請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20353完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘建源 | |
| dc.contributor.author | Chih-Hung Chi | en |
| dc.contributor.author | 紀志弘 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:46:02Z | - |
| dc.date.copyright | 2018-01-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-10-17 | |
| dc.identifier.citation | Abele, K., and Yang, J. (2012). Regulation of voltage-gated calcium channels by proteolysis. Sheng Li Xue Bao 64, 504-514.
Alseikhan, B.A., DeMaria, C.D., Colecraft, H.M., and Yue, D.T. (2002). Engineered calmodulins reveal the unexpected eminence of Ca2+ channel inactivation in controlling heart excitation. Proceedings of the National Academy of Sciences of the United States of America 99, 17185-17190. Ariel, P., Hoppa, M.B., and Ryan, T.A. (2012). Intrinsic variability in Pv, RRP size, Ca2+ channel repertoire, and presynaptic potentiation in individual synaptic boutons. Front Synaptic Neurosci 4, 9. Babu, Y.S., Bugg, C.E., and Cook, W.J. (1988). Structure of calmodulin refined at 2.2 A resolution. J Mol Biol 204, 191-204. Bangaru, M.L., Meng, J., Kaiser, D.J., Yu, H., Fischer, G., Hogan, Q.H., and Hudmon, A. (2015). Differential expression of CaMKII isoforms and overall kinase activity in rat dorsal root ganglia after injury. Neuroscience 300, 116-127. Barbato, G., Ikura, M., Kay, L.E., Pastor, R.W., and Bax, A. (1992). Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 31, 5269-5278. Barclay, J., Balaguero, N., Mione, M., Ackerman, S.L., Letts, V.A., Brodbeck, J., Canti, C., Meir, A., Page, K.M., Kusumi, K., et al. (2001). Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 21, 6095-6104. Barrett, C.F., and Rittenhouse, A.R. (2000). Modulation of N-type calcium channel activity by G-proteins and protein kinase C. The Journal of general physiology 115, 277-286. Bazzazi, H., Ben Johny, M., Adams, P.J., Soong, T.W., and Yue, D.T. (2013). Continuously tunable Ca2+ regulation of RNA-edited CaV1.3 channels. Cell reports 5, 367-377. Bean, B.P. (2007). Neurophysiology: stressful pacemaking. Nature 447, 1059-1060. Ben-Johny, M., Dick, I.E., Sang, L., Limpitikul, W.B., Kang, P.W., Niu, J., Banerjee, R., Yang, W., Babich, J.S., Issa, J.B., et al. (2015). Towards a Unified Theory of Calmodulin Regulation (Calmodulation) of Voltage-Gated Calcium and Sodium Channels. Current molecular pharmacology 8, 188-205. Ben-Johny, M., and Yue, D.T. (2014). Calmodulin regulation (calmodulation) of voltage-gated calcium channels. The Journal of general physiology 143, 679-692. Berridge, M.J. (2014). Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia. Cell Tissue Res 357, 477-492. Bichet, P., Mollat, P., Capdevila, C., and Sarubbi, E. (2000). Endogenous glutathione-binding proteins of insect cell lines: characterization and removal from glutathione S-transferase (GST) fusion proteins. Protein expression and purification 19, 197-201. Borner, G.H., Rana, A.A., Forster, R., Harbour, M., Smith, J.C., and Robinson, M.S. (2007). CVAK104 is a novel regulator of clathrin-mediated SNARE sorting. Traffic 8, 893-903. Brehm, P., and Eckert, R. (1978). Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202, 1203-1206. Brice, E., and Durward, H. (1997). Multidisciplinary records: a step in the right direction? Paediatr Nurs 9, 26-27. Brodbeck, J., Davies, A., Courtney, J.M., Meir, A., Balaguero, N., Canti, C., Moss, F.J., Page, K.M., Pratt, W.S., Hunt, S.P., et al. (2002). The ducky mutation in Cacna2d2 results in altered Purkinje cell morphology and is associated with the expression of a truncated alpha 2 delta-2 protein with abnormal function. The Journal of biological chemistry 277, 7684-7693. Budde, T., Meuth, S., and Pape, H.-C. (2002). Calcium-dependent inactivation of neuronal calcium channels. Nature Reviews Neuroscience 3, 873-883. Burman, J.L., Bourbonniere, L., Philie, J., Stroh, T., Dejgaard, S.Y., Presley, J.F., and McPherson, P.S. (2008). Scyl1, mutated in a recessive form of spinocerebellar neurodegeneration, regulates COPI-mediated retrograde traffic. The Journal of biological chemistry 283, 22774-22786. Burman, J.L., Hamlin, J.N., and McPherson, P.S. (2010). Scyl1 regulates Golgi morphology. PloS one 5, e9537. Canti, C., Nieto-Rostro, M., Foucault, I., Heblich, F., Wratten, J., Richards, M.W., Hendrich, J., Douglas, L., Page, K.M., Davies, A., et al. (2005). The metal-ion-dependent adhesion site in the Von Willebrand factor-A domain of alpha2delta subunits is key to trafficking voltage-gated Ca2+ channels. Proceedings of the National Academy of Sciences of the United States of America 102, 11230-11235. Carafoli, E., Santella, L., Branca, D., and Brini, M. (2001). Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol 36, 107-260. Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibata, K., Itoh, M., Konno, H., Okazaki, Y., Muramatsu, M., and Hayashizaki, Y. (2000). Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes. Genome research 10, 1617-1630. Chang, F.C., and Hosey, M.M. (1988). Dihydropyridine and phenylalkylamine receptors associated with cardiac and skeletal muscle calcium channels are structurally different. The Journal of biological chemistry 263, 18929-18937. Chaudhuri, D., Alseikhan, B.A., Chang, S.Y., Soong, T.W., and Yue, D.T. (2005). Developmental activation of calmodulin-dependent facilitation of cerebellar P-type Ca2+ current. The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 8282-8294. Chaudhuri, D., Issa, J.B., and Yue, D.T. (2007). Elementary mechanisms producing facilitation of CaV2.1 (P/Q-type) channels. The Journal of general physiology 129, 385-401. Chen-Plotkin, A.S., Lee, V.M., and Trojanowski, J.Q. (2010). TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6, 211-220. Chen, M.L., Chen, Y.C., Peng, I.W., Kang, R.L., Wu, M.P., Cheng, P.W., Shih, P.Y., Lu, L.L., Yang, C.C., and Pan, C.Y. (2008). Ca2+ binding protein-1 inhibits Ca2+ currents and exocytosis in bovine chromaffin cells. J Biomed Sci 15, 169-181. Cheung, W.Y. (1970). Cyclic 3',5'-nucleotide phosphodiesterase. Demonstration of an activator. Biochemical and biophysical research communications 38, 533-538. Conner, S.D., and Schmid, S.L. (2005). CVAK104 is a novel poly-L-lysine-stimulated kinase that targets the beta2-subunit of AP2. The Journal of biological chemistry 280, 21539-21544. Coppola, T., Waldmann, R., Borsotto, M., Heurteaux, C., Romey, G., Mattei, M.G., and Lazdunski, M. (1994). Molecular cloning of a murine N-type calcium channel alpha 1 subunit. Evidence for isoforms, brain distribution, and chromosomal localization. FEBS letters 338, 1-5. Crotti, L., Johnson, C.N., Graf, E., De Ferrari, G.M., Cuneo, B.F., Ovadia, M., Papagiannis, J., Feldkamp, M.D., Rathi, S.G., Kunic, J.D., et al. (2013). Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation 127, 1009-1017. Dash, P.K., Moore, A.N., Kobori, N., and Runyan, J.D. (2007). Molecular activity underlying working memory. Learn Mem 14, 554-563. Davies, A., Douglas, L., Hendrich, J., Wratten, J., Tran Van Minh, A., Foucault, I., Koch, D., Pratt, W.S., Saibil, H.R., and Dolphin, A.C. (2006). The calcium channel alpha2delta-2 subunit partitions with CaV2.1 into lipid rafts in cerebellum: implications for localization and function. The Journal of neuroscience : the official journal of the Society for Neuroscience 26, 8748-8757. De Crescenzo, V., ZhuGe, R., Velazquez-Marrero, C., Lifshitz, L.M., Custer, E., Carmichael, J., Lai, F.A., Tuft, R.A., Fogarty, K.E., Lemos, J.R., et al. (2004). Ca2+ syntillas, miniature Ca2+ release events in terminals of hypothalamic neurons, are increased in frequency by depolarization in the absence of Ca2+ influx. The Journal of neuroscience : the official journal of the Society for Neuroscience 24, 1226-1235. Delcour, A.H., Lipscombe, D., and Tsien, R.W. (1993). Multiple modes of N-type calcium channel activity distinguished by differences in gating kinetics. The Journal of neuroscience : the official journal of the Society for Neuroscience 13, 181-194. DeMaria, C.D., Soong, T.W., Alseikhan, B.A., Alvania, R.S., and Yue, D.T. (2001). Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411, 484-489. Dick, I.E., Limpitikul, W.B., Niu, J., Banerjee, R., Issa, J.B., Ben-Johny, M., Adams, P.J., Kang, P.W., Lee, S.R., Sang, L., et al. (2016). A rendezvous with the queen of ion channels: Three decades of ion channel research by David T Yue and his Calcium Signals Laboratory. Channels 10, 20-32. Dick, I.E., Tadross, M.R., Liang, H., Tay, L.H., Yang, W., and Yue, D.T. (2008). A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels. Nature 451, 830-834. Dubel, S.J., Starr, T.V., Hell, J., Ahlijanian, M.K., Enyeart, J.J., Catterall, W.A., and Snutch, T.P. (1992). Molecular cloning of the alpha-1 subunit of an omega-conotoxin-sensitive calcium channel. Proc Natl Acad Sci U S A 89, 5058-5062. Duguid, I.C., and Smart, T.G. (2004). Retrograde activation of presynaptic NMDA receptors enhances GABA release at cerebellar interneuron-Purkinje cell synapses. Nature neuroscience 7, 525-533. Dunlap, K. (2007). Calcium channels are models of self-control. The Journal of general physiology 129, 379-383. Dunlap, K., Luebke, J.I., and Turner, T.J. (1995). Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci 18, 89-98. Duwel, M., and Ungewickell, E.J. (2006). Clathrin-dependent association of CVAK104 with endosomes and the trans-Golgi network. Molecular biology of the cell 17, 4513-4525. Eckert, R., and Chad, J.E. (1984). Inactivation of Ca channels. Progress in biophysics and molecular biology 44, 215-267. Eckert, R., and Tillotson, D.L. (1981). Calcium-mediated inactivation of the calcium conductance in caesium-loaded giant neurones of Aplysia californica. The Journal of physiology 314, 265-280. Erickson, M.G., Alseikhan, B.A., Peterson, B.Z., and Yue, D.T. (2001). Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells. Neuron 31, 973-985. Erickson, M.G., Liang, H., Mori, M.X., and Yue, D.T. (2003). FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation. Neuron 39, 97-107. Fallon, J.L., Baker, M.R., Xiong, L., Loy, R.E., Yang, G., Dirksen, R.T., Hamilton, S.L., and Quiocho, F.A. (2009). Crystal structure of dimeric cardiac L-type calcium channel regulatory domains bridged by Ca2+ calmodulins. Proc Natl Acad Sci U S A 106, 5135-5140. Fallon, J.L., Halling, D.B., Hamilton, S.L., and Quiocho, F.A. (2005). Structure of calmodulin bound to the hydrophobic IQ domain of the cardiac CaV1.2 calcium channel. Structure 13, 1881-1886. Fang, K., and Colecraft, H.M. (2011). Mechanism of auxiliary beta-subunit-mediated membrane targeting of L-type (CaV1.2) channels. The Journal of physiology 589, 4437-4455. Felix, R., Gurnett, C.A., De Waard, M., and Campbell, K.P. (1997). Dissection of functional domains of the voltage-dependent Ca2+ channel alpha2delta subunit. The Journal of neuroscience : the official journal of the Society for Neuroscience 17, 6884-6891. Felix, R., and Weiss, N. (2017). Ubiquitination and proteasome-mediated degradation of voltage-gated Ca2+ channels and potential pathophysiological implications. Gen Physiol Biophys 36, 1-5. Few, A.P., Nanou, E., Watari, H., Sullivan, J.M., Scheuer, T., and Catterall, W.A. (2012). Asynchronous Ca2+ current conducted by voltage-gated Ca2+ CaV2.1 and CaV2.2 channels and its implications for asynchronous neurotransmitter release. Proc Natl Acad Sci U S A 109, E452-460. Fujita, Y., Mynlieff, M., Dirksen, R.T., Kim, M.S., Niidome, T., Nakai, J., Friedrich, T., Iwabe, N., Miyata, T., Furuichi, T., et al. (1993). Primary structure and functional expression of the omega-conotoxin-sensitive N-type calcium channel from rabbit brain. Neuron 10, 585-598. Gao, B., Sekido, Y., Maximov, A., Saad, M., Forgacs, E., Latif, F., Wei, M.H., Lerman, M., Lee, J.H., Perez-Reyes, E., et al. (2000). Functional properties of a new voltage-dependent calcium channel alpha(2)delta auxiliary subunit gene (CACNA2D2). The Journal of biological chemistry 275, 12237-12242. Gingras, S., Earls, L.R., Howell, S., Smeyne, R.J., Zakharenko, S.S., and Pelletier, S. (2015). SCYL2 Protects CA3 Pyramidal Neurons from Excitotoxicity during Functional Maturation of the Mouse Hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience 35, 10510-10522. Greenlee, D.V., Andreasen, T.J., and Storm, D.R. (1982). Calcium-independent stimulation of Bordetella pertussis adenylate cyclase by calmodulin. Biochemistry 21, 2759-2764. Haeseleer, F., Imanishi, Y., Maeda, T., Possin, D.E., Maeda, A., Lee, A., Rieke, F., and Palczewski, K. (2004). Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nature neuroscience 7, 1079-1087. Haeseleer, F., Sokal, I., Verlinde, C.L., Erdjument-Bromage, H., Tempst, P., Pronin, A.N., Benovic, J.L., Fariss, R.N., and Palczewski, K. (2000). Five members of a novel Ca2+-binding protein (CABP) subfamily with similarity to calmodulin. J Biol Chem 275, 1247-1260. Halling, D.B., Aracena-Parks, P., and Hamilton, S.L. (2006). Regulation of voltage-gated Ca2+ channels by calmodulin. Science's STKE : signal transduction knowledge environment 2006, er1. Haynes, L.P., Tepikin, A.V., and Burgoyne, R.D. (2004). Calcium-binding protein 1 is an inhibitor of agonist-evoked, inositol 1,4,5-trisphosphate-mediated calcium signaling. J Biol Chem 279, 547-555. Heidorn, D.B., and Trewhella, J. (1988). Comparison of the crystal and solution structures of calmodulin and troponin C. Biochemistry 27, 909-915. Hell, J.W., Westenbroek, R.E., Breeze, L.J., Wang, K.K., Chavkin, C., and Catterall, W.A. (1996). N-methyl-D-aspartate receptor-induced proteolytic conversion of postsynaptic class C L-type calcium channels in hippocampal neurons. Proc Natl Acad Sci U S A 93, 3362-3367. Hoeflich, K.P., and Ikura, M. (2002). Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108, 739-742. Hultschig, C., Hecht, H.J., and Frank, R. (2004). Systematic delineation of a calmodulin peptide interaction. J Mol Biol 343, 559-568. Ikura, M., Kay, L.E., Krinks, M., and Bax, A. (1991). Triple-resonance multidimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: indication of a conformational change in the central helix. Biochemistry 30, 5498-5504. Jiang, X., Lautermilch, N.J., Watari, H., Westenbroek, R.E., Scheuer, T., and Catterall, W.A. (2008). Modulation of CaV2.1 channels by Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America 105, 341-346. Johny, M.B., Yang, P.S., Bazzazi, H., and Yue, D.T. (2013). Dynamic switching of calmodulin interactions underlies Ca2+ regulation of CaV1.3 channels. Nat Commun 4, 1717. Kasri, N.N., Holmes, A.M., Bultynck, G., Parys, J.B., Bootman, M.D., Rietdorf, K., Missiaen, L., McDonald, F., De Smedt, H., Conway, S.J., et al. (2004). Regulation of InsP3 receptor activity by neuronal Ca2+-binding proteins. EMBO J 23, 312-321. Kass, R.S., and Sanguinetti, M.C. (1984). Inactivation of calcium channel current in the calf cardiac Purkinje fiber. Evidence for voltage- and calcium-mediated mechanisms. The Journal of general physiology 84, 705-726. Kato, M., Yano, K., Morotomi-Yano, K., Saito, H., and Miki, Y. (2002). Identification and characterization of the human protein kinase-like gene NTKL: mitosis-specific centrosomal localization of an alternatively spliced isoform. Genomics 79, 760-767. Kim, E.Y., Rumpf, C.H., Fujiwara, Y., Cooley, E.S., Van Petegem, F., and Minor, D.L., Jr. (2008). Structures of CaV2 Ca2+/CaM-IQ domain complexes reveal binding modes that underlie calcium-dependent inactivation and facilitation. Structure 16, 1455-1467. Kim, E.Y., Rumpf, C.H., Van Petegem, F., Arant, R.J., Findeisen, F., Cooley, E.S., Isacoff, E.Y., and Minor, D.L., Jr. (2010). Multiple C-terminal tail Ca2+/CaMs regulate CaV1.2 function but do not mediate channel dimerization. EMBO J 29, 3924-3938. Kink, J.A., Maley, M.E., Preston, R.R., Ling, K.Y., Wallen-Friedman, M.A., Saimi, Y., and Kung, C. (1990). Mutations in paramecium calmodulin indicate functional differences between the C-terminal and N-terminal lobes in vivo. Cell 62, 165-174. Klee, C.B., and Vanaman, T.C. (1982). Calmodulin. Adv Protein Chem 35, 213-321. Kuboniwa, H., Tjandra, N., Grzesiek, S., Ren, H., Klee, C.B., and Bax, A. (1995). Solution structure of calcium-free calmodulin. Nat Struct Biol 2, 768-776. Lauri, S.E., Bortolotto, Z.A., Nistico, R., Bleakman, D., Ornstein, P.L., Lodge, D., Isaac, J.T., and Collingridge, G.L. (2003). A role for Ca2+ stores in kainate receptor-dependent synaptic facilitation and LTP at mossy fiber synapses in the hippocampus. Neuron 39, 327-341. Lazniewska, J., and Weiss, N. (2014). The 'sweet' side of ion channels. Reviews of physiology, biochemistry and pharmacology 167, 67-114. Lee, A., Scheuer, T., and Catterall, W.A. (2000). Ca2+/calmodulin-dependent facilitation and inactivation of P/Q-type Ca2+ channels. The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 6830-6838. Lee, A., Westenbroek, R.E., Haeseleer, F., Palczewski, K., Scheuer, T., and Catterall, W.A. (2002). Differential modulation of CaV2.1 channels by calmodulin and Ca2+-binding protein 1. Nature neuroscience 5, 210-217. Lee, A., Zhou, H., Scheuer, T., and Catterall, W.A. (2003). Molecular determinants of Ca2+/calmodulin-dependent regulation of CaV2.1 channels. Proceedings of the National Academy of Sciences of the United States of America 100, 16059-16064. Lee, K.S., Marban, E., and Tsien, R.W. (1985). Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. The Journal of physiology 364, 395-411. Lee, Y.T., and Wang, Q. (1999). Inhibition of hKv2.1, a major human neuronal voltage-gated K+ channel, by meclofenamic acid. European journal of pharmacology 378, 349-356. Lewit-Bentley, A., and Rety, S. (2000). EF-hand calcium-binding proteins. Curr Opin Struct Biol 10, 637-643. Lian, H., and Zheng, H. (2015). Signaling pathways regulating neuron-glia interaction and their implications in Alzheimer's disease. Journal of neurochemistry. Liang, H., DeMaria, C.D., Erickson, M.G., Mori, M.X., Alseikhan, B.A., and Yue, D.T. (2003). Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron 39, 951-960. Limpitikul, W.B., Dick, I.E., Joshi-Mukherjee, R., Overgaard, M.T., George, A.L., Jr., and Yue, D.T. (2014). Calmodulin mutations associated with long QT syndrome prevent inactivation of cardiac L-type Ca2+ currents and promote proarrhythmic behavior in ventricular myocytes. Journal of molecular and cellular cardiology 74, 115-124. Liu, H., De Waard, M., Scott, V.E., Gurnett, C.A., Lennon, V.A., and Campbell, K.P. (1996). Identification of three subunits of the high affinity omega-conotoxin MVIIC-sensitive Ca2+ channel. The Journal of biological chemistry 271, 13804-13810. Liu, Z., and Vogel, H.J. (2012). Structural basis for the regulation of L-type voltage-gated calcium channels: interactions between the N-terminal cytoplasmic domain and Ca2+-calmodulin. Frontiers in molecular neuroscience 5, 38. Maeda, T., Lem, J., Palczewski, K., and Haeseleer, F. (2005). A critical role of CaBP4 in the cone synapse. Invest Ophthalmol Vis Sci 46, 4320-4327. Mahajan, A., Sato, D., Shiferaw, Y., Baher, A., Xie, L.H., Peralta, R., Olcese, R., Garfinkel, A., Qu, Z., and Weiss, J.N. (2008). Modifying L-type calcium current kinetics: consequences for cardiac excitation and arrhythmia dynamics. Biophysical journal 94, 411-423. Matsushima, N., Izumi, Y., Matsuo, T., Yoshino, H., Ueki, T., and Miyake, Y. (1989). Binding of both Ca2+ and mastoparan to calmodulin induces a large change in the tertiary structure. Journal of biochemistry 105, 883-887. Matsuyama, Z., Wakamori, M., Mori, Y., Kawakami, H., Nakamura, S., and Imoto, K. (1999). Direct alteration of the P/Q-type Ca2+ channel property by polyglutamine expansion in spinocerebellar ataxia 6. The Journal of neuroscience : the official journal of the Society for Neuroscience 19, RC14. McCue, H.V., Burgoyne, R.D., and Haynes, L.P. (2009). Membrane targeting of the EF-hand containing calcium-sensing proteins CaBP7 and CaBP8. Biochem Biophys Res Commun 380, 825-831. McCue, H.V., Haynes, L.P., and Burgoyne, R.D. (2010). Bioinformatic analysis of CaBP/calneuron proteins reveals a family of highly conserved vertebrate Ca2+-binding proteins. BMC research notes 3, 118. Meador, W.E., Means, A.R., and Quiocho, F.A. (1992). Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science 257, 1251-1255. Meir, A., Bell, D.C., Stephens, G.J., Page, K.M., and Dolphin, A.C. (2000). Calcium channel beta subunit promotes voltage-dependent modulation of alpha 1 B by G beta gamma. Biophysical journal 79, 731-746. Mentrard, D., Vassort, G., and Fischmeister, R. (1984). Calcium-mediated inactivation of the calcium conductance in cesium-loaded frog heart cells. The Journal of general physiology 83, 105-131. Mikhaylova, M., Reddy, P.P., Munsch, T., Landgraf, P., Suman, S.K., Smalla, K.H., Gundelfinger, E.D., Sharma, Y., and Kreutz, M.R. (2009). Calneurons provide a calcium threshold for trans-Golgi network to plasma membrane trafficking. Proc Natl Acad Sci U S A 106, 9093-9098. Mikhaylova, M., Sharma, Y., Reissner, C., Nagel, F., Aravind, P., Rajini, B., Smalla, K.H., Gundelfinger, E.D., and Kreutz, M.R. (2006). Neuronal Ca2+ signaling via caldendrin and calneurons. Biochim Biophys Acta 1763, 1229-1237. Miller, R.J. (1988). Calcium signalling in neurons. Trends Neurosci 11, 415-419. Mills, L.R., Niesen, C.E., So, A.P., Carlen, P.L., Spigelman, I., and Jones, O.T. (1994). N-type Ca2+ channels are located on somata, dendrites, and a subpopulation of dendritic spines on live hippocampal pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 14, 6815-6824. Mintz, I.M., Sabatini, B.L., and Regehr, W.G. (1995). Calcium Control of Transmitter Release at a Cerebellar Synapse. Neuron 15, 675-688. Mori, M.X., Vander Kooi, C.W., Leahy, D.J., and Yue, D.T. (2008). Crystal structure of the CaV2 IQ domain in complex with Ca2+/calmodulin: high-resolution mechanistic implications for channel regulation by Ca2+. Structure 16, 607-620. Morotti, S., Grandi, E., Summa, A., Ginsburg, K.S., and Bers, D.M. (2012). Theoretical study of L-type Ca2+ current inactivation kinetics during action potential repolarization and early afterdepolarizations. The Journal of physiology 590, 4465-4481. Neely, A., Wei, X., Olcese, R., Birnbaumer, L., and Stefani, E. (1993). Potentiation by the beta subunit of the ratio of the ionic current to the charge movement in the cardiac calcium channel. Science 262, 575-578. Nyegaard, M., Overgaard, M.T., Sondergaard, M.T., Vranas, M., Behr, E.R., Hildebrandt, L.L., Lund, J., Hedley, P.L., Camm, A.J., Wettrell, G., et al. (2012). Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am J Hum Genet 91, 703-712. Olivera, B.M., Miljanich, G.P., Ramachandran, J., and Adams, M.E. (1994). Calcium channel diversity and neurotransmitter release: the omega-conotoxins and omega-agatoxins. Annual review of biochemistry 63, 823-867. Ouardouz, M., Nikolaeva, M.A., Coderre, E., Zamponi, G.W., McRory, J.E., Trapp, B.D., Yin, X., Wang, W., Woulfe, J., and Stys, P.K. (2003). Depolarization-induced Ca2+ release in ischemic spinal cord white matter involves L-type Ca2+ channel activation of ryanodine receptors. Neuron 40, 53-63. Pelletier, S. (2016). SCYL pseudokinases in neuronal function and survival. Neural Regen Res 11, 42-44. Perez-Reyes, E. (2003). Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83, 117-161. Peterson, B.Z., DeMaria, C.D., Adelman, J.P., and Yue, D.T. (1999). Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type calcium channels. Neuron 22, 549-558. Pitt, G.S., Zuhlke, R.D., Hudmon, A., Schulman, H., Reuter, H., and Tsien, R.W. (2001). Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. The Journal of biological chemistry 276, 30794-30802. Qin, N., Olcese, R., Bransby, M., Lin, T., and Birnbaumer, L. (1999). Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proceedings of the National Academy of Sciences of the United States of America 96, 2435-2438. Raghib, A., Bertaso, F., Davies, A., Page, K.M., Meir, A., Bogdanov, Y., and Dolphin, A.C. (2001). Dominant-negative synthesis suppression of voltage-gated calcium channel CaV2.2 induced by truncated constructs. The Journal of neuroscience : the official journal of the Society for Neuroscience 21, 8495-8504. Rieke, F., Lee, A., and Haeseleer, F. (2008). Characterization of Ca2+-binding protein 5 knockout mouse retina. Invest Ophthalmol Vis Sci 49, 5126-5135. Saimi, Y., and Kung, C. (2002). Calmodulin as an ion channel subunit. Annu Rev Physiol 64, 289-311. Schrauwen, I., Helfmann, S., Inagaki, A., Predoehl, F., Tabatabaiefar, M.A., Picher, M.M., Sommen, M., Seco, C.Z., Oostrik, J., Kremer, H., et al. (2012). A mutation in CABP2, expressed in cochlear hair cells, causes autosomal-recessive hearing impairment. Am J Hum Genet 91, 636-645. Seaton, B.A., Head, J.F., Engelman, D.M., and Richards, F.M. (1985). Calcium-induced increase in the radius of gyration and maximum dimension of calmodulin measured by small-angle X-ray scattering. Biochemistry 24, 6740-6743. Sharma, G., and Vijayaraghavan, S. (2003). Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38, 929-939. Shifman, J.M., Choi, M.H., Mihalas, S., Mayo, S.L., and Kennedy, M.B. (2006). Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Proceedings of the National Academy of Sciences of the United States of America 103, 13968-13973. Shih, P.Y., Lin, C.L., Cheng, P.W., Liao, J.H., and Pan, C.Y. (2009). Calneuron I inhibits Ca2+ channel activity in bovine chromaffin cells. Biochemical and biophysical research communications 388, 549-553. Shistik, E., Ivanina, T., Puri, T., Hosey, M., and Dascal, N. (1995). Ca2+ current enhancement by alpha 2/delta and beta subunits in Xenopus oocytes: contribution of changes in channel gating and alpha 1 protein level. The Journal of physiology 489 ( Pt 1), 55-62. Simms, B.A., Souza, I.A., Rehak, R., and Zamponi, G.W. (2015). The CaV1.2 N terminus contains a CaM kinase site that modulates channel trafficking and function. Pflugers Archiv : European journal of physiology 467, 677-686. Simms, B.A., Souza, I.A., and Zamponi, G.W. (2014). A novel calmodulin site in the CaV1.2 N-terminus regulates calcium-dependent inactivation. Pflugers Archiv : European journal of physiology 466, 1793-1803. Simms, B.A., and Zamponi, G.W. (2014). Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82, 24-45. Simons, T.J. (1988). Calcium and neuronal function. Neurosurg Rev 11, 119-129. Singer, D., Biel, M., Lotan, I., Flockerzi, V., Hofmann, F., and Dascal, N. (1991). The roles of the subunits in the function of the calcium channel. Science 253, 1553-1557. Soderling, T.R., and Derkach, V.A. (2000). Postsynaptic protein phosphorylation and LTP. Trends Neurosci 23, 75-80. Soong, T.W., DeMaria, C.D., Alvania, R.S., Zweifel, L.S., Liang, M.C., Mittman, S., Agnew, W.S., and Yue, D.T. (2002). Systematic identification of splice variants in human P/Q-type channel alpha1(2.1) subunits: implications for current density and Ca2+-dependent inactivation. The Journal of neuroscience : the official journal of the Society for Neuroscience 22, 10142-10152. Stewart, M.G., Medvedev, N.I., Popov, V.I., Schoepfer, R., Davies, H.A., Murphy, K., Dallerac, G.M., Kraev, I.V., and Rodriguez, J.J. (2005). Chemically induced long-term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices. Eur J Neurosci 21, 3368-3378. Tadross, M.R., Dick, I.E., and Yue, D.T. (2008). Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel. Cell 133, 1228-1240. Taiakina, V., Boone, A.N., Fux, J., Senatore, A., Weber-Adrian, D., Guillemette, J.G., and Spafford, J.D. (2013). The calmodulin-binding, short linear motif, NSCaTE is conserved in L-type channel ancestors of vertebrate CaV1.2 and CaV1.3 channels. PloS one 8, e61765. Takahashi, M., Seagar, M.J., Jones, J.F., Reber, B.F., and Catterall, W.A. (1987). Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America 84, 5478-5482. Tan, B.Z., Jiang, F., Tan, M.Y., Yu, D., Huang, H., Shen, Y., and Soong, T.W. (2011). Functional characterization of alternative splicing in the C terminus of L-type CaV1.3 channels. The Journal of biological chemistry 286, 42725-42735. Teo, T.S., and Wang, J.H. (1973). Mechanism of activation of a cyclic adenosine 3':5'-monophosphate phosphodiesterase from bovine heart by calcium ions. Identification of the protein activator as a Ca2+ binding protein. The Journal of biological chemistry 248, 5950-5955. Terabayashi, T., Funato, Y., Fukuda, M., and Miki, H. (2009). A coated vesicle-associated kinase of 104 kDa (CVAK104) induces lysosomal degradation of frizzled 5 (Fzd5). The Journal of biological chemistry 284, 26716-26724. Tillotson, D. (1979). Inactivation of Ca conductance dependent on entry of Ca ions in molluscan neurons. Proceedings of the National Academy of Sciences of the United States of America 76, 1497-1500. Tippens, A.L., and Lee, A. (2007). Caldendrin, a neuron-specific modulator of CaV1.2 (L-type) Ca2+ channels. J Biol Chem 282, 8464-8473. Wang, C., Chung, B.C., Yan, H., Wang, H.G., Lee, S.Y., and Pitt, G.S. (2014). Structural analyses of Ca2+/CaM interaction with NaV channel C-termini reveal mechanisms of calcium-dependent regulation. Nat Commun 5, 4896. Wei, F., Xia, X.M., Tang, J., Ao, H., Ko, S., Liauw, J., Qiu, C.S., and Zhuo, M. (2003). Calmodulin regulates synaptic plasticity in the anterior cingulate cortex and behavioral responses: a microelectroporation study in adult rodents. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 8402-8409. Westenbroek, R.E., Hell, J.W., Warner, C., Dubel, S.J., Snutch, T.P., and Catterall, W.A. (1992). Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron 9, 1099-1115. Westenbroek, R.E., Hoskins, L., and Catterall, W.A. (1998). Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. The Journal of neuroscience : the official journal of the Society for Neuroscience 18, 6319-6330. Williams, M.E., Brust, P.F., Feldman, D.H., Patthi, S., Simerson, S., Maroufi, A., McCue, A.F., Velicelebi, G., Ellis, S.B., and Harpold, M.M. (1992). Structure and functional expression of an omega-conotoxin-sensitive human N-type calcium channel. Science 257, 389-395. Witcher, D.R., De Waard, M., Sakamoto, J., Franzini-Armstro | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20353 | - |
| dc.description.abstract | 細胞內鈣離子的提升能活化細胞內各種生理作用,其主要來源是透過細胞外鈣離子通過細胞膜上的電壓依賴型鈣離子通道進入細胞內。此鈣離子依賴型不活化已知與調鈣素偵測鈣離子濃度有關。調鈣素如何調節電壓依賴型鈣離子通道CaV2.2仍保有未知,因此我們在胚胎腎臟皮質細胞中表現CaV2.2與調鈣素或其突變型並記錄其電流來探討此鈣離子依賴不活化現象。結果顯示CaV2.2在鈣離子溶液中能快速的不活化,但是並不存在於鋇離子為溶液時。當與缺乏鈣離子結合能力的調鈣素突變型共同表現時,此鈣離子依賴型不活化效果隨之減小。利用谷胱甘肽轉移酶標記之調鈣素或突變型為餌,我們發現在不論鈣離子有無的情況下,調鈣素能和胞內的電壓依賴型鈣離子通道之C端交互作用。然而,當此突變CaV2.2上,已知與調鈣素接合的高保留性氨基酸的片段時,調鈣素或型無法失去與之交互作用。調鈣素接合位置的突變導致此CaV2.2的的電流減小但能被調鈣素N端突變型拯救。然而,我們發現N-端突變型的調鈣素可以增加CaV2.2的的總體表現量,卻不會增加細胞膜上的表現比例。總的來看,我們的結果認為調鈣素不只能調節CaV2.2的不活化;同時,藉由調控其表現量,已達控制細胞內鈣離子濃度對生理活動的影響。
實驗室之前的研究發現與調鈣素結構類似的鈣離子結合蛋白,Calneuron 1 (Caln1),能夠抑制腎上腺髓質嗜鉻細胞上的電壓依賴型鈣離子電流。此外,酵母菌雙雜交實驗中發現,Caln1在能與Scyl1交互作用。本篇研究發現,Caln1能夠抑制表現於胚胎腎臟細胞中的電壓依賴型鈣離子通道CaV1.3、CaV2.2、CaV3.1以及電壓依賴型鈉離子通道NaV1.4之電流。此外,若將Caln1表現於初級培養之胚胎大腦皮質神經細胞中,由鈣離子影像實驗與動作電位紀錄發現,Caln1同樣能導致神經細胞活性受到抑制。此外,Caln1的表現並不會影響到CaV2.2的總體蛋白質表現量,卻能增加其在細胞膜上的表現量,而且在體外培養14日之初級培養的大腦皮質神經細胞中,Caln1的表現可以透過化學誘導之長期增強作用下被增強表現。然而,透過免疫沈澱試驗發現,Caln1並沒有辦法與CaV2.2或CaV3.1直接作用。前人研究發現,Caln1與Scyl1都會參與細胞內小泡的運輸,且分別影響由高基氏體到細胞膜上的運輸以及內質網到高基氏體的運輸過程。綜合之前的研究,此篇研究發現,Scyl1與Caln1皆能抑制CaV2.2之鈣離子電流,且共同表現於胚胎腎臟細胞中時,具有協同作用,使鈣離子電流完全被抑制。此外,也透過免疫染色實驗發現,Caln1與Scyl1能同時座落在細胞內部形成小泡狀構造,猜測此一構造是在高基氏體上。當同時將Caln1上激素相似構造與自體聚集構造突變時,Caln1與Scyl1共同表現時造成的小泡堆積結構便不存在。因此,Caln1對於調節細胞內電壓依賴型通道的運輸與電流控制進而影響神經細胞活性皆扮演重要的角色。然而,Caln1在電壓依賴型通道的運輸與電流調控上之關係仍需要更多的研究與發現。 | zh_TW |
| dc.description.abstract | The Ca2+ influx through the voltage-gated Ca2+ channels (CaVs) at the plasma membrane is the major extracellular factor responsible for the elevation in intracellular Ca2+ concentration ([Ca2+]i), which activates various physiological activities. The inactivation phase of CaVs determines the amount of Ca2+ that enters the cell, and calmodulin (CaM) is known to be involved in the Ca2+-dependent inactivation process. However, how CaM modulates CaV2.2 is still unclear. Here, we expressed CaV2.2 with CaM or CaM mutants in HEK293T cells and measured the currents to characterize the inactivation. The results showed that CaV2.2 had a fast inactivation with Ca2+, but not Ba2+, as the charge carrier; when it was co-expressed with CaM mutants with a Ca2+-binding deficiency, the levels of inactivation decreased. Using GST-tagged CaM or CaM mutants as the bait, we found that CaM could interact with the intracellular C-terminal fragment of CaV2.2 in the presence or absence of Ca2+. However, CaM and its mutants could not interact with this fragment when mutations were generated in the conserved amino acid residues of the CaM-binding site. The mutations in the CaM-binding site greatly reduced the current of CaV2.2 but could be rescued by CaM12 (Ca2+-binding deficiency at the N-lobe) overexpression; in addition, CaM12 enhanced the total expression level of CaV2.2, but the ratios between the membrane and total fractions remained unchanged. Together, our data suggest that CaM not only modulates the inactivation of CaV2.2 but also regulates its expression to control [Ca2+]i elevation for physiological activities.
Previous studies in our lab showed that calneuron 1 (Caln1), a Ca2+ binding protein with structure similar to CaM, inhibits the inward current of CaVs in chromaffin cells and interacts with Scyl1 verified by yeast-2-hybrid. Here we showed Caln1 inhibited the inward currents of CaV1.3, 2.2, 3.1, and NaV1.4 expressed in HEK293T cells, also, its overexpression suppressed neuronal activities in primary cultured cortical neurons. Caln1 did not directly interact with CaV2.2 and CaV3.1, however, the chemical LTP decreased the presence of channel proteins on the plasma membrane. Caln1 also can be upregulated in primary cortical neuron. Both Caln1 and Scyl1 has been reported to regulate the vesicle tracking from Golgi to plasma membrane and ER to Golgi, respectively. Here, the patch clamping results showed that Scyl1 inhibited the currents of CaV2.2 with Caln1. In the immunostaining experiment, Scyl1 and Caln1 colocalized and accumulated at the intracellular vesicles, considered to be the Golgi apparatus, however, Scyl1ΔKLHT, lacking kinase function and self-associated manner, eliminated this appearance. Therefore, Caln1 is important in the trafficking of CaV2.2 and inward current regulation of VGICs (voltage-gated ion channels), however, the correlation between trafficking and modulation of VGICs in controlling neuronal activities still remains the open questions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:46:02Z (GMT). No. of bitstreams: 1 ntu-106-F97B41032-1.pdf: 22820699 bytes, checksum: 799d069a4d1a48a7ba7b49713350ece6 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi Chapter 1 Introduction 1 1.1 Voltage-gated calcium channels (CaVs) 1 1.2 Calcium binding proteins (CaBPs) 3 1.3 Calmodulin (CaM) 3 1.4 The CDI correlated disease and therapies 7 1.5 Calneuron 1 8 1.6 Scyl-like 1 9 1.7 Calcium signaling and synaptic transmission 11 Chapter 2 Aims 13 2.1 To verify the CDI of CaV2.2 13 2.2 To characterize the role of CaM in CDI of CaV2.2 13 2.3 To investigate the interaction between CaV2.2 IQ-motif and CaM 13 2.4 To characterize the direct interaction between CaV2.2 and CaM 13 2.5 To verify the CaV2.2 expression through CaM modulation 13 2.6 To verify the Caln1 modulate CaVs in HEK293T 13 2.7 To verify the Caln1 modulate NaV1.4 in HEK293T 13 2.8 To identify Caln1 regulate CaV2.2 membrane trafficking 13 2.9 To characterize the effects of Caln1 in cortical neuron 13 2.10 To investigate the localization between Caln1 and Scyl1 13 2.11 To verify the effect of Scyl1 on CaV2.2 13 Chapter 3 Materials and Methods 14 3.1 Chemicals 14 3.2 Solution/ Buffer 16 3.3 Cell preparation 18 3.4 Plasmid preparation 19 3.5 List of primers 20 3.6 Mutagenesis 21 3.7 Transfection of HEK293T cells 22 3.8 Protein preparation 22 3.9 GST pulldown assays 22 3.10 Immunoprecipitation 23 3.11 Biotinylation 23 3.12 Western blot 24 3.13 Immunocytochemistry 24 3.14 Electrophysiological recording 24 3.15 Calcium imaging 25 3.16 Chem-LTP 26 3.17 RNA extraction and cDNA synthesis 26 3.18 Statistical analysis 28 Chapter 4 Results 29 4.1 Bovine CaV2.2 shows Ca2+-dependent inactivation 29 4.2 Both lobes of CaM modulate the CDI effect 29 4.3 Mutating the IF residues reduces the current amplitude 30 4.4 The IF amino acid residues are important for current inactivation 31 4.5 CaM12 enhances the attenuated current density 31 4.6 CaM mutants affect differential binding to the C-terminal fragment of CaV2.2 32 4.7 CaM12 enhances the expression level of CaV2.2 33 4.8 Caln1 colocalizes to CaV2.2 in HEK293T 33 4.9 Caln1 inhibits the currents of CaVs expressed in HEK293T 34 4.10 Caln1 decreases the current of NaV1.4 in HEK293T cells 36 4.11 Caln1 increases the localization of CaV2.2 but not Caln1DE2AQ and Caln1ΔHT 36 4.12 Caln1 does not interact with CaV2.2-CT 37 4.13 Caln1 regulated CaV3.1 not through directly binding. 38 4.14 Caln1 suppresses the action potential and neurotransmission 39 4.15 Chem-LTP induction attenuates the expression of Caln1 40 4.16 Scyl1 exchanges the localization of Caln1 41 4.17 Scyl1 inhibits the current of CaV2.2 with Caln1 41 Chapter 5 Discussion 43 5.1 CaM12 regulates CaV2.2 by enhancing peak current density and ongoing CDI 43 5.2 Caln1 inhibits the current of voltage-gated channels and affects the neuron activities 46 Chapter 6 Conclusion 53 Chapter 7 References 54 Chapter 8 Table 74 Chapter 9 Figures 75 | |
| dc.language.iso | en | |
| dc.title | 調鈣素與Calneuron 1對電壓依賴性離子通道之調控 | zh_TW |
| dc.title | Regulation of Voltage-gated Ion Channels by Calmodulin and Calneuron 1 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 湯志永,陳建彰,鄭瓊娟,姚季光,周銘翊 | |
| dc.subject.keyword | 電壓依賴型鈣離子通道,電壓依賴型鈉離子通道,調鈣素,鈣離子依賴型不活化,Calneuron 1,Scyl-like 1, | zh_TW |
| dc.subject.keyword | CaV,NaV,Calmodulin,Calcium-dependent inactivation,Calneuron 1,Scyl-like 1, | en |
| dc.relation.page | 125 | |
| dc.identifier.doi | 10.6342/NTU201704249 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-10-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 22.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
