Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20406
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊申語,魏培坤
dc.contributor.authorTsung-Yeh Wuen
dc.contributor.author吳宗曄zh_TW
dc.date.accessioned2021-06-08T02:47:41Z-
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-18
dc.identifier.citation[1] R. L. Rich and D. G. Myszka, “Survey of the year 2004 commercial optical biosensor literature” Journal of Molecular Recognition, Vol. 18, pp. 431-478, (2005).
[2] D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest” Sensors and Actuators B: Chemical, Vol. 121, pp. 158-177, (2007).
[3] G. Gauglitz, “Opto-chemical and opto-immuno sensors” Sensor Technology, Vol. 1, pp. 1-48, (1996).
[4] A. L. Ghindilis, P. Atanasov, M. Wilkins, and E. Wilkins, “Immunosensors: electrochemical sensing and other engineering approaches” Biosensors and Bioelectronics, Vol. 13, pp. 113–131, (1998).
[5] X. Chu, Z. H. Lin, G. L. Shen, and R. Q. Yu, “Piezoelectric immunosensor for the detection of immunoglobulin M” Analyst, Vol. 120, pp. 2829–2832, (1995).
[6] C. C. Chen and S. C. Kao, “A Study of Two-Stage Micro Injection Compression Molding Process for Diffractive Optical Lens” Key Engineering Materials, Vol. 364-366, pp. 1211-1214, (2008).
[7] J. Narasimhan and I. Papautsky, “Polymer embossing tools for rapid prototyping of plastic microfluidic devices” Journal of Micromechanics and Microengineering, Vol. 14, pp. 96-103, (2004).
[8] H. Feng, G. Anshu, S. Yugang, W. Michael, J. Niu, S. Moonsub, S. Anne, and A. R. John, “Processing Dependent Behavior of Soft Imprint Lithography on the 1–10-nm Scale” IEEE Transactions on Nanotechnology, Vol. 5, pp. 301-308, (2006).
[9] H. Wu, T. W. Odom, D. T. Chiu, and G. M. Whitesides, “Fabrication of Complex Three-Dimensional Microchannel Systems in PDMS” J. Am. Chem. Soc., Vol. 125, pp. 554–559, (2003).
[10] 張哲豪,流體微熱壓製程開發研究,國立臺灣大學機械工程學研究所博士論文,民國93年6月。
[11] H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures” Sensors and Actuators A: Physical, Vol. 83, pp. 130-135, (2000).
[12] K. L. Lee, P. W. Chen, S. H. Wu, J. B. Huang, S. Y. Yang, and P. K. Wei, “Enhancing Surface Plasmon Detection Using Template-Stripped Gold Nanoslit Arrays on Plastic Films” ACS Nano, Vol. 6, pp. 2931-2939, (2012).
[13] P. Xie, P. He, Y. Yen, K. J. Kwak, D. Gallego-Perez, L. Chang, W. Liao, A. Yi, and L. J. Lee, “Rapid hot embossing of polymer microstructures using carbide-bonded graphene coating on silicon stampers” Surface and Coatings Technology, Vol. 258, pp. 174-180, (2014).
[14] Y. M. Shih, C. C. Kao, K. C. Ke, and S. Y. Yang, “Imprinting of double-sided microstructures with rapid induction heating and uniform gas-assisted pressuring” Journal of Micromechanics and Microengineering, Accepted, (2017).
[15] K. Mistry, “Plastics welding technology for industry” Assembly Automation, Vol. 17, pp. 196-200, (1997).
[16] P. Piyasena, C. Dussault, T. Koutchma, H. S. Ramaswamy, and G. B. Awuah, “Radio Frequency Heating of Foods: Principles, Applications and Related Properties—A Review” Critical Reviews in Food Science and Nutrition, Vol. 43, pp. 587-606, (2003).
[17] Y. Wang, T. D. Wig, J. Tang, and L. M. Hallberg, “Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization” Journal of Food Engineering, Vol. 57, pp. 257-268, (2003).
[18] F. Marra, L. Zhang, and J. G. Lyng, “Radio frequency treatment of foods: Review of recent advances” Journal of Food Engineering, Vol. 91, pp. 497-508, (2009).
[19] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography” Journal of Vacuum Science & Technology B, Vol. 14, pp. 4129-4133, (1996).
[20] H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography” Journal of Vacuum Science & Technology B, Vol. 16, pp. 3926-3928, (1998).
[21] J. H. Chang and S.Y. Yang, “Gas pressurized hot embossing for transcription of micro-features” Microsystem Technologies, Vol. 10, pp. 76-80, (2003).
[22] J. H. Chang, F. S. Cheng, C. C. Chao, Y. C. Weng, S. Y. Yang, and L. A. Wang, “Direct imprinting using soft mold and gas pressure for large area and curved surfaces” Journal of Vacuum Science & Technology A, Vol. 23, pp.1687-1690, (2005).
[23] J. H. Chang and S. Y. Yang, “Development of Fluid-Based Heating and Pressing Systems for Micro Hot Embossing” Microsystem Technologies, Vol. 11, pp. 396-403, (2005).
[24] H. Gao, H. Tan, W. Zhang, K. Morton, and S. Y. Chou, “Air Cushion Press for Excellent Uniformity, High Yield, and Fast Nanoimprint Across a 100 mm Field” Nano Lett., Vol. 6, pp. 2438 -2441, (2006).
[25] F. S. Cheng, S. Y. Yang, and C. C. Chen, “Novel hydrostatic pressuring mechanism for soft UV-inprinting processes” Journal of Vacuum Science and Technology B, Vol. 26, pp. 132-136, (2008).
[26] J. Haisma, M. Verheijen, K. Heuvel, and J. Berg, “Mold‐assisted nanolithography: A process for reliable pattern replication” Journal of Vacuum Science & Technology B, Vol. 14, pp. 4124-4128, (1996).
[27] M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, “Fabrication of nanostructures using a UV-based imprint technique” Microelectronic Engineering, Vol. 53, pp. 233-236, (2000).
[28] S. H. Ahn, J. W. Cha, H. Myung, S. M. Kim, and S. Kang, “Continuous ultraviolet roll nanoimprinting process for replicating large-scale nano micropatterns” Apply Physics Letter, Vol. 89, pp. 2131011-2131013, (2006).
[29] S. Y. Park, K. B. Choi, G. H. Kim, and J. J. Lee, “Nanoscale patterning with the double-layered soft cylindrical stamps by means of UV-nanoimprint lithography” Microelectronic Engineering, Vol. 86, pp. 604-607, (2009).
[30] T. Balla, S. M. Spearing, and A. Monk, “An assessment of the process capabilities of nanoimprint lithography” Journal of Physics D: Applied Physics, Vol. 41, pp. 174001 (2008).
[31] Y. H. Huang, J. T. Wu, and S. Y. Yang, “Direct fabricating patterns using stamping transfer process with PDMS mold of hydrophobic nanostructures on surface of micro cavity” Microelectronic Engineering, Vol. 88, pp. 849-854, (2011).
[32] C. C. Yu and H. L. Chen, “Nanoimprint technology for patterning functional materials and its applications” Microelectronic Engineering, Vol. 132, pp.98-119, (2015).
[33] C. H. Wu and C. H. Lu, “Fabrication of an LCD light guide plate using closed-die hot embossing” Journal of Micromechanics and Microengineering, Vol. 18, pp. 035006, (2008).
[34] C. H. Yang and S. Y. Yang, ” A high-brightness light guide plate with high precise double-sided microstructures fabricated using the fixed boundary hot embossing technique” Journal of Micromechanics and Microengineering, Vol. 23, pp. 035033, (2013).
[35] Y. Yang, K. Mielczarek, M. Aryal, A. Zakhidov, and W. Hu, “Nanoimprinted Polymer Solar Cell” ACS Nano, Vol. 6, pp. 2877-2891, (2012).
[36] W. Y. Chang, K. H. Lin, J. T. Wu, S. Y. Yang, K. L. Lee, and P. K. Wei, “Novel fabrication of an Au nanocone array on polycarbonate for high performance surface-enhanced Raman scattering” Journal of Micromechanics and Microengineering, Vol. 21 , pp. 035023, (2011).
[37] K. L. Lee, M. L. You, C. L. Tsai, C. Y. Hung, S. Y. Hsieh, and P. K. Wei, “Visualization of biosensors using enhanced surface plasmon resonances in capped silver nanostructures” Analyst, Vol. 141, pp. 974-980, (2016).
[38] J. John, Y. Y. Tang, J. P. Rothstein, J. J. Watkins, and K. R. Carter, “Large-area, continuous roll-to-roll nanoimprinting with PFPE composite molds” Nanotechnology, Vol. 24, pp. 505307, (2013).
[39] J. J. Lee, H. H. Park, K. B. Choi, G. H. Kim, and H. J. Lim, “Fabrication of hybrid structures using UV roll-typed liquid transfer imprint lithography for large areas” Microelectronic Engineering, Vol. 127, pp.72-76, (2014).
[40] J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The Use of Aligned Silver Nanorod Arrays Prepared by Oblique Angle Deposition as Surface Enhanced Raman Scattering Substrates” The Journal of Physical Chemistry C, Vol. 112, pp. 895-901, (2008).
[41] R. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 4, pp. 396-402, (1902).
[42] U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces” Journal of the Optical Society of America, Vol. 31, pp. 213-222, (1941).
[43] 李光立,光波在週期性奈米金屬結構之特性與其在生醫感測之應用,國立臺灣大學光電工程學研究所博士論文,民國97年7月。
[44] R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection” Physical Review B, Vol. 73, pp. 153405, (2006).
[45] A. Moreau, C. Lafarge, N. Laurent, K. Edee, and G. Granet, “Enhanced transmission of slit arrays in an extremely thin metallic film” Journal of Optics A: Pure and Applied Optics, Vol. 9, pp. 165-169, (2007).
[46] Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits” Physical Review Letters, Vol. 88, pp. 057403, (2002).
[47] P. Lalanne, J. C. Rodier, and J. P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays” Journal of Optics A: Pure and Applied Optics, Vol. 7, pp. 422-426, (2005).
[48] J. Homola, “Electromagnetic Theory of Surface Plasmons”, Surface Plasmon Resonance Based Sensors. Vol. 4, Springer-Verlag Berlin Heidelberg, (2006).
[49] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review” Sensors and Actuators B: Chemical, Vol. 54, pp. 3-15, (1999).
[50] R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction” Physical Review Letters, Vol. 21, pp. 1530-1533, (1968).
[51] H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings”, Springer, (1988).
[52] B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing” Sensors and Actuators, Vol.4, pp. 299-304, (1983).
[53] J. Homola, “Present and future of surface plasmon resonance biosensors” Analytical and Bioanalytical Chemistry, Vol. 377, pp. 528-539, (2003).
[54] G. MacBeath and S. L. Schreiber, “Printing proteins as microarrays for high-throughput function determination” Science, Vol. 289, pp. 1760-1763, (2000).
[55] W. P. Hu, S. J. Chen, K. T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K. A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film” Biosensors and Bioelectronics, Vol. 19, pp. 1465-1471, (2004).
[56] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays” Nature, Vol. 391, pp. 667-669, (1998).
[57] A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films” Langmuir, Vol. 20, pp. 4813-4815, (2004).
[58] C. V. Raman and K. S. Krishnan, “A New Type of Secondary Radiation” Nature, Vol. 121, pp. 501-502, (1928).
[59] J. M. Hollas, 'Modern spectroscopy', Fourth Edition, John Wiley & Sons Ltd, Chichester, (2004).
[60] 鄭照賢,利用斜向蒸鍍技術和金奈米狹縫結構整合表面電漿共振及表面增強拉曼散射雙重檢測技術,國立陽明大學生醫光電研究所碩士論文,民國102年7月。
[61] D. L. Jeanmaire and R .P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 84, pp. 1-20, (1977).
[62] M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode” Journal of the American Chemical Society, Vol 99, pp. 5215-5217, (1977).
[63] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS)” Physical Review Letters, Vol. 78, pp. 1667-1670, (1997).
[64] M. J. Wirth, M. D. Ludes, and D. J. Swinton, “Spectroscopic Observation of Adsorption to Active Silanols” Analytical Chemistry, Vol. 71, pp.3911-3917, (1999).
