato. Molecular Plant-Microbe Interactions 14:1332-1334.
Keese, P., and Symons, R. H. 1985. Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proceedings of the National Academy of Sciences of the United States of America 82:4582-4586.
Kuwabara, A., Ikegami, K., Koshiba, T., and Nagata, T. 2003. Effects of ethylene and abscisic acid upon heterophylly in Ludwigia arcuata (Onagraceae). Planta 217:880-887.
MacDonald, M. T., Lada, R. R., Hoyle, J., and Robinson, A. R. 2009. Ambiol Preconditioning Can Induce Drought Tolerance in Abscisic Acid-deficient Tomato Seedlings. HortScience 44:1890-1894.
Malamy, J., Carr, J. P., Klessig, D. F., and Raskin, I. 1990. Salicylic Acid: A Likely Endogenous Signal in the Resistance Response of Tobacco to Viral Infection. Science 250:1002-1004.
Matousek J, T. L., Svoboda P, Oriniaková P, Lichtenstein CP. 1995. The gradual reduction of viroid levels in hop mericlones following heat therapy: a possible role for a nuclease degrading dsRNA. Biological chemistry Hoppe-Seyler 376:715-721.
Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S. Y. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126:969-980.
Nakashima, K., and Yamaguchi-Shinozaki, K. 2013. ABA signaling in stress-response and seed development. Plant Cell Rep 32:959-970.
Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., and Di Serio, F. 2012. Viroids: how to infect a host and cause disease without encoding proteins. Biochimie 94:1474-1480.
Nishimura, N., Hitomi, K., Arvai, A. S., Rambo, R. P., Hitomi, C., Cutler, S. R., Schroeder, J. I., and Getzoff, E. D. 2009. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326:1373-1379.
Owens, R. A., Tech, K. B., Shao, J. Y., Sano, T., and Baker, C. J. 2012. Global analysis of tomato gene expression during Potato spindle tuber viroid infection reveals a complex array of changes affecting hormone signaling. Mol Plant Microbe Interact 25:582-598.
Owens, R. A., Steger, G., Hu, Y., Fels, A., Hammond, R. W., and Riesner, D. 1996. RNA Structural Features Responsible for Potato Spindle Tuber Viroid Pathogenicity. Virology 222:144-158.
Ren, H., Gao, Z., Chen, L., Wei, K., Liu, J., Fan, Y., Davies, W. J., Jia, W., and Zhang, J. 2007. Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. J Exp Bot 58:211-219.
Rodrigo, I., Vera, P., Frank, R., and Conejero, V. 1991. Identification of the viroid-induced tomato pathogenesis-related (PR) protein P23 as the thaumatin-like tomato protein NP24 associated with osmotic stress. Plant molecular biology 16:931-934.
Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J., and Kleinschmidt, A. K. 1976. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proceedings of the National Academy of Sciences of the United States of America 73:3852-3856.
Sheard, L. B., and Zheng, N. 2009. Plant biology: Signal advance for abscisic acid. Nature 462:575-576.
Shinozaki, K., and Yamaguchi-Shinozaki, K. 2007. Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221-227.
Su, H.-J. 2003. Citrus exocortis. Pages 261-262, 378, C. o. Agriculture, ed. Bureau of Animal and Plant Health Inspection and Quarantine, Council of Agriculture, Executive Yuan, Taipei.
Verniere, C., Perrier, X., Dubois, C., Dubois, A., Botella, L., Chabrier, C., Bove, J. M., and Vila, N. D. 2006. Interactions between citrus viroids affect symptom expression and field performance of clementine trees grafted on trifoliate orange. Phytopathology 96:356-368.
Vlot, A. C., Dempsey, D. A., and Klessig, D. F. 2009. Salicylic Acid, a multifaceted hormone to combat disease. Annual review of phytopathology 47:177-206.
Wang, Y., Shibuya, M., Taneda, A., Kurauchi, T., Senda, M., Owens, R. A., and Sano, T. 2011. Accumulation of Potato spindle tuber viroid-specific small RNAs is accompanied by specific changes in gene expression in two tomato cultivars. Virology 413:72-83.
Whitham, S. A., Yang, C., and Goodin, M. M. 2006. Global Impact: Elucidating Plant Responses to Viral Infection. Molecular Plant-Microbe Interactions 19:1207-1215.
