Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20385
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 潘思樺 | |
dc.contributor.author | Hui-Chun Chiang | en |
dc.contributor.author | 江蕙君 | zh_TW |
dc.date.accessioned | 2021-06-08T02:47:00Z | - |
dc.date.copyright | 2017-09-12 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-21 | |
dc.identifier.citation | 1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, and Mathers C, e. a. (2012) Cancer incidence and mortality worldwide: IARC. GLOBOCAN
2. Buccheri, G., and Ferrigno, D. (2004) Lung cancer: clinical presentation and specialist referral time. Eur Respir J 24, 898-904 3. Society, A. C. (2015) Cancer Facts & Figures 2015. Atlanta: American Cancer Society 4. Sheth, S. (2010) Current and emerging therapies for patients with advanced non-small-cell lung cancer. Am J Health Syst Pharm 67, S9-14 5. Herbst, R. S., Heymach, J. V., and Lippman, S. M. (2008) Lung cancer. N Engl J Med 359, 1367-1380 6. Travis, W. D., Brambilla, E., and Riely, G. J. (2013) New pathologic classification of lung cancer: relevance for clinical practice and clinical trials. J Clin Oncol 31, 992-1001 7. Collins, L. G., Haines, C., Perkel, R., and Enck, R. E. (2007) Lung cancer: diagnosis and management. Am Fam Physician 75, 56-63 8. Veronesi, G., Bottoni, E., Finocchiaro, G., and Alloisio, M. (2015) When is surgery indicated for small-cell lung cancer? Lung Cancer 90, 582-589 9. Osada, H., and Takahashi, T. (2002) Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer. Oncogene 21, 7421-7434 10. Quinlan, M. P., Quatela, S. E., Philips, M. R., and Settleman, J. (2008) Activated Kras, but not Hras or Nras, may initiate tumors of endodermal origin via stem cell expansion. Mol Cell Biol 28, 2659-2674 11. Sutherland, K. D., Song, J. Y., Kwon, M. C., Proost, N., Zevenhoven, J., and Berns, A. (2014) Multiple cells-of-origin of mutant K-Ras-induced mouse lung adenocarcinoma. Proc Natl Acad Sci U S A 111, 4952-4957 12. Swanton, C., and Govindan, R. (2016) Clinical Implications of Genomic Discoveries in Lung Cancer. N Engl J Med 374, 1864-1873 13. Cheung, W. K., and Nguyen, D. X. (2015) Lineage factors and differentiation states in lung cancer progression. Oncogene 34, 5771-5780 14. Cancer Genome Atlas Research, N. (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519-525 15. Kim, Y., Hammerman, P. S., Kim, J., Yoon, J. A., Lee, Y., Sun, J. M., Wilkerson, M. D., Pedamallu, C. S., Cibulskis, K., Yoo, Y. K., Lawrence, M. S., Stojanov, P., Carter, S. L., McKenna, A., Stewart, C., Sivachenko, A. Y., Oh, I. J., Kim, H. K., Choi, Y. S., Kim, K., Shim, Y. M., Kim, K. S., Song, S. Y., Na, K. J., Choi, Y. L., Hayes, D. N., Kim, J., Cho, S., Kim, Y. C., Ahn, J. S., Ahn, M. J., Getz, G., Meyerson, M., and Park, K. (2014) Integrative and comparative genomic analysis of lung squamous cell carcinomas in East Asian patients. J Clin Oncol 32, 121-128 16. Xu, C., Fillmore, C. M., Koyama, S., Wu, H., Zhao, Y., Chen, Z., Herter-Sprie, G. S., Akbay, E. A., Tchaicha, J. H., Altabef, A., Reibel, J. B., Walton, Z., Ji, H., Watanabe, H., Janne, P. A., Castrillon, D. H., Rustgi, A. K., Bass, A. J., Freeman, G. J., Padera, R. F., Dranoff, G., Hammerman, P. S., Kim, C. F., and Wong, K. K. (2014) Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell 25, 590-604 17. Peifer, M., Fernandez-Cuesta, L., Sos, M. L., George, J., Seidel, D., Kasper, L. H., Plenker, D., Leenders, F., Sun, R., Zander, T., Menon, R., Koker, M., Dahmen, I., Muller, C., Di Cerbo, V., Schildhaus, H. U., Altmuller, J., Baessmann, I., Becker, C., de Wilde, B., Vandesompele, J., Bohm, D., Ansen, S., Gabler, F., Wilkening, I., Heynck, S., Heuckmann, J. M., Lu, X., Carter, S. L., Cibulskis, K., Banerji, S., Getz, G., Park, K. S., Rauh, D., Grutter, C., Fischer, M., Pasqualucci, L., Wright, G., Wainer, Z., Russell, P., Petersen, I., Chen, Y., Stoelben, E., Ludwig, C., Schnabel, P., Hoffmann, H., Muley, T., Brockmann, M., Engel-Riedel, W., Muscarella, L. A., Fazio, V. M., Groen, H., Timens, W., Sietsma, H., Thunnissen, E., Smit, E., Heideman, D. A., Snijders, P. J., Cappuzzo, F., Ligorio, C., Damiani, S., Field, J., Solberg, S., Brustugun, O. T., Lund-Iversen, M., Sanger, J., Clement, J. H., Soltermann, A., Moch, H., Weder, W., Solomon, B., Soria, J. C., Validire, P., Besse, B., Brambilla, E., Brambilla, C., Lantuejoul, S., Lorimier, P., Schneider, P. M., Hallek, M., Pao, W., Meyerson, M., Sage, J., Shendure, J., Schneider, R., Buttner, R., Wolf, J., Nurnberg, P., Perner, S., Heukamp, L. C., Brindle, P. K., Haas, S., and Thomas, R. K. (2012) Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 44, 1104-1110 18. Song, H., Yao, E., Lin, C., Gacayan, R., Chen, M. H., and Chuang, P. T. (2012) Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis. Proc Natl Acad Sci U S A 109, 17531-17536 19. McFadden, D. G., Papagiannakopoulos, T., Taylor-Weiner, A., Stewart, C., Carter, S. L., Cibulskis, K., Bhutkar, A., McKenna, A., Dooley, A., Vernon, A., Sougnez, C., Malstrom, S., Heimann, M., Park, J., Chen, F., Farago, A. F., Dayton, T., Shefler, E., Gabriel, S., Getz, G., and Jacks, T. (2014) Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell 156, 1298-1311 20. George, J., Lim, J. S., Jang, S. J., Cun, Y., Ozretic, L., Kong, G., Leenders, F., Lu, X., Fernandez-Cuesta, L., Bosco, G., Muller, C., Dahmen, I., Jahchan, N. S., Park, K. S., Yang, D., Karnezis, A. N., Vaka, D., Torres, A., Wang, M. S., Korbel, J. O., Menon, R., Chun, S. M., Kim, D., Wilkerson, M., Hayes, N., Engelmann, D., Putzer, B., Bos, M., Michels, S., Vlasic, I., Seidel, D., Pinther, B., Schaub, P., Becker, C., Altmuller, J., Yokota, J., Kohno, T., Iwakawa, R., Tsuta, K., Noguchi, M., Muley, T., Hoffmann, H., Schnabel, P. A., Petersen, I., Chen, Y., Soltermann, A., Tischler, V., Choi, C. M., Kim, Y. H., Massion, P. P., Zou, Y., Jovanovic, D., Kontic, M., Wright, G. M., Russell, P. A., Solomon, B., Koch, I., Lindner, M., Muscarella, L. A., la Torre, A., Field, J. K., Jakopovic, M., Knezevic, J., Castanos-Velez, E., Roz, L., Pastorino, U., Brustugun, O. T., Lund-Iversen, M., Thunnissen, E., Kohler, J., Schuler, M., Botling, J., Sandelin, M., Sanchez-Cespedes, M., Salvesen, H. B., Achter, V., Lang, U., Bogus, M., Schneider, P. M., Zander, T., Ansen, S., Hallek, M., Wolf, J., Vingron, M., Yatabe, Y., Travis, W. D., Nurnberg, P., Reinhardt, C., Perner, S., Heukamp, L., Buttner, R., Haas, S. A., Brambilla, E., Peifer, M., Sage, J., and Thomas, R. K. (2015) Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47-53 21. Iwakawa, R., Kohno, T., Totoki, Y., Shibata, T., Tsuchihara, K., Mimaki, S., Tsuta, K., Narita, Y., Nishikawa, R., Noguchi, M., Harris, C. C., Robles, A. I., Yamaguchi, R., Imoto, S., Miyano, S., Totsuka, H., Yoshida, T., and Yokota, J. (2015) Expression and clinical significance of genes frequently mutated in small cell lung cancers defined by whole exome/RNA sequencing. Carcinogenesis 36, 616-621 22. Nieto, M. A. (2013) Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342, 1234850 23. Wang, S., Li, H., Wang, G., Zhang, T., Fu, B., Ma, M., Quan, Z., and Chen, G. (2016) Yes-associated protein (YAP) expression is involved in epithelial-mesenchymal transition in hepatocellular carcinoma. Clin Transl Oncol 18, 172-177 24. Yao, R., Jiang, H., Ma, Y., Wang, L., Wang, L., Du, J., Hou, P., Gao, Y., Zhao, L., Wang, G., Zhang, Y., Liu, D. X., Huang, B., and Lu, J. (2014) PRMT7 induces epithelial-to-mesenchymal transition and promotes metastasis in breast cancer. Cancer Res 74, 5656-5667 25. Thiery, J. P., Acloque, H., Huang, R. Y., and Nieto, M. A. (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890 26. Kalluri, R., and Weinberg, R. A. (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119, 1420-1428 27. Al Moustafa, A. E., Achkhar, A., and Yasmeen, A. (2012) EGF-receptor signaling and epithelial-mesenchymal transition in human carcinomas. Front Biosci (Schol Ed) 4, 671-684 28. McCormack, N., and O'Dea, S. (2013) Regulation of epithelial to mesenchymal transition by bone morphogenetic proteins. Cell Signal 25, 2856-2862 29. Thiery, J. P. (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2, 442-454 30. Thiery, J. P., and Lim, C. T. (2013) Tumor dissemination: an EMT affair. Cancer Cell 23, 272-273 31. Tsai, J. H., and Yang, J. (2013) Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 27, 2192-2206 32. Chen, X., Zhang, J., Zhang, Z., Li, H., Cheng, W., and Liu, J. (2013) Cancer stem cells, epithelial-mesenchymal transition, and drug resistance in high-grade ovarian serous carcinoma. Hum Pathol 44, 2373-2384 33. Bottoni, P., Isgro, M. A., and Scatena, R. (2016) The epithelial-mesenchymal transition in cancer: a potential critical topic for translational proteomic research. Expert Rev Proteomics 13, 115-133 34. Tan, E. J., Olsson, A. K., and Moustakas, A. (2015) Reprogramming during epithelial to mesenchymal transition under the control of TGFbeta. Cell Adh Migr 9, 233-246 35. Gunasinghe, N. P., Wells, A., Thompson, E. W., and Hugo, H. J. (2012) Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer Metastasis Rev 31, 469-478 36. Yin, X., Zhang, B. H., Zheng, S. S., Gao, D. M., Qiu, S. J., Wu, W. Z., and Ren, Z. G. (2015) Coexpression of gene Oct4 and Nanog initiates stem cell characteristics in hepatocellular carcinoma and promotes epithelial-mesenchymal transition through activation of Stat3/Snail signaling. J Hematol Oncol 8, 23 37. Ubil, E., Duan, J., Pillai, I. C., Rosa-Garrido, M., Wu, Y., Bargiacchi, F., Lu, Y., Stanbouly, S., Huang, J., Rojas, M., Vondriska, T. M., Stefani, E., and Deb, A. (2014) Mesenchymal-endothelial transition contributes to cardiac neovascularization. Nature 514, 585-590 38. Welch-Reardon, K. M., Wu, N., and Hughes, C. C. (2015) A role for partial endothelial-mesenchymal transitions in angiogenesis? Arterioscler Thromb Vasc Biol 35, 303-308 39. Furihata, T., Kawamatsu, S., Ito, R., Saito, K., Suzuki, S., Kishida, S., Saito, Y., Kamiichi, A., and Chiba, K. (2015) Hydrocortisone enhances the barrier properties of HBMEC/cibeta, a brain microvascular endothelial cell line, through mesenchymal-to-endothelial transition-like effects. Fluids Barriers CNS 12, 7 40. Gurzu, S., Ciortea, D., Munteanu, T., Kezdi-Zaharia, I., and Jung, I. (2013) Mesenchymal-to-endothelial transition in Kaposi sarcoma: a histogenetic hypothesis based on a case series and literature review. PLoS One 8, e71530 41. Kulas, P., Willnecker, V., Dlugaiczyk, J., Laschke, M. W., and Schick, B. (2015) Mesenchymal-endothelial transition in juvenile angiofibroma? Acta Otolaryngol 135, 955-961 42. Hillen, F., and Griffioen, A. W. (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26, 489-502 43. Nagy, J. A., Chang, S. H., Shih, S. C., Dvorak, A. M., and Dvorak, H. F. (2010) Heterogeneity of the tumor vasculature. Semin Thromb Hemost 36, 321-331 44. Claesson-Welsh, L. (2016) VEGF receptor signal transduction - A brief update. Vascul Pharmacol 86, 14-17 45. Stalmans, I. (2005) Role of the vascular endothelial growth factor isoforms in retinal angiogenesis and DiGeorge syndrome. Verh K Acad Geneeskd Belg 67, 229-276 46. Nowak, K., Rafat, N., Belle, S., Weiss, C., Hanusch, C., Hohenberger, P., and Beck, G. (2010) Circulating endothelial progenitor cells are increased in human lung cancer and correlate with stage of disease. Eur J Cardiothorac Surg 37, 758-763 47. Lin, Q., Xue, L., Tian, T., Zhang, B., Guo, L., Lin, G., Chen, Z., Fan, K., and Gu, X. (2015) Prognostic value of serum IL-17 and VEGF levels in small cell lung cancer. Int J Biol Markers 30, e359-363 48. Qiao, L., Liang, N., Zhang, J., Xie, J., Liu, F., Xu, D., Yu, X., and Tian, Y. (2015) Advanced research on vasculogenic mimicry in cancer. J Cell Mol Med 19, 315-326 49. Maniotis, A. J., Folberg, R., Hess, A., Seftor, E. A., Gardner, L. M., Pe'er, J., Trent, J. M., Meltzer, P. S., and Hendrix, M. J. (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155, 739-752 50. Cai, X. S., Jia, Y. W., Mei, J., and Tang, R. Y. (2004) Tumor blood vessels formation in osteosarcoma: vasculogenesis mimicry. Chin Med J (Engl) 117, 94-98 51. Sharma, N., Seftor, R. E., Seftor, E. A., Gruman, L. M., Heidger, P. M., Jr., Cohen, M. B., Lubaroff, D. M., and Hendrix, M. J. (2002) Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: role in vasculogenic mimicry. Prostate 50, 189-201 52. Shirakawa, K., Kobayashi, H., Heike, Y., Kawamoto, S., Brechbiel, M. W., Kasumi, F., Iwanaga, T., Konishi, F., Terada, M., and Wakasugi, H. (2002) Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenograft. Cancer Res 62, 560-566 53. Wagenblast, E., Soto, M., Gutierrez-Angel, S., Hartl, C. A., Gable, A. L., Maceli, A. R., Erard, N., Williams, A. M., Kim, S. Y., Dickopf, S., Harrell, J. C., Smith, A. D., Perou, C. M., Wilkinson, J. E., Hannon, G. J., and Knott, S. R. (2015) A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature 520, 358-362 54. Du, J., Sun, B., Zhao, X., Gu, Q., Dong, X., Mo, J., Sun, T., Wang, J., Sun, R., and Liu, Y. (2014) Hypoxia promotes vasculogenic mimicry formation by inducing epithelial-mesenchymal transition in ovarian carcinoma. Gynecol Oncol 133, 575-583 55. El Hallani, S., Boisselier, B., Peglion, F., Rousseau, A., Colin, C., Idbaih, A., Marie, Y., Mokhtari, K., Thomas, J. L., Eichmann, A., Delattre, J. Y., Maniotis, A. J., and Sanson, M. (2010) A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain 133, 973-982 56. Angara, K., Rashid, M. H., Shankar, A., Ara, R., Iskander, A., Borin, T. F., Jain, M., Achyut, B. R., and Arbab, A. S. (2016) Vascular mimicry in glioblastoma following anti-angiogenic and anti-20-HETE therapies. Histol Histopathol, 11856 57. Scully, S., Francescone, R., Faibish, M., Bentley, B., Taylor, S. L., Oh, D., Schapiro, R., Moral, L., Yan, W., and Shao, R. (2012) Transdifferentiation of glioblastoma stem-like cells into mural cells drives vasculogenic mimicry in glioblastomas. J Neurosci 32, 12950-12960 58. Liu, W. B., Xu, G. L., Jia, W. D., Li, J. S., Ma, J. L., Chen, K., Wang, Z. H., Ge, Y. S., Ren, W. H., Yu, J. H., Wang, W., and Wang, X. J. (2011) Prognostic significance and mechanisms of patterned matrix vasculogenic mimicry in hepatocellular carcinoma. Med Oncol 28 Suppl 1, S228-238 59. Jue, C., Zhifeng, W., Zhisheng, Z., Lin, C., Yayun, Q., Feng, J., Hao, G., Shintaro, I., Hisamitsu, T., Shiyu, G., and Yanqing, L. (2016) Vasculogenic mimicry in hepatocellular carcinoma contributes to portal vein invasion. Oncotarget 7, 77987-77997 60. Li, M., Gu, Y., Zhang, Z., Zhang, S., Zhang, D., Saleem, A. F., Zhao, X., and Sun, B. (2010) Vasculogenic mimicry: a new prognostic sign of gastric adenocarcinoma. Pathol Oncol Res 16, 259-266 61. Lv, J., Sun, B., Sun, H., Zhang, Y., Sun, J., Zhao, X., Gu, Q., Dong, X., and Che, N. (2017) Significance of Vasculogenic Mimicry Formation in Gastric Carcinoma. Oncol Res Treat 40, 35-41 62. Wu, S., Yu, L., Cheng, Z., Song, W., Zhou, L., and Tao, Y. (2012) Expression of maspin in non-small cell lung cancer and its relationship to vasculogenic mimicry. J Huazhong Univ Sci Technolog Med Sci 32, 346-352 63. Williamson, S. C., Metcalf, R. L., Trapani, F., Mohan, S., Antonello, J., Abbott, B., Leong, H. S., Chester, C. P., Simms, N., Polanski, R., Nonaka, D., Priest, L., Fusi, A., Carlsson, F., Carlsson, A., Hendrix, M. J., Seftor, R. E., Seftor, E. A., Rothwell, D. G., Hughes, A., Hicks, J., Miller, C., Kuhn, P., Brady, G., Simpson, K. L., Blackhall, F. H., and Dive, C. (2016) Vasculogenic mimicry in small cell lung cancer. Nat Commun 7, 13322 64. Cao, Z., Bao, M., Miele, L., Sarkar, F. H., Wang, Z., and Zhou, Q. (2013) Tumour vasculogenic mimicry is associated with poor prognosis of human cancer patients: a systemic review and meta-analysis. Eur J Cancer 49, 3914-3923 65. Versteeg, H. H. (2004) Tissue factor as an evolutionary conserved cytokine receptor: Implications for inflammation and signal transduction. Semin Hematol 41, 168-172 66. Goldin-Lang, P., Tran, Q. V., Fichtner, I., Eisenreich, A., Antoniak, S., Schulze, K., Coupland, S. E., Poller, W., Schultheiss, H. P., and Rauch, U. (2008) Tissue factor expression pattern in human non-small cell lung cancer tissues indicate increased blood thrombogenicity and tumor metastasis. Oncol Rep 20, 123-128 67. Dupuy, E., Hainaud, P., Villemain, A., Bodevin-Phedre, E., Brouland, J. P., Briand, P., and Tobelem, G. (2003) Tumoral angiogenesis and tissue factor expression during hepatocellular carcinoma progression in a transgenic mouse model. J Hepatol 38, 793-802 68. Ueda, C., Hirohata, Y., Kihara, Y., Nakamura, H., Abe, S., Akahane, K., Okamoto, K., Itoh, H., and Otsuki, M. (2001) Pancreatic cancer complicated by disseminated intravascular coagulation associated with production of tissue factor. J Gastroenterol 36, 848-850 69. Mackman, N. (2004) Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol 24, 1015-1022 70. Zhou, R. F., Liu, Y., Wang, Y. X., Mo, W., and Yu, M. (2011) Coagulation factor III (tissue factor) is required for vascularization in zebrafish embryos. Genet Mol Res 10, 4147-4157 71. Bogdanov, V. Y., Balasubramanian, V., Hathcock, J., Vele, O., Lieb, M., and Nemerson, Y. (2003) Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein. Nat Med 9, 458-462 72. Yu, J. L., and Rak, J. W. (2004) Shedding of tissue factor (TF)-containing microparticles rather than alternatively spliced TF is the main source of TF activity released from human cancer cells. J Thromb Haemost 2, 2065-2067 73. Eisenreich, A., Boltzen, U., Malz, R., Schultheiss, H. P., and Rauch, U. (2011) Overexpression of alternatively spliced tissue factor induces the pro-angiogenic properties of murine cardiomyocytic HL-1 cells. Circ J 75, 1235-1242 74. Boltzen, U., Eisenreich, A., Antoniak, S., Weithaeuser, A., Fechner, H., Poller, W., Schultheiss, H. P., Mackman, N., and Rauch, U. (2012) Alternatively spliced tissue factor and full-length tissue factor protect cardiomyocytes against TNF-alpha-induced apoptosis. J Mol Cell Cardiol 52, 1056-1065 75. Chand, H. S., Ness, S. A., and Kisiel, W. (2006) Identification of a novel human tissue factor splice variant that is upregulated in tumor cells. Int J Cancer 118, 1713-1720 76. Eisenreich, A., Bogdanov, V. Y., Zakrzewicz, A., Pries, A., Antoniak, S., Poller, W., Schultheiss, H. P., and Rauch, U. (2009) Cdc2-like kinases and DNA topoisomerase I regulate alternative splicing of tissue factor in human endothelial cells. Circ Res 104, 589-599 77. Censarek, P., Bobbe, A., Grandoch, M., Schror, K., and Weber, A. A. (2007) Alternatively spliced human tissue factor (asHTF) is not pro-coagulant. Thromb Haemost 97, 11-14 78. Eisenreich, A., Boltzen, U., Poller, W., Schultheiss, H. P., and Rauch, U. (2008) Effects of the Cdc2-like kinase-family and DNA topoisomerase I on the alternative splicing of eNOS in TNF-alpha-stimulated human endothelial cells. Biol Chem 389, 1333-1338 79. Wojtukiewicz, M. Z., Sierko, E., Skalij, P., Kaminska, M., Zimnoch, L., Brekken, R. A., and Thorpe, P. E. (2016) Granulocyte-Colony Stimulating Factor Receptor, Tissue Factor, and VEGF-R Bound VEGF in Human Breast Cancer In Loco. Adv Clin Exp Med 25, 505-511 80. Mast, A. E., Higuchi, D. A., Huang, Z. F., Warshawsky, I., Schwartz, A. L., and Broze, G. J., Jr. (1997) Glypican-3 is a binding protein on the HepG2 cell surface for tissue factor pathway inhibitor. Biochem J 327 ( Pt 2), 577-583 81. Lupu, C., Goodwin, C. A., Westmuckett, A. D., Emeis, J. J., Scully, M. F., Kakkar, V. V., and Lupu, F. (1997) Tissue factor pathway inhibitor in endothelial cells colocalizes with glycolipid microdomains/caveolae. Regulatory mechanism(s) of the anticoagulant properties of the endothelium. Arterioscler Thromb Vasc Biol 17, 2964-2974 82. Sprecher, C. A., Kisiel, W., Mathewes, S., and Foster, D. C. (1994) Molecular cloning, expression, and partial characterization of a second human tissue-factor-pathway inhibitor. Proc Natl Acad Sci U S A 91, 3353-3357 83. Rao, C. N., Reddy, P., Liu, Y., O'Toole, E., Reeder, D., Foster, D. C., Kisiel, W., and Woodley, D. T. (1996) Extracellular matrix-associated serine protease inhibitors (Mr 33,000, 31,000, and 27,000) are single-gene products with differential glycosylation: cDNA cloning of the 33-kDa inhibitor reveals its identity to tissue factor pathway inhibitor-2. Arch Biochem Biophys 335, 82-92 84. Ruf, W., Seftor, E. A., Petrovan, R. J., Weiss, R. M., Gruman, L. M., Margaryan, N. V., Seftor, R. E., Miyagi, Y., and Hendrix, M. J. (2003) Differential role of tissue factor pathway inhibitors 1 and 2 in melanoma vasculogenic mimicry. Cancer Res 63, 5381-5389 85. Izumi, H., Takahashi, C., Oh, J., and Noda, M. (2000) Tissue factor pathway inhibitor-2 suppresses the production of active matrix metalloproteinase-2 and is down-regulated in cells harboring activated ras oncogenes. FEBS Lett 481, 31-36 86. Herman, M. P., Sukhova, G. K., Kisiel, W., Foster, D., Kehry, M. R., Libby, P., and Schonbeck, U. (2001) Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J Clin Invest 107, 1117-1126 87. Neaud, V., Hisaka, T., Monvoisin, A., Bedin, C., Balabaud, C., Foster, D. C., Desmouliere, A., Kisiel, W., and Rosenbaum, J. (2000) Paradoxical pro-invasive effect of the serine proteinase inhibitor tissue factor pathway inhibitor-2 on human hepatocellular carcinoma cells. J Biol Chem 275, 35565-35569 88. Iino, M., Foster, D. C., and Kisiel, W. (1998) Quantification and characterization of human endothelial cell-derived tissue factor pathway inhibitor-2. Arterioscler Thromb Vasc Biol 18, 40-46 89. Kotiyal, S., and Bhattacharya, S. (2015) Epithelial Mesenchymal Transition and Vascular Mimicry in Breast Cancer Stem Cells. Crit Rev Eukaryot Gene Expr 25, 269-280 90. Schmidt, E. F., and Strittmatter, S. M. (2007) The CRMP family of proteins and their role in Sema3A signaling. Adv Exp Med Biol 600, 1-11 91. Minturn, J. E., Fryer, H. J., Geschwind, D. H., and Hockfield, S. (1995) TOAD-64, a gene expressed early in neuronal differentiation in the rat, is related to unc-33, a C. elegans gene involved in axon outgrowth. J Neurosci 15, 6757-6766 92. Hamajima, N., Matsuda, K., Sakata, S., Tamaki, N., Sasaki, M., and Nonaka, M. (1996) A novel gene family defined by human dihydropyrimidinase and three related proteins with differential tissue distribution. Gene 180, 157-163 93. Byk, T., Dobransky, T., Cifuentes-Diaz, C., and Sobel, A. (1996) Identification and molecular characterization of Unc-33-like phosphoprotein (Ulip), a putative mammalian homolog of the axonal guidance-associated unc-33 gene product. J Neurosci 16, 688-701 94. Quinn, C. C., Gray, G. E., and Hockfield, S. (1999) A family of proteins implicated in axon guidance and outgrowth. J Neurobiol 41, 158-164 95. Liu, S. H., Huang, S. F., Hsu, Y. L., Pan, S. H., Chen, Y. J., and Lin, Y. H. (2015) Structure of human collapsin response mediator protein 1: a possible role of its C-terminal tail. Acta Crystallogr F Struct Biol Commun 71, 938-945 96. Leung, T., Ng, Y., Cheong, A., Ng, C. H., Tan, I., Hall, C., and Lim, L. (2002) p80 ROKalpha binding protein is a novel splice variant of CRMP-1 which associates with CRMP-2 and modulates RhoA-induced neuronal morphology. FEBS Lett 532, 445-449 97. Quinn, C. C., Chen, E., Kinjo, T. G., Kelly, G., Bell, A. W., Elliott, R. C., McPherson, P. S., and Hockfield, S. (2003) TUC-4b, a novel TUC family variant, regulates neurite outgrowth and associates with vesicles in the growth cone. J Neurosci 23, 2815-2823 98. Fukada, M., Watakabe, I., Yuasa-Kawada, J., Kawachi, H., Kuroiwa, A., Matsuda, Y., and Noda, M. (2000) Molecular characterization of CRMP5, a novel member of the collapsin response mediator protein family. J Biol Chem 275, 37957-37965 99. Arimura, N., Inagaki, N., Chihara, K., Menager, C., Nakamura, N., Amano, M., Iwamatsu, A., Goshima, Y., and Kaibuchi, K. (2000) Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse. J Biol Chem 275, 23973-23980 100. Shih, J. Y., Yang, S. C., Hong, T. M., Yuan, A., Chen, J. J., Yu, C. J., Chang, Y. L., Lee, Y. C., Peck, K., Wu, C. W., and Yang, P. C. (2001) Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells. J Natl Cancer Inst 93, 1392-1400 101. Shih, J. Y., Lee, Y. C., Yang, S. C., Hong, T. M., Huang, C. Y., and Yang, P. C. (2003) Collapsin response mediator protein-1: a novel invasion-suppressor gene. Clin Exp Metastasis 20, 69-76 102. Watamura, N., Toba, J., Yoshii, A., Nikkuni, M., and Ohshima, T. (2016) Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer's disease model mice: Involvement of Cdk5 phosphorylation and the effect of ATRA treatment. J Neurosci Res 94, 15-26 103. Williamson, R., van Aalten, L., Mann, D. M., Platt, B., Plattner, F., Bedford, L., Mayer, J., Howlett, D., Usardi, A., Sutherland, C., and Cole, A. R. (2011) CRMP2 hyperphosphorylation is characteristic of Alzheimer's disease and not a feature common to other neurodegenerative diseases. J Alzheimers Dis 27, 615-625 104. Knudsen, A., Bredholt, G., Storstein, A., Oltedal, L., Davanger, S., Krossnes, B., Honnorat, J., and Vedeler, C. A. (2007) Antibodies to CRMP3-4 associated with limbic encephalitis and thymoma. Clin Exp Immunol 149, 16-22 105. Tada, S., Furuta, M., Fukada, K., Hirozawa, D., Matsui, M., Aoike, F., Okuno, T., Sawada, J., Mochizuki, H., and Hazama, T. (2016) Severe parkinsonism associated with anti-CRMP5 antibody-positive paraneoplastic neurological syndrome and abnormal signal intensity in the bilateral basal ganglia. J Neurol Neurosurg Psychiatry 87, 907-910 106. Pan, S. H., Chao, Y. C., Chen, H. Y., Hung, P. F., Lin, P. Y., Lin, C. W., Chang, Y. L., Wu, C. T., Lee, Y. C., Yang, S. C., Hong, T. M., and Yang, P. C. (2010) Long form collapsin response mediator protein-1 (LCRMP-1) expression is associated with clinical outcome and lymph node metastasis in non-small cell lung cancer patients. Lung Cancer 67, 93-100 107. Hou, H., Chen, L., Zha, Z., Cai, S., Tan, M., Guo, G., Liu, N., She, G., and Xun, S. (2016) Long form collapsin response mediator protein-1 promotes the migration and invasion of osteosarcoma cells. Oncol Lett 12, 23-28 108. Pan, S. H., Chao, Y. C., Hung, P. F., Chen, H. Y., Yang, S. C., Chang, Y. L., Wu, C. T., Chang, C. C., Wang, W. L., Chan, W. K., Wu, Y. Y., Che, T. F., Wang, L. K., Lin, C. Y., Lee, Y. C., Kuo, M. L., Lee, C. H., Chen, J. J., Hong, T. M., and Yang, P. C. (2011) The ability of LCRMP-1 to promote cancer invasion by enhancing filopodia formation is antagonized by CRMP-1. J Clin Invest 121, 3189-3205 109. Chu, Y. W., Yang, P. C., Yang, S. C., Shyu, Y. C., Hendrix, M. J., Wu, R., and Wu, C. W. (1997) Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 17, 353-360 110. Hong, T. M., Yang, P. C., Peck, K., Chen, J. J., Yang, S. C., Chen, Y. C., and Wu, C. W. (2000) Profiling the downstream genes of tumor suppressor PTEN in lung cancer cells by complementary DNA microarray. Am J Respir Cell Mol Biol 23, 355-363 111. Wu, C., Wei, Q., Utomo, V., Nadesan, P., Whetstone, H., Kandel, R., Wunder, J. S., and Alman, B. A. (2007) Side population cells isolated from mesenchymal neoplasms have tumor initiating potential. Cancer Res 67, 8216-8222 112. Dontu, G., Abdallah, W. M., Foley, J. M., Jackson, K. W., Clarke, M. F., Kawamura, M. J., and Wicha, M. S. (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17, 1253-1270 113. Pastrana, E., Silva-Vargas, V., and Doetsch, F. (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8, 486-498 114. Hadnagy, A., Gaboury, L., Beaulieu, R., and Balicki, D. (2006) SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 312, 3701-3710 115. Ho, M. M., Ng, A. V., Lam, S., and Hung, J. Y. (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67, 4827-4833 116. Chute, J. P., Muramoto, G. G., Whitesides, J., Colvin, M., Safi, R., Chao, N. J., and McDonnell, D. P. (2006) Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci U S A 103, 11707-11712 117. Sladek, N. E. (2003) Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol 17, 7-23 118. van den Hoogen, C., van der Horst, G., Cheung, H., Buijs, J. T., Lippitt, J. M., Guzman-Ramirez, N., Hamdy, F. C., Eaton, C. L., Thalmann, G. N., Cecchini, M. G., Pelger, R. C., and van der Pluijm, G. (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 70, 5163-5173 119. Jiang, F., Qiu, Q., Khanna, A., Todd, N. W., Deepak, J., Xing, L., Wang, H., Liu, Z., Su, Y., Stass, S. A., and Katz, R. L. (2009) Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res 7, 330-338 120. Ginestier, C., Hur, M. H., Charafe-Jauffret, E., Monville, F., Dutcher, J., Brown, M., Jacquemier, J., Viens, P., Kleer, C. G., Liu, S., Schott, A., Hayes, D., Birnbaum, D., Wicha, M. S., and Dontu, G. (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555-567 121. Jelski, W., Laniewska-Dunaj, M., Orywal, K., Kochanowicz, J., Rutkowski, R., and Szmitkowski, M. (2017) The diagnostic value of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) measurement in the sera of patients with brain tumor. Arch Med Sci 13, 346-352 122. Lin, P., Wang, W., Sun, B. C., Cai, W. J., Li, L., Lu, H. H., Han, C. R., and Zhang, J. M. (2012) Vasculogenic mimicry is a key prognostic factor for laryngeal squamous cell carcinoma: a new pattern of blood supply. Chin Med J (Engl) 125, 3445-3449 123. Fan, Y. L., Zheng, M., Tang, Y. L., and Liang, X. H. (2013) A new perspective of vasculogenic mimicry: EMT and cancer stem cells (Review). Oncol Lett 6, 1174-1180 124. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J., and Weinberg, R. A. (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715 125. Hwang-Verslues, W. W., Kuo, W. H., Chang, P. H., Pan, C. C., Wang, H. H., Tsai, S. T., Jeng, Y. M., Shew, J. Y., Kung, J. T., Chen, C. H., Lee, E. Y., Chang, K. J., and Lee, W. H. (2009) Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS One 4, e8377 126. Yao, X. H., Ping, Y. F., and Bian, X. W. (2011) Contribution of cancer stem cells to tumor vasculogenic mimicry. Protein Cell 2, 266-272 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20385 | - |
dc.description.abstract | 腫瘤血管新生對於癌症發展而言是一個重要的步驟,藉由此過程可使腫瘤細胞獲取足夠的養分得以生長並產生轉移;因此,如何有效抑制腫瘤新生血管的產生便成了癌症研究中一項重要的課題。近年來許多的科學家發現,除了藉由血管新生因子誘發癌細胞周邊的血管內皮細胞形成新生血管外,癌細胞本身也會有類血管構造的排列產生,稱之為血管擬態(Vasculogenic Mimicry, VM)。許多的研究指出此種血管擬態的發生可能與上皮-間質細胞轉換 (Epithelial-Mesenchymal Transition, EMT)或是癌症幹性(Cancer Stemness)等過程有所關聯。先前,實驗室發現一種名為Long form Collapsin Response Mediator Protein-1 (LCRMP-1)的CRMP-1蛋白異構型,其表現除了可促進癌細胞的侵襲與轉移之外,也和肺腺癌病患的不良預後有明顯的正相關性。近期,利用免疫組織染色的結果也發現LCRMP-1蛋白質的表現和腫瘤組織中血管密度有高度的正相關性;不僅如此,LCRMP-1穩定表現的細胞株(stable cells),在基質膠 (Matrigel) 上亦可自行排列成類似血管內皮細胞所形成的管狀的構造;這些現象讓我們提出是否癌細胞可藉由LCRMP-1蛋白質的表現引發血管擬態的產生的假說。本研究中,我們除利用細胞實驗檢測LCRMP-1蛋白質的表現是否與VM 的形成有關外,我們也同時運用細胞生物學與分子生物學等體外的研究模式,探討LCRMP-1蛋白質如何參與VM的調控。實驗結果顯示, LCRMP-1可使得人類肺癌細胞株CL1-0在基質膠上排列成管狀的結構,且其與該蛋白質的表現量有明顯的正相關性; 反之,若抑制LCRMP-1蛋白質在CL1-5細胞中的表現,則將獲得相反的結果。體外研究的結果也顯示, LCRMP-1所促進之腫瘤細胞血管擬態的產生可能與細胞類型轉換有關而與癌症幹性較無直接的關聯影響。本實驗雖然只是一個現象的型態研究,但卻提供我們在未來要進一步釐清LCRMP-1如何參與肺癌血管新生擬態機制研究一項重要的脈絡依據。 | zh_TW |