[65] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics” Journal of Physics: Condensed Matter, Vol. 14, pp. R597-R624, (2002).
[66] 賴耿陽,高週波工業應用技術,復漢出版社,台北,民76年。
[67] H. Yang, C. T. Pan, and M. C. Chou, “Ultra-fine machining tool/molds by LIGA technology” Journal of Micromechanics and Microengineering, Vol. 11, pp. 94-99, (2001).
[68] S. C. Shen, C. T. Pan, Y. R. Wang, and C. C. Chang, “Fabrication of integrated nozzle plates for inkjet print head using microinjection process” Sensors and Actuators A: Physical, Vol. 127, pp. 241-247, (2006).
[69] C. T. Pan, J. Shiea, and S. C. Shen, “Fabrication of an integrated piezo-electric micro-nebulizer for biochemical sample analysis” Journal of Micromechanics and Microengineering, Vol. 17, pp. 659-669, (2007).
[70] C. J. Ting, M. C. Huang, H. Y. Tsai, C. P. Chou, and C. C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology” Nanotechnology, Vol. 19, pp. 205301, (2008).
[71] W. H. Weber and S. L. McCarthy, “Surface-plasmon resonance as a sensitive optical probe of metal-film properties” Physical Review B, Vol. 12, pp. 5643-5650, (1975).
[72] K. L. Lee, J. B. Huang, J. W. Chang, S. H. Wu., and Pei-Kuen Wei, “Ultrasensitive Biosensors Using Enhanced Fano Resonances in Capped Gold Nanoslit Arrays” Scientific Reports, Vol. 5, pp.8547, (2015).
[73] T. Yokota, Y. Inoue, Y. Terakawa, J. Reeder, M. Kaltenbrunner, T. Ware, K. Yang, K. Mabuchi, T. Murakawa, M. Sekino, W. Voit, T. Sekitani, and T. Someya, “Ultraflexible, large-area, physiological temperature sensors for multipoint measurements” PNAS, Vol. 112, pp. 14533–14538, (2015).
[74] J. Gersten and A. Nitzan, 'Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces” The Journal of Chemical Physics, Vol. 73, pp. 3023-3037, (1980).
[75] Y. M. Hung, Y. J. Lu, and C.K. Sung, “Microstructure patterning on glass substrate by imprinting process” Microelectronic Engineering, Vol. 86, pp. 577-582, (2009).
[76] T. Han, S. Madden, D. Bulla, and B. L. Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography” Optics Express, Vol. 18, pp. 19286-19291, (2010).
[77] L. K. Chen, Y. M. Hung, and C. K. Sung, “In situ Visualization of Imprinting Process for Patterning Microstructures on Glass Substrate” Japanese Journal of Applied Physics, Vol. 49, pp.06GL14, (2010).
[78] H. Ikeda, H. Kasa, H. Nishiyama, and J. Nishii, “Evaluation of demolding force for glass-imprint process” Journal of Non-Crystalline Solids, Vol. 383, pp. 66-70 (2014).