Zhang, D.-P. 2014. Abscisic Acid: Metabolism, Transport and Signaling. Springer Netherlands.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20427-
dc.description.abstract類病毒為裸露的單股環狀RNA分子,大小約為250-400個核酸,且不轉譯任何蛋白質。類病毒是目前已知最小的植物病原且能感染多種作物造成嚴重的經濟損失。柑桔鱗砧類病毒(Citrus exocortis viroid, CEVd)為主要感染柑橘的類病毒,除了柑橘之外尚能感染番茄、馬鈴薯等植物。然而,柑橘鱗砧類病毒在造成植物病害發生的致病機制尚不明瞭。在先前的研究中發現當Rutgers品系的番茄受到柑橘鱗砧類病毒感染的番茄會表現出嚴重的葉片向下捲曲、葉片扭曲無法伸展與矮化等嚴重病徵。而先前的轉錄體(transcriptome)分析中,在柑橘鱗砧類病毒感染的番茄其離層素生合成的相關基因組有增加表現的情形。離層素(abscisic acid, ABA)在植物中主要參與種子發育與休眠、葉片生長、老化、防禦或是外在壓力耐受性相關的生理反應。因此,我們為柑橘鱗砧類病毒造成寄主植物葉片明顯的病徵可能與離層素表面失調有關。故本研究的目的在於探討柑橘鱗砧類病毒的病程發展與離層素之間的關係。首先,利用LC-MS/MS測定感病番茄中離層素的含量,我們發現離層素含量比較於健康植株有所改變。接著利用qPCR測定離層素生合成與代謝相關基因的表現量與ELISA assay測定離層素含量,發現隨著病程發展離層素的相關生合成基因與含量有皆隨著病徵發展呈現上升的趨勢。最後,在分別對已感染柑桔鱗砧類病毒的番茄處理離層素抑制劑fluridone或處理外源離層素,觀察病程的發展受到離層素的影響,進一步確認這兩者之間的關係。希望能提供另一種對於柑桔鱗砧類病毒病害管理的策略。zh_TW
dc.description.abstractViroids are small, circular and single-stranded RNAs which do not encode any protein. Known as the smallest pathogens, viroids are capable of infecting varied crops and result in crop yield reduction. Citrus exocortis viroid (CEVd) is the main viroid pathogen in the citrus industry; however, it can still infect other crops, such as tomatoes and potatoes. Upon infection a susceptible tomato cultivar, “Rutgers”, showed severe symptoms, such as epinasty, leaf distortion and stunting. Our previous transcriptome analysis of CEVd-infected tomato showed an up-regulated gene set involved in the abscisic acid (ABA) biosynthesis which is known as a defense-related phytohormone. In addition, ABA also plays a key role in seed development, seed dormancy, leaf formation and expansion and stress adaption. Nevertheless, the mechanism of viroids-induced pathogenesis/symptoms remained unknown. Here, we hypothesized that CEVd causing ABA homeostasis disorder may contribute to the development of pathogenic leaves. Firstly, utilizing LC/MS/MS analysis, we observed that the level of ABA content in infected tomato was higher compared to that of mock control. Consistently, we also found that there was an increase of the ABA biosynthetic gene sets during the progression of CEVd-mediated pathogenesis. Furthermore, while treated with fluridone, an ABA synthesis inhibitor, and exogenous ABA, the influence of the symptoms and pathogenesis of CEVd were apparently detected. As a result, ABA deficiency appears to increase either CEVd replication, whereas administration of exogenous ABA enabled to reduce CEVd replication. In conclusion, this study provided the first evidence for ABA involved in CEVd pathogenesis.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:48:21Z (GMT). No. of bitstreams: 1
ntu-106-R03633009-1.pdf: 2426624 bytes, checksum: 0f9cfe1bfcab13c59e9aafe2ca966aaa (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員審定書...........................................................................................ii
致謝 iii
摘要 iv
Abstract v
Introduction 1
Viroids 1
Pathogenesis of viroids 2
Plant hormone abscisic acid 4
Rationale 5
Materials and Methods 6
Plant materials, growth conditions and viroid source 6
In vitro transcription and inoculation 6
Total RNA extraction and cDNA synthesis 7
Primer design and real time-PCR 7
Plant hormone extraction for LC-MS/MS 8
ELISA analysis for endogenous ABA in tomato 9
ABA inhibitor and exogenous ABA treatment 10
Results 12
Aberrant expressions of plant hormones in the CEVd-infected Rutgers 12
The time course of the pathogenesis of CEVd and ABA in CEVd-infected tomato 12
The effect of ABA deficiency on CEVd pathogenesis 15
The effect of exogenous ABA on CEVd pathogenesis 17
Summary 19
Discussion 20
Figure 26
Fig. 1. The phenotype of CEVd-infected Rutgers after 7 weeks post inoculation. 26
Fig. 2. Changes in plant hormone abscisic acid and salicylic acid after 7 weeks post inoculation of CEVd. 27
Fig. 3. The time course of the pathogenesis of CEVd and ABA in CEVd-infected Rutgers. 28
Fig. 4. The phenotypes of CEVd-infected ‘Rutgers’ and mock at 3 and 4 weeks post inoculation. 30
Fig. 5. The expression of ABA biosynthetic and catabolic genes in CEVd-infected ‘Rutgers’. 31
Fig. 6. The effect of ABA-deficient on CEVd pathogenesis. 33
Fig. 7. The effect of various dosage of fluridone treatment as ABA-deficient on CEVd pathogenesis. 35
Fig. 8. The effect of various dosage of exogenous ABA on CEVd pathogenesis. 37
Fig. 9. The diagram of the correlation between CEVd pathogenesis and Abscisic acid. 38
Table 39
Table 1. Characteristics of two viroid families: Pospiviroidae and Avsunviroidae 39
Table 2. Primer sets used in this study 40
Supplement data 42
Fig. A. Mapman Analysis of the differentially expressed genes of hormone pathway on CEVd-infected Rutgers. 42
Fig. B. The standard curve of CEVd copy number for real-time PCR analysis. 43
Fig. C. The standard curve of the ABA concentration in ELISA analysis. 44
Table A. Gene Set Enrichment Analysis (GSEA) 45
Reference 46
dc.language.isoen
dc.title植物賀爾蒙離層素對於柑橘鱗砧類病毒於番茄上病程進展之影響zh_TW
dc.titlePathogenic effects of plant hormone Abscisic acid on Citrus exocortis viroid infected tomato plantsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張雅君(Ya-Chun Chang),詹富智(Fuh-Jyh Jan),洪挺軒(Ting-Hsuan Hung)
dc.subject.keyword柑橘鱗砧類病毒,植物賀爾蒙,離層素,病程發展,病徵表現,zh_TW
dc.subject.keywordviroid,Citrus exocortis viroid,phytohormone,abscisic acid,fluridone,pathogenic effect,symptom development,en
dc.relation.page48
dc.identifier.doi10.6342/NTU201703777
dc.rights.note未授權
dc.date.accepted2017-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved