請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20361
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂學士 | |
dc.contributor.author | Te-Hsuen Tzeng | en |
dc.contributor.author | 曾德軒 | zh_TW |
dc.date.accessioned | 2021-06-08T02:46:17Z | - |
dc.date.copyright | 2018-01-04 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-10-07 | |
dc.identifier.citation | [1] http://www.chem.agilent.com/
[2] Robinson, J. W., Frame, E. S., & Frame II, G. M. Undergraduate instrumental analysis. (6th ed.). New York: Marcel Dekker. pp. 749–791. 2005. [3] P. J, Mazzone, “Exhaled Breath Volatile Organic Compound Biomarkers in Lung Cancer,” Journal of breath research, pp. 1-8, 027106, May. 2012. [4] R. F. Machado, D. Laskowski, O. Deffenderfer, T. Burch, S. Zheng, P. J. Mazzone, et al.,“Detection of lung cancer by sensor array analyses of exhaled breath”, Am. J. Respir. Crit. Care Med., 171, pp. 1286–91, 2006. [5] H. P. Chan, C. Lewis, P. S. Thomas, “Exhaled breath analysis: Novel approach for early detection of lung cancer”, Lung Cancer, 63, pp. 164–168, 2009. [6] D. Lindner, “The mChemLab™ project:micro total analysis system R&D at Sandia National Laboratories”, Lab on a Chip, 1, pp. 15N–19N, 2001. [2.1] Christian C.Enz and Gabor C. Teams, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” proceeding of the IEEE, Nov. 1996. [2.2] Tao Yin, Haigang Yang, Quan Yuan, and Guoping Cui, “Noise analysis and simulation of chopper amplifier,” APCCAS 2006. [2.3] Shun-Tung, Lu, “A low power Analog Front-End for Bio-signal monitoring system application,” Master thesis, Graduate Institute of Electronics Engineering, National Taiwan University. [2.4] Alan V. Oppenheim, Alan S. Willsky with S. Hamid Nawab “Signal and Systems Second Edition”. [2.5] Tony Chan Carusone, David A. Jones and Kenneth W. Martin “Analog Circuit Design Second Edition” John Wiely and Sons Inc. 2011. [2.6] Yun Chiu “High-Performance Pipeline A/D Converter Design in Deep-Submicron CMOS” Fall, 2004. [2.7] Richard Schreier, Gabor C. Temes “Understanding Delta-Sigma Data Converters” John Wiely and Sons Inc, 2005. [2.8] P. Gray, P.J. Hurst, S.H. Lewis and R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th Edition, Wiley, 2001. [2.9] R.J. Widlar, “New Developments in IC Voltage Regulators,” IEEE Journal of Solid-state Circuits, vol. SC-16, pp.2-7, Feb. 1971. [2.10] K.E. Kuijk, “A Precision Voltage Source,” IEEE Journal of Solid-state Circuits, vol. SC-8, pp.222-226, Jun. 1973. [2.11] A.P. Brokaw, “A Simple Three-Terminal IC Bandgap Reference,” IEEE Journal of Solid-state Circuits, vol. SC-9, pp.388-393, Dec. 1974. Sánchez-Sinencio, Edgar, 'Low drop-out (LDO) linear regulators: design considerations and trends for high power-supply rejection (PSR)', Texas A & M University, 2010. [3.1] P. J, Mazzone, “Exhaled Breath Volatile Organic Compound Biomarkers in Lung Cancer,” Journal of breath research, pp. 1-8, 027106, May. 2012. [3.2] R. F. Machado, D. Laskowski, O. Deffenderfer, T. Burch, S. Zheng, P. J. Mazzone, et al.,“Detection of lung cancer by sensor array analyses of exhaled breath”, Am. J. Respir. Crit. Care Med., 171, pp. 1286–91, 2006. [3.3] H. P. Chan, C. Lewis, P. S. Thomas, “Exhaled breath analysis: Novel approach for early detection of lung cancer”, Lung Cancer, 63, pp. 164–168, 2009. [3.4] D. Lindner, “The mChemLab™ project:micro total analysis system R&D at Sandia National Laboratories”, Lab on a Chip, 1, pp. 15N–19N, 2001. [3.5] S. C. Terry, J. H. Jerman, and J. B. Angell, 'A gas chromatographic air analyzer fabricated on a silicon wafer,' IEEE Trans. Electron Devices, vol. 26, pp. 1880-1886, Dec. 1979. [3.6] R. R. Reston and E. S. Kolesar, 'Silicon-micromachined gas chromatography system used to separate and detect ammonia and nitrogen dioxide. I. Design, fabrication, and integration of the gas chromatography system,' Microelectromechanical Systems, Journal of, vol. 3, pp. 134-146, Dec. 1994. [3.7] G. Frye-Mason, R. Kottenstette, C. Mowry, C. Morgan, R. Manginell, P. Lewis, et al., 'Expanding the Capabilities and Applications of Gas Phase Miniature Chemical Analysis Systems (µChemLab™),' Micro Total Analysis Systems 2001, pp. 658-660, May. 2001. [3.8] C.-J. Lu, W. H. Steinecker, W.-C. Tian, M. C. Oborny, J. M. Nichols, M. Agah, et al., 'First-generation hybrid MEMS gas chromatograph,' Lab on a Chip, vol. 5, pp. 1123-1131, Aug. 2005. [3.9] W. R. Collin, G. Serrano, L. K. Wright, H. Chang, N. Nuñovero, and E. T. Zellers, 'Microfabricated Gas Chromatograph for Rapid, Trace-Level Determinations of Gas-Phase Explosive Marker Compounds,' Analytical Chemistry, vol. 86, pp. 655-663, Jan. 2014. [3.10] T.-H. Tzeng, C.-. Kuo, S.-Y. Wang, P.-K. Huang, P.-H. Kuo, Y.-M. Huang, W.-C. Hsieh, S.-A. Yu, Y. J. Tseng, W.-C. Tian, S.-C. Lee and S.-S. Lu, “A Portable Micro Gas Chromatography System for Volatile Compounds Detection with 15ppb of Sensitiviity,” ISSCC Dig. Tech. Papers, pp. 388-389, Feb. 2015. [3.11] S. Reidy, G. Lambertus, J. Reece and R. Sacks, R. “High-performance, static-coated silicon microfabricated columns for gas chromatography,” Analytical chemistry, vol. 78, pp. 2623-2630, 2006. [3.12] M. Agah, G. R. Lambertus, R. Sacks and K. Wise, “High-speed MEMS-based gas chromatography,” journal of microelectromechanical systems, vol. 15, pp. 1371-1378, Oct. 2006. [3.13] M. Navaei, A. Mahdavifar, J. M. D. Dimandja, G. McMurray, and P. J. Hesketh, “All Silicon Micro-GC Column Temperature Programming Using Axial Heating,” Micromachines, vol. 6, pp. 865-878, 2015. [3.14] C. L. Arthur and J. Pawliszyn,” Solid phase microextraction with thermal desorption using fused silica optical fibers,” Anal. Chem., vol. 62, pp. 2145-2148, Oct. 1990. [3.15] M. Y. Wong, W. R. Cheng, M. H. Liu, W. C. Tian and C. J. Lu, “A preconcentrator chip employing μ-SPME array coated with in-situ-synthesized carbon adsorbent film for VOCs analysis,” Talanta, vol. 15, pp. 307-313, Nov. 2012. [3.16] B.-X. Chen, T.-Y. Hung, R.-S. Jian and C.-J. Lu, “A multidimensional micro gas chromatograph employing a parallel separation multi-column chip and stop-flow μGC×μGCs configuration,” Lab on a Chip, vol. 13, pp. 1333-1341, Jan. 2013. [3.17] S. Reidy, G. Lambertus, J. Reece, and R. Sacks, “High-performance, static-coated silicon microfabricated columns for gas chromatography,” Analytical chemistry, vol. 78, pp. 2623-2630, 2006. [3.18] G. Serrano, S. M. Reidy, and E. T. Zellers, “Assessing The Reliability of Wall-Coated Microfabricated Gas Chromatographic Separation Columns,” Sensors and Actuators B: Chemical, vol. 141, pp. 217-226, 2009. [3.19] S. Ali, M. Ashraf-Khorassani, L. T. Taylor, and M. Agah, “MEMS-based Semi-packed Gas Chromatography Columns,” Sensors and Actuators B: Chemical, vol. 141, pp. 309-315, 2009. [3.20] H. Wohltjen and A. W. Snow, “Colloidal metal-insulator-metal ensemble chemiresistor sensor,” Analytical Chemistry, vol. 70, pp. 2856–2859, May 1998. [3.21] C.-L. Li, Y.-F. Chen, M.-H. Liu and C.-J. Lu, ”Utilizing diversified properties of monolayer protected gold nano-clusters to construct a hybrid sensor array for organic vapor detection,” Sensors and Actuators B, vol. 169, pp. 349-359, Jul. 2012. [3.22] H.-P. Chen, C.-M. Cheng, C.-H. Shen and S.-J. Chen, “A Novel CMOS Compatible Gas Sensor with Stack Electrodes,” Sensor Letters, vol. 10, pp. 1125-1130, May 2012. [3.23] C.-Y. Chang, C.-Y. Kuo, P.-K. Huang, W.-C. Tian, and C.-J. Lu, “Volatile Organic Compounds Sensor with Stacked Interdigitated Electrodes Coated with Monolayer-Protected Gold Nanoclusters,” Transducers 2013, pp. 1170-1173, Jun. 2013. [3.24] F. J. Ibanez, U. Gowrishetty, M. M. Crain, K. M. Walsh, and F. P. Zamborini, “Chemiresistive Vapor Sensing with Microscale Films of Gold Monolayer Protected Clusters,” Analytical chemistry, 78(3), pp. 753-761, Feb. 2006. [3.25] W. H. Steinecker, S. K. Kim, F. Bohrer, L. Farina, C. Kurdak, and E. T. Zellers, “Electron-Beam Patterned Monolayer-Protected Gold Nanoparticle Interface Layers on A Chemiresistor Vapor Sensor Array,” IEEE Sensors Journal, pp. 469-480, 2011. [3.26] K.-T. Tang, S.-W. Chiu, M.-F. Chang, C.-C. Hsieh, and J.-M. Shyu, “A Low-Power Electronic Nose Signal-Processing Chip for a Portable Artificial Olfaction System,” IEEE Trans. Biomed. Circuits and systems, vol. 5, pp. 336-343, Aug. 2011. [3.27] K. O’Sullivan, C. Gorman, M. Hennessy, and V. Callaghan, “A 12-bit 320-MSample/s Current-Steering CMOS D/A Converter in 0.44 mm2,” IEEE J. Solid-State Circuits, Vol. 39, pp. 1064-1072, Jul. 2004. [3.28] R. J. Baker “CMOS.Circuit Design, Layout, and Simulation,” Wiley-IEEE Press, 2011, Third Edition. [3.29] Y.-J. Huang, T.-H. Tzeng, T.-W. Lin, C.-W. Huang, P.-W. Yen, P.-H. Kuo, C.-T. Lin, and S.-S. Lu, “A Self-Powered CMOS Reconfigurable Multi-Sensor SoC for Biomedical Applications,” IEEE J. Solid-State Circuits, Vol. 49, pp. 851-866, Apr. 2014. [3.30] E. M. Spinelli, N. Martinez, M. Mayosky, R. Pallas-Areny, “A novel fully differential biopotential amplifier with DC suppression,” IEEE Trans, Biomedical Engineering. Vol. 51, 99. 1444-1448, Jul. 2004. [3.31] J. F. Witte, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS Chopper Offset-Stabilized Opamp,” IEEE J. Solid-State Circuits, Vol. 42, pp. 1529-1535, Jul. 2007 [3.32] R. Hogervorst, J. P. Tero, and J. H Huijsing, “Compact CMOS constantgm rail-to-rail input stage with gm-control by an electronic Zener diode,” IEEE J. Solid-State Circuits, vol. 31, pp. 1035–1040, Jul. 1996 [3.33] R. Hogervorst, J. P. Tero, R. G. H. Eschauzier, and J. H. Huijsing, “A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries,” IEEE J. Solid-State Circuits, vol. 29, pp. 1505–1512, Dec. 1994. [3.34] C.-W. Huang, Y.-J. Huang, P.-W. Yen, H.-T. Hsueh, C.-Y. Lin, M.-C. Chen, C.-H. Ho, F.-L. Yang, H.-H. Tsai, H.-H. Liao, Y.-Z. Juang, C.-K. Wang, C.-T. Lin, and S.-S. Lu, “A Fully Integrated Hepatitis B Virus DNA Detection SoC based on Monolithic Polysilicon Nanowire CMOS Process,” IEEE Symposium on VLSI Circuits, pp. 124-125, Jun. 2012 [3.35] K.-J. d. Langen, and J. H. Huijsing, “Compact Low-Voltage Power-Efficient Operational Amplifier Cells for VLSI,” IEEE J. Solid-State Circuits, vol. 33, pp. 1482–1495, Oct. 1998. [3.36] M.D. Scott, B.E. Boser, and K.S.J. Pister, “An ultralow-energy ADC for Smart Dust,” IEEE J. Solid-State Circuits, vol. 38, pp. 1123-1129, Jul. 2003. [3.37] J. Sauerbrey, D. Schmitt-Landsiedel, and R. Thewes, “A 0.5-V 1-uW Successive Approximation ADC,” IEEE J. Solid-State Circuits, vol. 38, pp. 1261-1265, Jul. 2003. [3.38] Y. K. Chang, C. S. Wang, and C. K. Wang, “A 8-bit 500-KS/s low power SAR ADC for bio-medical applications,” IEEE Asian Solid-State Circuits Conference, pp. 228-231, Nov. 2007. [3.39] Y. S. Yee, L. M. Terman, and L. G. Heller, “A two-stage weighted capacitor network for D/A-A/D conversion,” IEEE J. Solid-State Circuits, vol. 14, pp. 778-781, Aug.1979. [3.40] A. Felinger, “8 Peak detection,” Data Handling in Science and Technology, vol. 21, Elsevier, pp. 183–190, 1998. [3.41] P. Du, W. A. Kibbe, and S. M. Lin, “Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching,” Bioinformatics, vol. 22, no. 17, pp. 2059–65, Sep. 2006. [3.42] K.-C. Wang, S.-Y. Wang, C. Kuo, and Y. J. Tseng, “Distribution-based classification method for baseline correction of metabolomic 1D proton nuclear magnetic resonance spectra,” Analytical chemistry, vol. 85, no. 2, pp. 1231–1239, Jan, 2013. [3.43] J. Greenbergab and R. N. Cataneoa, “Variation in volatile organic compounds in the breath of normal humans,” Journal of Chromatography B, vol. 729, pp. 75-88, Jun. 1999. [3.44] K. Schmidt, and I. Podmore, “Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer,” Journal of Biomarkers, Mar. 2015. [3.45] G. Konvalina, and H. Haick, “Sensors for breath testing: from nanomaterials to comprehensive disease detection,” Accounts of chemical research, 47(1), pp. 66-76, 2013. [3.46] K.-T. Tang, S.-W. Chiu, C.-H. Shih, C.-L. Chang, C.-M. Yang, D.-J. Yao, J.-H. Wang, C.-M. Huang, H. Chen, K.-H. Chang, C.-C. Hsieh, T,-H. Chang, M.-F. Chang, C.-M. Wang, T.-W. Liu, T.-J. Chen C.-H. Yang, H. Chiueh, and J.-M. Shyu, “A 0.5V 1.27mW Nose-on-a-Chip for Rapid Diagnosis of Ventilator-Associated Pneumonia,” ISSCC Dig. Tech. Papers, pp. 420-421, Feb. 2014. [3.47] C. Hagleitner, D. Lange, A. Hierlemann, O. Brand, and H. Baltes, “CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors,” IEEE J. Solid-State Circuits, vol. 37, pp. 1867–1878, 2002. [4.1] K.-T. Tang, S.-W. Chiu, C.-H. Shih, C.-L. Chang, C.-M. Yang, D.-J. Yao, J.-H. Wang, C.-M. Huang, H. Chen, K.-H. Chang, C.-C. Hsieh, T,-H. Chang, M.-F. Chang, C.-M. Wang, T.-W. Liu, T.-J. Chen C.-H. Yang, H. Chiueh, and J.-M. Shyu, “A 0.5V 1.27mW Nose-on-a-Chip for Rapid Diagnosis of Ventilator-Associated Pneumonia,” IEEE International Solid-State Circuit Conference Digest of Technical Papers (ISSCC), pp. 420-421, Feb. 2014. [4.2] T.-H. Tzeng, C.-. Kuo, S.-Y. Wang, P.-K. Huang, P.-H. Kuo, Y.-M. Huang, W.-C. Hsieh, S.-A. Yu, Y. J. Tseng, W.-C. Tian, S.-C. Lee and S.-S. Lu, “A Portable Micro Gas Chromatography System for Lung Cancer Associated Volatile Organic Compound Detection,” IEEE Journal of Solid-State Circuits, Vol. 51, no. 1, pp. 851-866, Jan. 2016. [4.3] M. Grassi, P. Malcovati and A. Baschirotto, “A 160 dB Equivalent Dynamic Range Auto-Scaling Interface for Resistive Gas Sensors Arrays,” IEEE Journal of Solid-State Circuits, Vol. 42, no. 3, pp. 518-528, Feb. 2007. [4.4] Y.-J. Huang, T.-H. Tzeng, T.-W. Lin, C.-W. Huang, P.-W. Yen, P.-H. Kuo, C.-T. Lin, and S.-S. Lu, “A Self-Powered CMOS Reconfigurable Multi-Sensor SoC for Biomedical Applications,” IEEE Journal of Solid-State Circuits, Vol. 49, no.4, pp. 851-866, Apr. 2014. [4.5] Y.-J. Huang, C.-W. Huang, T.-H. Lin, C.-T. Lin, L.-G. Chen, P.-Y. Hsiao, B.-R. Wu, H.-T. Hsueh, B.-J. Kuo, H.-H. Tsai, H.-H. Liao, Y.-Z. Juang, C.-K. Wang and S.-S. Lu, “A CMOS Cantilever-Based Label-Free DNA SoC With Improved Sensitivity for Hepatitis B Virus Detection” IEEE Transactions on Biomedical Circuits and Systems, Vol. 7, no. 6, pp. 820-831, Dec. 2013. [4.6] K. C. Koay and P. K. Chan, “A Low-Power Resistance-to-Frequency Converter Circuit With Wide Frequency Range,” IEEE Tranactions on Instrumentation and Measurement, Vol. 64, no. 12, pp. 3173-3182, Dec. 2015. [4.7] M. Grassi, P. Malcovati and A. Baschirotto, “A 141-dB Dynamic Range CMOS Gas-Sensor Interface Circuit without Calibration With 16-Bit Digital Output Word,” IEEE Journal of Solid-State Circuits, Vol. 42, no. 7, pp. 518-528, Feb. 2007. [4.8] A. Sukumaran and S. Pavan, “Low Power Design Techniques for Single-Bit Audio Continuous-Time Delta Sigma ADCs Using FIR Feedback,” IEEE Journal of Solid-State Circuits, Vol. 49, no. 11, pp. 2515-2525, Nov. 2014. [4.9] S. A. Hammouda, M. S. Tawfik and H. F. Ragaie, “A 1.5 V opamp design with high gain, wide bandwidth and its application in a high Q bandpass filter operating at 10.7 MHz,” 9th International Conference on Electronics, Circuits and Systems, (ICECS), pp. 185-189, Sep. 2002. [4.10] C. Wang, L. Yin, L. Zhang, D. Xiang and R. Gao, “Metal Oxide Gas Sensors: Sensitivity and Influencing Factors,” Sensors, Vol. 10, no. 3, pp. 2088-2106, Jun. 2010. [4.11] P. Malcovati, F. Maloberti, C. Fiocchi, and M. Pruzzi, “Curvature-compensated BiCMOS bandgap with 1-V supply voltage,” IEEE Journal of Solid-State Circuits, vol. 36, no. 7, pp. 1076–1081, Jul. 2001. [4.12] Y. Tsividis, “Accurate analyzes of temperature effects in I –V characteristics with application to bandgap reference sources,” IEEE Journal of Solid-State Circuits, vol. 15, no. 6, pp. 1076–1084, Dec. 1980. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20361 | - |
dc.description.abstract | 近年來由於環境安全的議題廣泛地受到社會大眾的重視,投入氣體檢測系統研發的量能大幅成長,同時,因應健康照護的需求,呼吸氣體檢測技術也逐漸受到重視。在另一方面,如系統應用的實踐上,為了實現Point-of-Care Testing (POCT)的願景,現有的氣體感測系統即需要進一步的改進。有鑒於此,本論文設計了一組針對肺癌相關揮發性有機氣體檢測的可攜式微氣相層析系統,該系統尺寸為16cm*11cm*11cm,整合了MEMS前濃縮管、MEMS分離管柱、CMOS氣體感測器和讀取電路,後端並搭配完整的訊號處理與分析。其中,晶片介面電路的部分使用台積電 0.35 μm 製程技術來實現。為了克服感測器製程變異造成的初始電阻值偏差,設計了一組1M~10MΩ的校正轉換電路,之後再透過具備Chopper架構的低雜訊放大器以及10-bit SAR ADC將訊號轉換成數位。該系統可以偵測七種肺癌相關的揮發性有機氣體(acetone, 2-butanone, benzene, heptane, toluene, m-xylene, 1,3,5-trimethylbenzene),且具備良好的濃度線性度R2 = 0.985。其中針對1,3,5-trimethylbenzene的揮發氣體濃度感測極限可達15ppb。
此外,因應氣體檢測的需求,本論文也提出了新穎的電阻-數位轉換電路,該電路由聯華電子的0.18um CMOS製程技術實現。藉由整合電阻感測器與一階一位元的連續時間三角積分器電路,大幅簡化了讀取電路的複雜度。該電路系統是用的電阻範圍為2.5MΩ 到 1GΩ,其不準確度只有 0.03%。在1.024MHz的系統時脈以及500Hz的頻寬操作下其SNDR可達82.57dB。此外為了克服氣體系統因為升降溫過程帶來的訊號干擾,搭配了一組在溫度範圍25˚C~75˚C變化3.9ppm/˚C的指數曲線補償能帶參考電路。 本研究完成高精準度的電路與微小化的系統將可為次世代氣體檢測系統提出一完整的系統架構,有助於相關應用的實現。 | zh_TW |
dc.description.abstract | Due to the highly valued issues on environmental safety by the public, research of gas-sensing systems have become increasingly prevalent in recent years. In addition to monitoring environmental air quality, there is emerging aid of using gas-sensing systems for medical diagnose. In order to realize Point-of-Care Testing (POCT), it is necessary to develop a gas detection system with smaller size and more user friendly. In this dissertation, a portable micro gas chromatography (µGC) system for lung cancer associated volatile organic compounds (VOCs) detection is realized. This system is composed of an MEMS preconcentrator, an MEMS separation column, a CMOS gas detector, a readout circuit and a completely off-chip signal process with a dimension of 16cm*11cm*11cm. The chip is fabricated by a TSMC 0.35 µm 2P4M process including a 1M~10MΩ sensor calibration circuit, low-noise chopper instrumentation amplifier (IA), 10 bit analog to digital converter. Experimental results show that the system is able to detect seven types of lung cancer associated VOCs (acetone, 2-butanone, benzene, heptane, toluene, m-xylene, 1,3,5-trimethylbenzene). The concentration linearity is R2 = 0.985 and the detection sensitivity is up to 15 ppb with 1,3,5-trimethylbenzene.
In addition, this dissertation also proposed a resistance-to-digital sensor readout integrator circuit for gas detection system fabricated in a 0.18um CMOS technology. By placing a resistive type sensor with a 1st-order 1-bit continuous-time delta sigma modulator (CTDSM), the proposed architecture simplifies the conventional resistive readout circuits and achieves a wide input range from 2.5MΩ to 1GΩ with an inaccuracy of 0.03%. It operates at 1.024MHz and achieves a peak SNDR of 82.57dB with a 500Hz bandwidth. An exponential curvature-compensated bandgap reference with 3.9ppm/˚C between temperature range 25˚C~75˚C is used to mitigate the errors caused by heating processes needed in the gas detection systems. The highly precise circuit and smaller system realized in this research will provide a more complete structure of gas detection system for the next generation, which can benefit the related application in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:46:17Z (GMT). No. of bitstreams: 1 ntu-106-D00943042-1.pdf: 8316486 bytes, checksum: 105f8fcc970b80bc9fa2ba1ff2767c2b (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xv Chapter 1 Introduction 1 1.1 Introduction to gas detection systems 1 1.2 CMOS ICs for gas detection applications 5 1.3 Organization of This Dissertation 5 1.4 Reference 6 Chapter 2 The Fundamentals of SoCs for a Gas Detection System 8 2.1 Architecture of CMOS SoCs for a GC System 8 2.2 Readout Circuits 9 2.2.1 Noise Cancellation Techniques: Chopping Technique 10 2.2.2 Noise Cancellation Techniques: Auto-Zero Technique 13 2.3 Analog-to-Digital Converter (ADC) 16 2.3.1 Nyquist rate ADCs 17 2.3.2 Oversampling ADCs 19 2.4 Voltage Reference and Power Supply 25 2.4.1 Bandgap Reference 26 2.4.2 Linear Regulator 28 2.5 Reference 29 Chapter 3 A Portable Micro Gas Chromatography System 31 3.1 Introduction 31 3.2 Architecture of Micro Gas Chromatography System 33 3.2.1 Mechanism of μGC 33 3.2.2 Operation Flow and System Architecture 36 3.3 Integrated MEMS Devices and CMOS dector 41 3.3.1 Microfabricated preconcentrator (PCT) 41 3.3.2 Microfabricated separation column (SC) 43 3.3.3 CMOS Chemiresistor gas detector 45 3.4 Circuit design and implementation 46 3.4.1 Calibration and Adaption Circuit 47 3.4.2 Low-noise differential difference amplifier (DDA)-based Analog Front-end (AFE) 52 3.4.3 10-bit Successive-Approximation Register (SAR) Analog-to-Digital Converter (ADC) 54 3.5 Signal Process 56 3.6 Experimental Results 59 3.6.1 Measurements of MEMS Devices and CMOS Detector 60 3.6.2 Functional Measurements of Circuits 63 3.6.3 System Measurement Results 68 3.7 Conclusion 75 3.8 Reference 75 Chapter 4 A 13-bit Resistance-to-Digital Readout Circuit 84 4.1 Introduction 84 4.2 System Architecture 87 4.3 Circuit Design and Implementation 88 4.3.1 Continuous-Time Delta Sigma Modulator 88 4.3.2 Operational Amplifier 90 4.3.3 Bandgap Reference 92 4.4 Measurement Results 96 4.5 Conclusion 102 4.6 Reference 103 Chapter 5 Conclusion 106 | |
dc.language.iso | en | |
dc.title | 應用於可攜式氣體感測系統之CMOS混和訊號晶片設計與實現 | zh_TW |
dc.title | Design and Implementation of CMOS Mixed-signal SoC for Portable Gas Detection System | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林致廷,林宗賢,楊燿州,邱弘緯,陳筱青 | |
dc.subject.keyword | 氣相層析系統,校正電路,氣體感測器,電阻讀取電路,三角積分器, | zh_TW |
dc.subject.keyword | Gas chromatography,Calibration circuit,Delta sigma modulator,Gas detection,Resistor type readout circuit, | en |
dc.relation.page | 107 | |
dc.identifier.doi | 10.6342/NTU201704215 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-10-07 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 8.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。