[79] P. L. Chen, R. H. Hong, and S. Y. Yang, “Hot-rolled embossing of microlens arrays
with antireflective nanostructures on optical glass” Journal of Micromechanics and Microengineering, Vol. 25, pp.095001, (2015).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20406-
dc.description.abstract本研究開發介電質加熱輔助奈米壓印製程,並用之來製造金屬奈米結構的感測器。以介電質加熱敏感聚合物溶液之旋轉塗佈方法,分別將共聚聚酯(PETG)旋塗於環聚碳酸酯(PC)基材上及聚氯乙烯(PVC)旋塗於環烯烴聚合物(COP)及玻璃基材上。置於奈米壓印工作平台,以具有奈米結構的鎳-鈷模作為母模,藉由介電質加熱之快速升溫,在幾秒鐘內即能將基材加熱,並將奈米結構圖案轉印至聚合物之旋塗膜,簡單快速壓印製作出高精度的奈米結構。接著使用直流式真空濺鍍系統將金屬薄膜披覆於轉印的奈米結構,使之成為具金屬奈米結構的感測器,應用表面電漿共振(SPR)及表面增強拉曼散射(SERS)之量測分析,驗證生物感測器及可撓性薄膜感測器的感測能力與功能性。
PETG旋塗膜於PC基材,奈米壓印製作出奈米線、奈米柱及奈米格柵等各種結構圖案。鍍金屬後利用SPR量測,銀膜奈米線結構的半高寬(FWHM)為6.01 nm,其波長靈敏度達550 nm / RIU。測試免標定的檢測透過BSA與Anti-BSA之專一性結合功能,當抗原與抗體產生交互作用,於解析度為0.02 nm的光譜儀,可檢測到的Anti-BSA生物分子濃度約0.795 nM。
PVC旋塗膜於COP及玻璃上,奈米壓印出奈米結構於不同的基材。鍍金屬後利用SPR量測,驗證BSA與Anti-BSA免標定之抗原與抗體相互作用的檢測能力。本研究也開發可撓性薄膜感測器的應用,銀膜奈米線結構於彎曲情況進行SPR量測,其角度靈敏度為0.12 °/ nm,於解析度為0.02 nm的光譜儀,可最小檢測角度約2.4 × 10-3 °。利用SERS量測,將對-硫基苯甲酸(pMBA)修飾於金膜奈米柱結構,於曲面上的奈米柱能有效地增加拉曼熱點的密度,與平面放置相比較,可在彎曲半徑6 mm的曲面提升2倍SERS訊號。本研究證實介電質加熱輔助奈米壓印用於製造高品質之生物感測器及可撓性薄膜感測器的可行性。
zh_TW
dc.description.abstractThis study developed dielectric heating-assisted nanoimprint lithography (NIL) for fabrication of nanostructures for sensors. Two kinds of dielectric heating sensitivity polymer solution were spin-coated onto different substrates, namely, Polyethylene terephthalate glycol-modified (PETG) on polycarbonate (PC) substrate, and polyvinyl chloride (PVC) on cyclic olefin polymer (COP) and glass substrates. Using the nanoimprint process, taking advantage of rapid heating of dielectric materials, the nanostructure on the Ni-Co master mold can be replicated onto substrates in a few seconds. The nanostructure were then coated with metal thin film using DC sputtering system. The characteristics of surface plasmon resonance (SPR) and surface enhanced Raman scattering (SERS) for sensing were evaluated.
For PETG spin-coated film, patterned nanostructures including nanowire, nanorod, and nanogrid arrays were successfully fabricated on PC substrate. For SPR sensing, the silver-capped nanowires achieved a full width at half maximum (FWHM) of 6.01 nm and wavelength sensitivity of 550 nm / RIU. The functionality of the sensor was verified by the specificity of label-free antigen–antibody interactions with BSA and Anti-BSA, the minimum detection biomolecules of Anti-BSA reached 0.795 nM under 0.02 nm wavelength resolution.
For PVC spin-coated film, the imprinted nanowire and nanorod nanostructures on COP and glass substrates were successfully made. The functionality of the label-free antigen–antibody interactions for BSA and Anti-BSA were used to verify the sensing ability under SPR measurement. In addition, taking advantage of the flexibility of PVC, ultraflexible film sensor was developed. Using the silver-capped nanowires in the bending condition to measure SPR, the angular sensitivity was 0.12 degree/nm and the minimum detection angle was 2.4x10-3 degree under 0.02 nm wavelength resolution. In SERS sensing, the curved gold-capped nanorods immobilized by 4-mercaptobenzoic acid (pMBA) can increase the density of Raman hot spot. Under curved radius of 6 mm, enhanced SERS signal was two times of that detected using a planar SERS substrate. This study confirmed the feasibility and potential of biosensors and ultraflexible film sensors fabricated using dielectric heating-assisted nanoimprint.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:47:41Z (GMT). No. of bitstreams: 1
ntu-106-D97522026-1.pdf: 6383295 bytes, checksum: cbd3310d73b7c113ff8e1384ef3068e4 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT IV
目錄 VI
圖目錄 X
表目錄 XV
第一章 緒論 1
1.1 前言 1
1.2 生物檢測技術 1
1.3 微模造成型技術 2
1.4 快速加熱 4
1.5 研究動機 5
1.6 論文架構 5
第二章 文獻回顧 10
2.1 高週波加熱之原理 10
2.2 奈米結構之成型技術 11
2.2.1 壓力傳遞型奈米壓印 11
2.2.2 紫外光固化型奈米壓印 12
2.3 金屬奈米結構之光學性質 14
2.4 表面電漿共振 14
2.4.1 表面電漿共振之原理 15
2.4.2 表面電漿之激發 19
2.4.3 金屬奈米狹縫表面電漿激發與共振模態 20
2.4.4 金屬奈米狹縫之Fano共振訊號模態 23
2.4.5 表面電漿共振應用於生物檢測 24
2.5 拉曼光譜學 25
2.5.1 拉曼散射簡介 25
2.5.2 拉曼散射之原理 26
2.5.3 表面增強拉曼散射之發展 30
2.5.4 表面增強拉曼散射之原理 31
第三章 介電質加熱 51
3.1 介電質常數 51
3.2 介電質之加熱 53
3.3 介電質之特色 55
3.4 高週波介電質加熱 56
3.5 介電質加熱實驗 57
3.5.1 實驗設置 57
3.5.2 實驗步驟 57
3.5.3 實驗結果 58
3.6 本章結論 58
第四章 研究方法與實驗設備 65
4.1 奈米結構母模製程 65
4.1.1 電子束微影技術 65
4.1.2 蝕刻技術 67
4.1.3 奈米結構矽模製程步驟 68
4.1.4 金屬鎳-鈷合金模具 69
4.2 介電質加熱輔助奈米壓印製程 70
4.2.1 奈米壓印設備 70
4.2.2 壓印製程步驟 71
4.3 直流式真空濺鍍系統 72
4.3.1 金屬材料選擇 72
4.3.2 金屬濺鍍厚度 73
4.4 量測儀器 73
4.4.1 穿透光譜量測系統 73
4.4.2 拉曼光譜量測系統 74
4.4.3 場發射式電子顯微鏡 74
4.4.4 原子力顯微鏡 75
第五章 生物感測器之開發與應用 85
5.1 金屬奈米結構之生物感測器 85
5.1.1 生物感測器之製程步驟 85
5.1.2 奈米結構之製程能力 86
5.2 表面電漿共振量測 87
5.2.1 穿透光譜分析 87
5.2.2 最佳製程條件 88
5.2.3 折射率靈敏度 88
5.2.4 生物分子交互作用 89
5.3 本章結論 90
第六章 可撓性薄膜感測器之開發與應用 100
6.1 金屬奈米結構之可撓性薄膜感測器 100
6.1.1 可撓性薄膜感測器之製程步驟 100
6.1.2 可撓性薄膜具奈米結構之製程能力 101
6.2 表面電漿共振量測 102
6.2.1 穿透光譜分析 102
6.2.2 最佳製程條件 103
6.2.3 彎曲靈敏度 104
6.2.4 生物分子交互作用 104
6.3 表面增強拉曼散射量測 105
6.3.1 拉曼標靶與修飾 105
6.3.2 拉曼量測參數設定 106
6.3.3 拉曼光譜分析 107
6.3.4 曲面之拉曼量測 107
6.4 本章結論 108
第七章 結論與未來研究方向 120
7.1 研究成果與結論 120
7.1.1 介電質加熱輔助奈米壓印 120
7.1.2 PETG旋塗膜之生物感測器 121
7.1.3 PVC旋塗膜之可撓性薄膜感測器 122
7.2 未來研究方向 122
參考文獻 126
附錄A 高週波塑膠熔接機S型 136
dc.language.isozh-TW
dc.title介電質加熱輔助奈米壓印於感測器之開發與應用zh_TW
dc.titleDevelopment and Application of Dielectric Heating-assisted Nanoimprint for Sensorsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee沈永康,陳炤彰,劉士榮
dc.subject.keyword介電質加熱,奈米壓印,感測器,表面電漿共振,表面增強拉曼散射,可撓性,zh_TW
dc.subject.keywordDielectric heating,Nanoimprint,Ssensor,Surface plasmon resonance (SPR),Surface enhanced Raman scattering (SERS),Ultraflexible,en
dc.relation.page137
dc.identifier.doi10.6342/NTU201704011
dc.rights.note未授權
dc.date.accepted2017-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
6.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved