請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20334完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭錦樺 | |
| dc.contributor.author | Hsiang-Tian Huang | en |
| dc.contributor.author | 黃湘湉 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:45:28Z | - |
| dc.date.copyright | 2018-02-22 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-11-27 | |
| dc.identifier.citation | (1) Buczynski, M. W.; Dumlao, D. S.; Dennis, E. A. Thematic Review Series: Proteomics. An Integrated Omics Analysis of Eicosanoid Biology. The Journal of Lipid Research 2009, 50 (6), 1015–1038.
(2) M.O. Whitaker, A. Wyche, F. Fitzpatrick, H. Sprecher, P.Needleman Triene prostaglandins: prostaglandin D3 and icosapentaenoic acid as potential antithrombotic substances. Proc. Natl. Acad. Sci. U. S. A.,1979 ,76, 5919–5923. (3) J.S. Hawkes, M.J. James, L.G. Cleland. Biological activity of prostaglandin E3 with regard to oedema formation in mice. Agents Actions. 1992, 35, 85–87. (4) Astarita, G.; Kendall, A. C.; Dennis, E. A.; Nicolaou, A. Targeted Lipidomic Strategies for Oxygenated Metabolites of Polyunsaturated Fatty Acids. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2015, 1851 (4), 456–468. (5) Update of the LIPID MAPS comprehensive classification system for lipids. Fahy E., Subramaniam S., Murphy R., Nishijima M., Raetz C., Shimizu T., Spener F., van Meer G., Wakelam M., and Dennis E., Journal of Lipid Research 2009, 50, S9-S14 (6) Yamada, M.; Kita, Y.; Kohira, T.; Yoshida, K.; Hamano, F.; Tokuoka, S. M.; Shimizu, T. A Comprehensive Quantification Method for Eicosanoids and Related Compounds by Using Liquid Chromatography/Mass Spectrometry with High Speed Continuous Ionization Polarity Switching. Journal of Chromatography B 2015, 995–996, 74–84. (7) Hu, T.; Tie, C.; Wang, Z.; Zhang, J.-L. Highly Sensitive and Specific Derivatization Strategy to Profile and Quantitate Eicosanoids by UPLC-MS/MS. Analytica Chimica Acta 2017, 950, 108–118. (8) Calder, P. C. Polyunsaturated Fatty Acids and Inflammatory Processes: New Twists in an Old Tale. Biochimie 2009, 91 (6), 791–795. (9) Serhan, C. N. Resolution Phase of Inflammation: Novel Endogenous Anti-Inflammatory and Proresolving Lipid Mediators and Pathways. Annual Review of Immunology 2007, 25 (1), 101–137. (10) Rodriguez-Antona, C.; Ingelman-Sundberg, M. Cytochrome P450 Pharmacogenetics and Cancer. Oncogene 2006, 25 (11), 1679–1691. (11) Jenkins, C. M.; Cedars, A.; Gross, R. W. Eicosanoid Signalling Pathways in the Heart. Cardiovascular Research 2008, 82 (2), 240–249. (12) Calder, P. C.; Zurier, R. B. Polyunsaturated Fatty Acids and Rheumatoid Arthritis. Current Opinion in Clinical Nutrition & Metabolic Care 2001, 4 (2), 115–121. (13) Johnson, W.; Onuma, O.; Owolabi, M.; Sachdev, S. Stroke: A Global Response Is Needed. Bulletin of the World Health Organization 2016, 94 (9), 634–634A. (14) Cowley, T. R.; Fahey, B.; O’Mara, S. M. COX-2, but Not COX-1, Activity Is Necessary for the Induction of Perforant Path Long-Term Potentiation and Spatial Learning in Vivo. European Journal of Neuroscience 2008, 27 (11), 2999–3008. (15) Cazevieille, C. ; Muller, A.; Meynier, F.; Dutrait ,N.; Bonne ,C. Protection by prostaglandins from glutamate toxicity in cortical neurons. Neurochemistry International 1994, 24, 395-398. (16) Adibhatla, R.M.; Hatcher, J.F. Role of Lipids in Brain Injury and Diseases. Future Lipidol. 2007, 2(4), 403–422. (17) Hebert, P. R.; Gaziano, J. M.; Chan, K. S.; Hennekens, C. H. Cholesterol Lowering with Statin Drugs, Risk of Stroke, and Total Mortality: An Overview of Randomized Trials. Jama 1997, 278 (4), 313–321. (18) Group, W. of S. C. P. S.; others. Influence of Pravastatin and Plasma Lipids on Clinical Events in the West of Scotland Coronary Prevention Study (WOSCOPS). Circulation 1998, 97 (15), 1440–1445. (19) Levine, L. Statins Stimulate Arachidonic Acid Release and Prostaglandin I 2 Production in Rat Liver Cells. Lipids in health and disease 2003, 2 (1), 1. (20) Birnbaum, Y.; Ye, Y. Pleiotropic Effects of Statins: The Role of Eicosanoid Production. Current Atherosclerosis Reports 2012, 14 (2), 135–139. (21) Santos, M. T.; Fuset, M. P.; Ruano, M.; Moscardó, A.; Valles, J. Effect of Atorvastatin on Platelet Thromboxane A2 Synthesis in Aspirin-Treated Patients With Acute Myocardial Infarction. The American Journal of Cardiology 2009, 104 (12), 1618–1623. (22) CARDIOLDGY, P. Effects of Pravastatin in Patients with Serum Total Cholesterol Levels from 5.2 to 7.8 Mmol/liter (200 to 300 Mg/dl) plus Two Additional Atherosclerotic Risk Factors. Am J Cardiol 1993 , 72(14), 1031–1037 (23) F. Shono; K. Yokota; K. Horie; S. Yamamoto; K. Yamashita; K. Watanabe; H. Miyazaki. A heterologous enzyme immunoassay of prostaglandin E2 using a stable enzyme-labeled hapten mimic Anal. Biochem. 1988, 168, 284–291. (24) Peiris, H. N.; Vaswani, K.; Almughlliq, F.; Koh, Y. Q.; Mitchell, M. D. Review: Eicosanoids in Preterm Labor and Delivery: Potential Roles of Exosomes in Eicosanoid Functions. Placenta 2017, 54, 95–103. (25) Barbarin, N.; Henion, J. D.; Wu, Y. Comparison between Liquid chromatography–UV Detection and Liquid Chromatography–mass Spectrometry for the Characterization of Impurities And/or Degradants Present in Trimethoprim Tablets. Journal of Chromatography A 2002, 970 (1), 141–154. (26) Dumlao, D. S.; Buczynski, M. W.; Norris, P. C.; Harkewicz, R.; Dennis, E. A. High-Throughput Lipidomic Analysis of Fatty Acid Derived Eicosanoids and N-Acylethanolamines. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2011, 1811 (11), 724–736. (27) Wang, Y.; Armando, A. M.; Quehenberger, O.; Yan, C.; Dennis, E. A. Comprehensive Ultra-Performance Liquid Chromatographic Separation and Mass Spectrometric Analysis of Eicosanoid Metabolites in Human Samples. Journal of Chromatography A 2014, 1359, 60–69. (28) Yergey, J. A.; Kim, H. Y.; Salem, N. High-Performance Liquid Chromatography/thermospray Mass Spectrometry of Eicosanoids and Novel Oxygenated Metabolites of Docosahexaenoic Acid. Analytical chemistry 1986, 58 (7), 1344–1348. (29) Yue, H.; Jansen, S. A.; Strauss, K. I.; Borenstein, M. R.; Barbe, M. F.; Rossi, L. J.; Murphy, E. A Liquid Chromatography/Mass Spectrometric Method for Simultaneous Analysis of Arachidonic Acid and Its Endogenous Eicosanoid Metabolites Prostaglandins, Dihydroxyeicosatrienoic Acids, Hydroxyeicosatetraenoic Acids, and Epoxyeicosatrienoic Acids in Rat Brain Tissue. Journal of Pharmaceutical and Biomedical Analysis 2007, 43 (3), 1122–1134. (30) Xia Lab, MetaboAnalyst 3.0. http://www.metaboanalyst.ca/ (31) joomla.server-germany.de.h, Rcommander. http://www.rcommander.com/ (32) Agilent Technologies, Agilent. http://www.agilent.com/en/products/mass-spectrometry/jetstreamfocusingtechnology (33) Gao, S., Zhang, Z., Karnes, H.: Sensitivity enhancement in liquid chromatography/atmospheric pressure ionization mass spectrometry using derivatization and mobile phase additives. J. Chromatogr. B. 2005, 825, 98–110. (34) Marwah, A., Marwah, P., Lardy, H.: Analysis of ergosteroids: VIII: Enhancement of signal response of neutral steroidal compounds in liquid chromatographic–electrospray ionization mass spectrometric analysis by mobile phase additives. J. Chromatogr. A. 2002, 964, 137–151. (35) Liigand, J.; Laaniste, A.; Kruve, A. pH Effects on Electrospray Ionization Efficiency. Journal of The American Society for Mass Spectrometry 2017, 28 (3), 461–469. (36) Kiontke, A.; Oliveira-Birkmeier, A.; Opitz, A.; Birkemeyer, C. Electrospray Ionization Efficiency Is Dependent on Different Molecular Descriptors with Respect to Solvent pH and Instrumental Configuration. PLOS ONE 2016, 11 (12), e0167502. (37) Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Volumes 1-2. 4th ed. John Wiley & Sons. New York, NY. 2001, p. 702 (38) O'Neil, M.J. (ed.). The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. Cambridge, UK: Royal Society of Chemistry, 2013, p. 273 (39) Yue, H.; Strauss, K. I.; Borenstein, M. R.; Barbe, M. F.; Rossi, L. J.; Jansen, S. A. Determination of Bioactive Eicosanoids in Brain Tissue by a Sensitive Reversed-Phase Liquid Chromatographic Method with Fluorescence Detection. Journal of Chromatography B 2004, 803 (2), 267–277. (40) https://www.waters.com/waters/zh_TW/Waters-Oasis-Sample-Extraction-SPE-Products/nav.htm?locale=zh_TW&cid=513209 (41) Puppolo, M.; Varma, D.; Jansen, S. A. A Review of Analytical Methods for Eicosanoids in Brain Tissue. Journal of Chromatography B 2014, 964, 50–64. (42) McLafferty, F. W. and Turecek, F. Interpretation of Mass Spectra, 4th ed.; University Science Books: Mill Valley, CA, 1993. (43) Kempski, O.; Shohami, E.; Von Lubitz, D.; Hallenbeck, J. M.; Feuerstein, G. Postischemic Production of Eicosanoids in Gerbil Brain. Stroke 1987, 18 (1), 111–119. (44) Stevens, M. K.; Yaksh, T. L. Time Course of Release in Vivo of PGE2, PGF2α, 6-Keto-PGF1α, and TXB2 into the Brain Extracellular Space after 15 Min of Complete Global Ischemia in the Presence and Absence of Cyclooxygenase Inhibition. Journal of Cerebral Blood Flow & Metabolism 1988, 8 (6), 790–798. (45) Wang, D.-J.; Tian, H. Effect of Mailuoning Injection on 8-Iso-Prostaglandin F2 Alpha and Superoxide Dismutase in Rabbits with Extremity Ischemia–reperfusion Injury. Journal of Surgical Research 2014, 192 (2), 464–470. (46) Katayama, Y.; Suzuki, S.; Shimizu, J.; Inamura, K.; Sugimoto, S.; Terashi, A. Effect of bilateral common carotid artery ligation on prostaglandin levels (TXA2, PGI2) in spontaneously hypertensive rats (SHRSP, SHRSR) and normotensive rats (WKY). No To Shinkei. 1986, 38(6), 571-578. (47) Kong, D. L.; Prough, D. S.; Whitley, J. M. Hemorrhage and intracranial hypertension in combination increase cerebral production of thromboxane A2. Critical Care Medicine 1991, 19(4), 532-538. (48) Caligiuri, S.P.B.; Aukema, H.; Ravandi, A.; Guzman, R.; Pierce, G.N. Specific plasma oxylipins increase the odds of cardiovascular and cerebrovascular events in patients with peripheral arterial disease. Can J Physiol Pharmacol 2017. In press. (49) Zhang, J.; Gong, Y.; Yu, Y. PG F2α Receptor: A Promising Therapeutic Target for Cardiovascular Disease. Frontiers in Pharmacology 2010, 1. (50) Mohan, S.; Ahmad, A. S.; Glushakov, A. V.; Chambers, C.; Doré, S. Putative Role of Prostaglandin Receptor in Intracerebral Hemorrhage. Frontiers in Neurology 2012, 3. (51) Brault, S.; Martinez-Bermudez, A. K.; Marrache, A. M.; Gobeil, F.; Hou, X.; Beauchamp, M.; Quiniou, C.; Almazan, G.; Lachance, C.; Roberts, J.; et al. Selective Neuromicrovascular Endothelial Cell Death by 8-Iso-Prostaglandin F2 : Possible Role in Ischemic Brain Injury. Stroke 2003, 34 (3), 776–782. (52) Yu, G.-F.; Jie, Y.-Q.; Wu, A.; Huang, Q.; Dai, W.-M.; Fan, X.-F. Increased Plasma 8-Iso-Prostaglandin F2α Concentration in Severe Human Traumatic Brain Injury. Clinica Chimica Acta 2013, 421, 7–11. (53) Shekher,Mohan.; Abdullah,S.Ahmad.; Alexander,V.Glushakov.; Chase, Chambers.; Sylvain Doré. Putative Role of Prostaglandin Receptor in Intracerebral Hemorrhage. Front Neurol. 2012, 3, 145. (54) Firas H Kobeissy.Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects; CRC Press/Taylor & Francis, Boca Raton (FL), 2015. (55) Ahmad, A. S.; Ahmad, M.; Maruyama, T.; Narumiya, S.; Doré, S. Prostaglandin D2 DP1 Receptor Is Beneficial in Ischemic Stroke and in Acute Exicitotoxicity in Young and Old Mice. AGE 2010, 32 (3), 271–282. (56) Buchanan, M.; Horrobin, D. Use of 13-HODE as a Regulator of Vascular Biocompatibility and an Inhibitor of Cell Hyperplasia; Google Patents, 2007. (57) Marx, N1.; Bourcier, T.; Sukhova, GK.; Libby, P.; Plutzky, J. PPARgamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARgamma as a potential mediator in vascular disease. Arterioscler Thromb Vasc Biol. 1999, 19(3), 546-51. (58) Imig, J. D.; Simpkins, A. N.; Renic, M.; Harder, D. R. Cytochrome P450 Eicosanoids and Cerebral Vascular Function. Expert Reviews in Molecular Medicine 2011, 13. (59) Jeffery, H. Morana.; Rick, Weise.; Rick, G.Schnellmann.; J.P.Freeman.; David, F.Grant. Cytotoxicity of Linoleic Acid Diols to Renal Proximal Tubular Cells. TOXICOLOGY AND APPLIED PHARMACOLOGY 1997, 146, 53–59. (60) Saraswathi Viswanathan.; Bruce D. Hammock.; John W. Newman.; Purushothaman Meerarani.; Michal Toborek.; Bernhard Hennig. Involvement of CYP 2C9 in Mediating the Proinflammatory Effects of Linoleic Acid in Vascular Endothelial Cells. Journal of the American College of Nutrition 2003, 22, Issue 6. (61) Yeung, J.; Hawley, M.; Holinstat, M. The Expansive Role of Oxylipins on Platelet Biology. Journal of Molecular Medicine 2017, 95 (6), 575–588. (62) Harker, LA. Therapeutic inhibition of platelet function in stroke. Cerebrovasc Dis. 1998, 8 Suppl 5, 8-18. (63) Jiro Suzuki. Advances in Surgery for Cerebral Stroke: Proceedings of the International Symposium on Surgery for Cerebral Stroke, Sendai 1987. (64) Li, Chen.; Yan-mei, Zhu.; Yu-nong, Li.; Peng-yan, Li.; Di, Wang.; Yu, Liu.; You-yang, Qu.; Da-ling, Zhu.; Yu-lan, Zhu. The 15-LO-1/15-HETE system promotes angiogenesis by upregulating VEGF in ischemic brains. A Journal of Progress in Neurosurgery, Neurology and Neurosciences, 2017, 39, Issue 9 (65) Vijil, C.; Hermansson, C.; Jeppsson, A.; Bergström, G.; Hultén, L. M. Arachidonate 15-Lipoxygenase Enzyme Products Increase Platelet Aggregation and Thrombin Generation. PLoS ONE 2014, 9 (2), e88546. (66) Di, Wang.; Yu, Liu.; Ping, Lu.; Daling, Zhu.; Yulan, Zhu. 15-Oxo-ETE-Induced Internal Carotid Artery Constriction in Hypoxic Rats Is Mediated by Potassium Channels. Physiological Research. 2016, 65 Issue 3, 391-399. 9p. (67) Bailey, J. M.; Bryant, R. W.; Whiting, J.; Salata, K. Characterization of 11-HETE and 15-HETE, Together with Prostacyclin, as Major Products of the Cyclooxygenase Pathway in Cultured Rat Aorta Smooth Muscle Cells. Journal of lipid research 1983, 24 (11), 1419–1428. (68) Poloyac, S. M.; Zhang, Y.; Bies, R. R.; Kochanek, P. M.; Graham, S. H. Protective Effect of the 20-HETE Inhibitor HET0016 on Brain Damage after Temporary Focal Ischemia. Journal of Cerebral Blood Flow & Metabolism 2006, 26 (12), 1551–1561. (69) Dunn, K. M.; Renic, M.; Flasch, A. K.; Harder, D. R.; Falck, J.; Roman, R. J. Elevated Production of 20-HETE in the Cerebral Vasculature Contributes to Severity of Ischemic Stroke and Oxidative Stress in Spontaneously Hypertensive Rats. AJP: Heart and Circulatory Physiology 2008, 295 (6), H2455–H2465. (70) Hu, T.; Tie, C.; Wang, Z.; Zhang, J.-L. Highly Sensitive and Specific Derivatization Strategy to Profile and Quantitate Eicosanoids by UPLC-MS/MS. Analytica Chimica Acta 2017, 950, 108–118. (71) Zhu, Q.-F.; Hao, Y.-H.; Liu, M.-Z.; Yue, J.; Ni, J.; Yuan, B.-F.; Feng, Y.-Q. Analysis of Cytochrome P450 Metabolites of Arachidonic Acid by Stable Isotope Probe Labeling Coupled with Ultra High-Performance Liquid Chromatography/mass Spectrometry. Journal of Chromatography A 2015, 1410, 154–163. (72) Liu, X.; Moon, S. H.; Mancuso, D. J.; Jenkins, C. M.; Guan, S.; Sims, H. F.; Gross, R. W. Oxidized Fatty Acid Analysis by Charge-Switch Derivatization, Selected Reaction Monitoring, and Accurate Mass Quantitation. Analytical Biochemistry 2013, 442 (1), 40–50. (73) McLafferty, F. W. and Turecek, F. Interpretation of Mass Spectra, 4th ed.; University Science Books: Mill Valley, CA, 1993. (74) Xu, R. N.; Fan, L.; Rieser, M. J.; El-Shourbagy, T. A. Recent Advances in High-Throughput Quantitative Bioanalysis by LC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis 2007, 44 (2), 342–355. (75) Maxwell, L. Eidinoff.; Joseph, E.Knoll,; Dolph, Klein.; Effect of 5-fluorouracil on the incorporation of precursors into nucleic acid pyrimidines. Archives of Biochemistry and Biophysics. 1957, 71 (1), 274-275. (76) Santi, D. V.; McHenry, C. S. 5-Fluoro-2′-Deoxyuridylate: Covalent Complex with Thymidylate Synthetase. Proceedings of the National Academy of Sciences 1972, 69 (7), 1855–1857. (77) 衛生福利部藥物食品署, 西藥許可證, (https://www.fda.gov.tw/mlms/H0001D.aspx?Type=Lic&LicId=01012452) (78) Cheeseman SL.; Joel SP.; Chester JD. A Modified de Gramont Regimen of Fluorouracil, Alone and With Oxaliplatin, for Advanced Colorectal Cancer. British Journal of Cancer 2002, 87(4), 393-9. (79) De Gramont A.; Figer A.; Seymour M. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. Journal of Clinical Oncology 2000, 18(16), 2938-2947. (80) Conroy, T.; Desseigne, F.; Ychou, M. FOLFIRINOX Versus Gemcitabine for Metastatic Pancreatic Cancer The New England Journal of Medicine 2011, 364(19), 1817-25. (81) Pelzer, U.; Schwaner, I.; Stieler, J.; Adler, M.; Seraphin, J.; Dörken, B.; Riess, H.; Oettle, H. Best Supportive Care (BSC) versus Oxaliplatin, Folinic Acid and 5-Fluorouracil (OFF) plus BSC in Patients for Second-Line Advanced Pancreatic Cancer: A Phase III-Study from the German CONKO-Study Group. European Journal of Cancer 2011, 47 (11), 1676–1681. (82) Lee, J. J.; Beumer, J. H.; Chu, E. Therapeutic Drug Monitoring of 5-Fluorouracil. Cancer Chemotherapy and Pharmacology 2016, 78 (3), 447–464. (83) Chantry, AS.; Quaranta, S.; Ciccolini, J.; Lacarelle, B. Clinical application, limits and perspectives of pharmacogenetic and pharmacokinetic analysis of anticancer drugs. Annales De Biologie Clinique 2014, 72(5), 527-42. (84) Jobson MD. Second-generation antipsychotic medications: pharmacology, administration, and side effects. Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. https://www.uptodate.com/contents/fluorouracil-systemic-drug-information?source=search_result&search=5-fluorouracil&selectedTitle=1~149#F8100861 (Accessed on January 02, 2017.) (85) National Institute for Occupational Safety and Health (NIOSH). . 2004 NIOSH alert: preventing occupational exposure to antineoplastic and other hazardous drugs in health care settings.Cincinnati, OH: NIOSH; 1– 61. (86) Jin, Yoshida.; Shigeki, Koda.; Shozo, Nishida.; Hiroyuki, Nakano.; Genshin, Tei.; Shinji, Kumagai. Association between Occupational Exposure and Control Measures for Antineoplastic Drugs in a Pharmacy of a Hospital. The Annals of Occupational Hygiene 2012, 57(2), 251–260 (87) Poupeau, C.; Tanguay, C.; Plante, C.; Gagné, S.; Caron, N.; Bussières, J.-F. Pilot Study of Biological Monitoring of Four Antineoplastic Drugs among Canadian Healthcare Workers. Journal of Oncology Pharmacy Practice 2017, 23 (5), 323–332. (88) Crickman, R. Chemotherapy Safe Handling: Limiting Nursing Exposure With a Hazardous Drug Control Program. Clinical Journal of Oncology Nursing 2017, 21 (1), 73–78. (89) Bayard, Clarkson M.D.; Annabel, O'Connor.; LaReine, Winston.; Dorris, Hutchison. The physiologic disposition of 5-fluorouracil and 5-fluoro-2′-deoxyuridine in man. Clinical Pharmacology & Therapeutics 1964, 5(5), 581-610. (90) YAMAGUCHI, M.; NAKAMURA, M.; KURODA, N.; OHKURA, Y. Determination of 5-Fluorouracil and 5-Fluoro-2′-Deoxyuridine in Human Serum by High Performance Liquid Chromatography with Fluorescence Detection. Analytical sciences 1987, 3 (1), 75–79. (91) Coe, R. A.; Earl, R. A.; Johnson, T. C.; Lee, J. W. Determination of 5-Fluorouracil in Human Plasma by a Simple and Sensitive Reversed-Phase HPLC Method. Journal of pharmaceutical and biomedical analysis 1996, 14 (12), 1733–1741. (92) Eiji,Matsushima.; Kozo,Yoshida.; Ryuichi, Kitamura.; Ken-ichiro, Yoshida. Determination of S-1 (combined drug of tegafur, 5-chloro-2,4- dihydroxypyridine and potassium oxonate and 5-fluorouracil in human plasma and urine using high-performance liquid chromatography and gas chromatography-negative ion chemical ionization mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications 1997, 691(1), 95-104. (93) Wang, K.; Nano, M.; Mulligan, T.; Bush, E. D.; Edom, R. W. Derivatization of 5-Fluorouracil with 4-Bromomethyl-7-Methoxycoumarin for Determination by Liquid Chromatography-Mass Spectrometry. Journal of the American Society for Mass Spectrometry 1998, 9 (9), 970–976. (94) House, L.; Ramı́rez, J.; Ratain, M. Simultaneous Determination of 5-Fluorouracil and Uracil by High-Performance Liquid Chromatography Using Four Serial Columns. Journal of Chromatography B: Biomedical Sciences and Applications 1998, 720 (1), 245–250. (95) Chu, D.; Gu, J.; Liu, W.; Paul Fawcett, J.; Dong, Q. Sensitive Liquid Chromatographic Assay for the Simultaneous Determination of 5-Fluorouracil and Its Prodrug, Tegafur, in Beagle Dog Plasma. Journal of Chromatography B 2003, 795 (2), 377–382. (96) Remaud, G.; Boisdroncelle, M.; Morel, A.; Gamelin, A. Sensitive MS/MS–liquid Chromatography Assay for Simultaneous Determination of Tegafur, 5-Fluorouracil and 5-Fluorodihydrouracil in Plasma. Journal of Chromatography B 2005, 824 (1–2), 153–160. (97) Kosovec, J. E.; Egorin, M. J.; Gjurich, S.; Beumer, J. H. Quantitation of 5-Fluorouracil (5-FU) in Human Plasma by Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry. Rapid Communications in Mass Spectrometry 2008, 22 (2), 224–230. (98) Büchel, B.; Rhyn, P.; Schürch, S.; Bühr, C.; Amstutz, U.; R. Largiadèr, C. LC-MS/MS Method for Simultaneous Analysis of Uracil, 5,6-Dihydrouracil, 5-Fluorouracil and 5-Fluoro-5,6-Dihydrouracil in Human Plasma for Therapeutic Drug Monitoring and Toxicity Prediction in Cancer Patients: Simultaneous Analysis of Endogenous and Fluorinated Pyrimidines. Biomedical Chromatography 2013, 27 (1), 7–16. (99) Holleran, J. L.; Eiseman, J. L.; Parise, R. A.; Kummar, S.; Beumer, J. H. LC–MS/MS Assay for the Quantitation of FdCyd and Its Metabolites FdUrd and FU in Human Plasma. Journal of Pharmaceutical and Biomedical Analysis 2016, 129, 359–366. (100) Jandera, P. Stationary and Mobile Phases in Hydrophilic Interaction Chromatography: A Review. Analytica Chimica Acta 2011, 692 (1–2), 1–25. (101) Merck KGaA, Darmstadt, Germany and/or its affiliates, SeQuant® ZIC®-HILIC HPLC Columns, https://www.merckmillipore.com/TW/zh/products/analytics-sample-prep/chromatography-for-analysis/analytical-hplc/sequant-zic-hilic-hplc-columns/sequant-zic-hilic/g0mb.qB.kYoAAAE_wOd3.Lxi,nav?ReferrerURL=https%3A%2F%2Fwww.google.com.tw%2F. (102) Kawachi, Y.; Ikegami, T.; Takubo, H.; Ikegami, Y.; Miyamoto, M.; Tanaka, N. Chromatographic Characterization of Hydrophilic Interaction Liquid Chromatography Stationary Phases: Hydrophilicity, Charge Effects, Structural Selectivity, and Separation Efficiency. Journal of Chromatography A 2011, 1218 (35), 5903–5919. (103) Murphy, R. F.; Balis, F. M.; Poplack, D. G. Stability of 5-Fluorouracil in Whole Blood and Plasma. Clinical chemistry 1987, 33 (12), 2299–2300. (104) Kosovec, J. E.; Egorin, M. J.; Gjurich, S.; Beumer, J. H. Quantitation of 5-Fluorouracil (5-FU) in Human Plasma by Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry. Rapid Communications in Mass Spectrometry 2008, 22 (2), 224–230. (105) Gamelin, E.; Delva, R.; Jacob, J.; Merrouche, Y.; Raoul, J. L.; Pezet, D.; Dorval, E.; Piot, G.; Morel, A.; Boisdron-Celle, M. Individual Fluorouracil Dose Adjustment Based on Pharmacokinetic Follow-Up Compared With Conventional Dosage: Results of a Multicenter Randomized Trial of Patients With Metastatic Colorectal Cancer. Journal of Clinical Oncology 2008, 26 (13), 2099–2105. (106) Ulanowska, A.; Ligor, T.; Michel, M.; Buszewski, B. Hyphenated and Unconventional Methods for Searching Volatile Cancer Biomarkers. Ecol. Chem. Eng 2010, 17 (1), 9–23. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20334 | - |
| dc.description.abstract | 在近代基於質譜儀 (Mass spectrometer, MS) 技術的進步,徹底改善我們分析生物樣品中複雜混合物的能力,讓我們得以靈敏且專一的測量生物樣品中的分析物。這種高靈敏度和高通量分析工具已被廣泛應用於各種生醫研究的領域,包括代謝體學以及藥物分析。
本研究第一部分以超高壓液相層析串聯式質譜儀 (Ultra High Performance Liquid Chromatography, UHPLC-MS/MS) 建立靈敏之分析方法測定生物檢體中的類花生酸 (Eicosanoids),以助於研究其在健康和疾病路徑中的作用,進而能更深入地了解這些類花生酸在生物體所扮演的角色。由於類花生酸具有結構相似度高和內生性濃度極低的特性,分析生物檢體中的類花生酸是極具挑戰性的。為了提升檢測靈敏度,本研究的第一部分開發了兩種分析類花生酸的方法。 第一種分析方法優化液相層析條件、質譜參數,並利用固相萃取做為樣品前處理步驟來減少基質的干擾,再搭配大體積進樣的方法提升質譜儀偵測靈敏度。本研究進一步將最適化分析條件進行準確度、精密度、線性、定量極限和樣品萃取回收率和安定性的確效。 第二種分析方法同樣利用固相萃取做為樣品前處理步驟來減少基質的干擾,並以3-(Aminomethyl)pyridine (3-PA) 進行衍生以增加類花生酸的靈敏度。衍生後的類花生酸的訊號感度顯著地提高。在標準品溶液有6至396倍的信號增強;而在標準品添加血漿溶液中觀察到1.4至425倍的信號增強。最後,因發展衍生化方法時有觀察到儀器零件壽命縮短的現象,且未添加標準品的檢品可測量到的類花生酸數量並未顯著提高,故最終選擇未衍生法應用分析生物檢品中的類花生酸。 本研究以最適化分析方法測定小鼠腦組織中的類花生酸之含量,研究MCAO手術造成的傷害以及Atorvastatin的影響。研究發現MCAO後三小時主要影響氧化壓力、抗血小板凝集、血纖維蛋白溶酶原活化和血壓調節的路徑,它們大多屬於Prostaglandin (PG) 類型的類花生酸。Atorvastatin在這段期間主要影響抗血小板凝集、血壓調節、氧化壓力和細胞毒性的路徑,且Atorvastatin可逆轉 TXB2、PGF2α 因MCAO所造成的變化。MCAO後二十四小時主要為影響氧化壓力、血小板凝集、血壓調節和具細胞毒性物質的類花生酸,它們大多屬於Hydroxyeicosatetraenoic acid (HETE) 類型的類花生酸。Atorvastatin在這段期間對類花生酸影響較不顯著。但這些推測的機轉在未來需要更多的研究與驗證。 本研究的第二部分開發定量人類血漿中5-Fluorouracil (5-FU) 的超高壓液相層析串聯式質譜儀分析方法。本分析法採用簡單的去蛋白法進行樣品前處理,分析時間僅需六分鐘。方法經專一性、回收率、安定性、線性、精密度和準確度的確效,驗證此方法可用於準確測量人體血漿中的5-FU。 | zh_TW |
| dc.description.abstract | The technological advances in modern mass spectrometer (MS) have revolutionized our ability to analyze complex mixtures in biological samples with good sensitivity and specificity. With the development of this high sensitivity and high throughput analysis tool, it has been applied to variety of biomedical analysis fields, including metabolomics and drug analysis.
In the first part, in order to gain more understanding of the biological roles of eicosanoids and to facilitate the studying of pathway change of eicosanoids in disease state, two sensitive analytical methods were established for quantifying eicosanoids in biological samples by ultra-high pressure liquid chromatography mass spectrometry (LC-MS/MS). Eicosanoids are characterized by structurally similarity and very low endogenous abundance, and the development of the analysis method is very challenging. In order to improve the detection sensitivity of the mass spectrometer, two methods for analyzing eicosanoids have been developed in the first part of this study. The first analytical method has been optimized for chromatographic conditions, mass parameters, and the solid phase extraction procedure used as the sample pretreatment step to reduce the interference from the matrix. Large volume injection was applied for improving detection sensitivity of mass spectrometer. The method was validated in terms of accuracy, precision, linearity, limit of quantification, extraction recovery and stability. The second analytical method also used the solid phase extraction as the sample pretreatment step to reduce matrix interference. Eicosanoids were derivatized by using 3- (Aminomethyl) pyridine (3-PA) to improve detection sensitivity. The results displayed that there are 6 to 396-folds signal enhancement for eicosanoid standard solutions, and 1.4 to 425-folds signal enhancement in plasma spiked samples after derivatization. However, it was noticed that the life of the instrument parts were shorten and the number of detectable eicosanoids was not significantly increased, we finally choose the first analytical method for application. In this study, the contents of eicosanoids in mouse brain tissue were determined by the optimized method to study the damage caused by MCAO and the effect of Atorvastatin. The results shown that three hours after MCAO mainly affected eicosanoids involved in the pathways of oxidative stress, anti-platelet aggregation, plasminogen activation and blood pressure regulation. Most of them belong to prostaglandin (PG). Atorvastatin mainly affected eicosanoids involved in the anti-platelet aggregation, blood pressure regulation, oxidative stress and cytotoxic pathways during this period. In addition, Atorvastatin reversed the changes of TXB2 and PGF2α due to MCAO.Twenty-four hours after MCAO mainly affected eicosanoids involved in the pathways of oxidative stress, platelet aggregation, blood pressure regulation and cytotoxic substances. Most of them belong to the class hydroxyeicosatetraenoic acid (HETE). Atorvastatin showed less effect on eicosanoids during this period. However, these observations need more investigation and verification in the future. In the second part of this thesis, a method for the analysis of 5-Fluorouracil (5-FU) in human plasma by LC-MS/MS was developed. This assay uses a simple deproteinization method for sample preparation, which takes only six minutes in LC-MS analysis. The method was validated by specificity, recovery, stability, linearity, accuracy and precision and shown can be used to accurately measure 5-FU in human plasma. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:45:28Z (GMT). No. of bitstreams: 1 ntu-106-R04423001-1.pdf: 4489623 bytes, checksum: 4376c8f6684d66b0c911b021d483568c (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II 英文摘要 (Abstract) IV 目錄 VII 圖目錄 X 表目錄 XII 第一部分、開發Eicosanoids之LC-MS/MS分析方法並應用於Atorvastatin治療急性缺血性中風的研究 1 1.1 序論 2 1.1.1 類花生酸 (Eicosanoids) 2 1.1.1.1 類花生酸的代謝途徑 2 1.1.1.2 類花生酸的生理功能 4 1.1.2 中風 (Stroke) 4 1.1.3 Statin、中風和類花生酸 5 1.2 使用2D-LC-MS/MS分析生物檢品中的類花生酸 6 1.2.1 類花生酸分析技術的文獻回顧 6 1.2.2 類花生酸在分析上的困難 7 1.2.3 研究目的 8 1.2.4 實驗材料與方法 9 1.2.4.1 實驗設備 9 1.2.4.2 實驗藥品與試劑 9 1.2.4.3 標準品溶液製備 10 1.2.4.4 檢品溶液製備 10 1.2.4.5 液相層析質譜參數設定 11 1.2.4.6 數據處理 13 1.2.4.7 動物實驗設計研究缺血性中風與Statin藥物的影響 13 1.2.5 結果與討論 13 1.2.5.1 質譜參數之最佳化 14 1.2.5.2 層析條件之設定 18 1.2.5.3 樣品前處理條件之開發 19 1.2.5.4 分析方法之確效 21 1.2.5.5 應用於研究缺血性中風與Statin藥物的影響 23 1.2.6 結論 30 1.2.7 附表 32 1.2.8 附圖 51 1.3 使用衍生化法分析生物檢品中的類花生酸 68 1.3.1 類花生酸的衍生化分析法之背景 68 1.3.2 研究目的 69 1.3.3 實驗材料與方法 69 1.3.3.1 實驗設備 69 1.3.3.2 實驗溶劑與試劑 70 1.3.3.3 檢品溶液製備 70 1.3.3.4 檢品溶液製備 70 1.3.3.5 液相層析質譜參數設定 72 1.3.4 結果與討論 74 1.3.4.1 衍生化反應與質譜參數設定 74 1.3.4.2 偶合試劑的選擇 74 1.3.4.3 層析管柱的選擇 74 1.3.4.4 衍生化溫度及時間之最佳化 75 1.3.4.5 衍生化後靈敏度改善 76 1.3.4.6 衍生化後安定度改善 78 1.3.5 結論 78 1.3.6 附表 80 1.3.7 附圖 87 第二部分、建立測量人體血漿中5-Fluorouracil的LC-MS/MS分析方法 94 2.1 緒論 95 2.1.1 藥物介紹 95 2.1.2 研究背景 96 2.1.3 研究目的 97 2.1.4 實驗部分 97 2.1.4.1 實驗設備 97 2.1.4.2 實驗藥品與試劑 98 2.1.4.3 標準品溶液製備 98 2.1.4.4 檢品溶液製備 98 2.1.4.5 液相層析質譜參數設定 98 2.1.4.6 數據處理 99 2.1.5 結果與討論 100 2.1.5.1 層析方法的優化 100 2.1.5.2 專一性 (Specificity) 和回收率 (Recovery) 100 2.1.5.3 安定性 (Stability) 101 2.1.5.4 線性 (Linearity)、線性範圍和定量下限 (LLOD) 101 2.1.5.5 精密度 (Precision) 和準確度 (Accuracy) 102 2.1.6 結論 102 2.1.7 附表 103 2.1.8 附圖 107 3. 文獻 109 | |
| dc.language.iso | zh-TW | |
| dc.title | 第一部分、開發Eicosanoids之LC-MS/MS分析方法並應用於Atorvastatin治療急性缺血性中風的研究
第二部分、建立測量人體血漿中5-Fluorouracil的LC-MS/MS分析方法 | zh_TW |
| dc.title | Part 1: Development of a LC-MS/MS Method for Eicosanoids Analysis and Its’ Application in Studying Atorvastatin Treatment in Ischemic Stroke
Part 2: Quantification of 5-Fluorouracil in Human Plasma by LC-MS/MS | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴建成,湯頌君 | |
| dc.subject.keyword | 類花生酸,中風,Atorvastatin,液相層析串聯式質譜儀,代謝體,5-氟尿嘧啶, | zh_TW |
| dc.subject.keyword | Eicosanoids,stroke,Atorvastatin,LC-MS/MS,metabolomics,5-fluorouracil, | en |
| dc.relation.page | 123 | |
| dc.identifier.doi | 10.6342/NTU201704410 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-11-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