dc.description.abstract | Tumor-neovascularization is a physiological process in cancer progression, which contributes in controlling tumor growth and cancer metastasis. Recently, scientists found that except angiogenesis, cancer cell could form tubule-like structure by itself called vascular mimicry (VM), which is one of the major types of tumor-neovascularization. Until now, the molecular mechanism of VM remains unclear; but some literatures indicated that this phenomenum may relate to the process of epithelial-mesenchymal transition (EMT) and cancer stemness. In the past, we identified that Long Form Collapsin Response Mediator Protein-1 (LCRMP-1), an isoform of CRMP-1, is a metastasis enhancer and its expression was positively correlated with poor clinical outcome in non-small cell lung cancer (NSCLC). Recently, we found that the expressions of LCRMP-1 were positively correlated with the blood vessel density in lung cancer tissues; in addition, LCRMP-1 stable cells could form tube structures on matrigel by theirselves. The above findings let us hypothesize whether LCRMP-1 is involved in tumor vascular mimicry. In this study, we tried to explore the role of LCRMP-1 participated in VM through several cellular and molecular assays. Our data showed that overexpression of LCRMP-1 could let CL1-0 cells form tubular structures on Matrigel with a dose-dependent manner; whereas silencing the expression of LCRMP-1 in CL1-5 had the counter effect. Moreover, we found that the LCRMP-1 induced VM might through regulation of mesenchymal-endothelial like transition but less correlated with cancer stemness. Although this is a phenomenon study, the identification of the potential role of LCRMP-1 in VM may provide hints for further exploring the detail mechanism in the near future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:47:00Z (GMT). No. of bitstreams: 1 ntu-106-R04455004-1.pdf: 30408654 bytes, checksum: f54ab0d5cfef59458d2d9f6598f6648b (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | CONTENTS
中文摘要 I ABSTRACT III LIST OF FIGURES VII LIST OF TABLES VIII ABBREVIATIONS IX Chapter 1 Introduction 1 1.1 Lung cancer 1 1.1.1 Histological classification of lung cancer 1 1.1.2 Genomic alterations 2 1.2 Epithelial-mesenchymal transition (EMT) in cancer 4 1.3 Mesenchymal- endothelial transition (MEndoT) 6 1.4 Tumor neovascularization 6 1.4.1 Tumor angiogenesis 7 1.4.2 Vasculogenic mimicry 8 1.5 CRMP family 10 1.5.1 Long form collapsing response mediator protein-1 (LCRMP-1) 12 Research Motivation 13 Flow Chart of Our Studies 15 Chapter 2 Materials and methods 16 2.1 Cell lines and culture conditions 16 2.2 Plasmid constructs 16 2.3 Primer design 16 2.4 Antibodies 17 2.5 Transfection and stable cells selection 17 2.6 Reverse-transcriptase polymerase chain reaction (RT-PCR) 18 2.7 Quantitative real-time polymerase chain reaction (qPCR) 18 2.8 Side population analysis 19 2.9 ALDH assay 20 2.10 Sphere formation assay 21 2.11 Endothelial differentiation system in lung cancer cells 21 2.12 Immunoblotting analysis 22 2.13 Tube formation assay 23 2.14 Statistical Analysis 23 Chapter 3 Result 24 Part I: LCRMP-1 promotes vasculogenic mimicry in lung cancer via regulation of tissue factor expression 24 3.1.1 LCRMP-1 might promote vasculogenic mimicry 24 3.1.2 LCRMP-1 dose-dependently increases tube formation in lung cancer cells 24 3.1.3 LCRMP-1 affects the expression of mesenchymal and endothelial marker 25 3.1.4 LCRMP-1 regulates the expression of vasculogenic mimicry markers TF in both transcription and translation levels 26 Part II: LCRMP-1 could increase sehphere forming but existed few CSC population 27 3.2.1 The sphere formation capacity of LCRMP-1 overexpressing stable cells 27 3.2.2 LCRMP-1 slightly enhances side population but does not have positive correlation in ALDH activity 28 Chapter 4 Summary 30 Chapter 5 Discussion 31 References 54 | |
dc.language.iso | en | |
dc.title | 肺癌中Long Form CRMP-1在間質-內皮細胞轉換過程中所扮演的角色 | zh_TW |
dc.title | The Role of Long Form CRMP-1 in Mesenchymal- Endothelial Transition: Focus on Lung Cancer | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳佑宗,陳健尉,洪澤民,林頌然 | |
dc.subject.keyword | LCRMP-1,腫瘤血管新生,血管擬態,非小細胞肺癌, | zh_TW |
dc.subject.keyword | LCRMP-1,tumor neovascularization,vascular mimicry,NSCLC, | en |
dc.relation.page | 71 | |
dc.identifier.doi | 10.6342/NTU201704040 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-08-21 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 基因體暨蛋白體醫學研究所 | zh_TW |
Appears in Collections: | 基因體暨蛋白體醫學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-106-1.pdf Restricted Access | 29.7 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.