請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20306完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 毛紹綱 | |
| dc.contributor.author | Chih-Hsiang Liu | en |
| dc.contributor.author | 劉志翔 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:44:42Z | - |
| dc.date.copyright | 2018-01-27 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2018-01-03 | |
| dc.identifier.citation | [1] Amazon Prime Air. Retrived June 28, 2017, from https:// www.amazon.com/Amazon-Prime-Air/b?node=8037720011.
[2] DJI Phantom 4 Pro. Retrived June 28, 2017, from https://www.dji.com/phantom-4-pro. [3] TYPHOON H. Retrived June 28, 2017, from http://us.yuneec.com/ typhoon-h-overview. [4] Apple Inc. What is iBeacon? Retrived June 28, 2017, from https://support.apple.com/en-gb/HT202880. [5] Aaron Tilley, Forbes Staff. Apple iBeacons Find Their Way Into McDonald’s. Retrived June 28, 2017, from https://goo.gl/5vidbN. [6] Y. Wang, X. Yang, Y. Zhao, Y. Liu and L. Cuthbert,”Bluetooth positioning using RSSI and triangulation methods,” in Consumer Communications and Networking Conference, 11-14 Jan.2013, pp.837-842. [7] V. Pierlot and M.van,”A new three object triangulation algorithm for mobile robot positioning,” Robotics, vol. 30, no. 3, pp.566-577, Jun. 2014. [8] Robin Heydon, Bluetooth Low Energy:The Developer’s Handbook, 1st Edition. Prentice Hall, November 7, 2012. [9] Bluetooth 4.1, 4.2 and 5 compatible Bluetooth Low Energy SoCs and Tools Meet IOT Challenge. Retrived July 3, 2017, from https://www.digikey.com/en/articles/techzone/2017/apr/bluetooth-41-42-5-low-energy-socsmeet-iot-challenges-part-1. [10] Nordic Semiconductor IPv6 over Bluetooth Smart protocol stack for nRF51 Series SoCs enables small, low cost, ultra-low power Internet of Things applications. Retrived July 3, 2017, from https://www.nordicsemi.com/eng/News/News-releases/Product-Related-News/Nordic-Semiconductor-IPv6-over-Bluetooth-Smart-protocol-stack-for-nRF51-Series-SoCs-enablessmall-low-cost-ultra-low-power-Internet-of-Things-applications. [11] Andrew Martonik. Galaxy S8 is the first phone with Bluetooth 5. Retrived July 3, 2017, from https://www.androidcentral.com/galaxy-s8-first-phone-bluetooth-5. [12] GPS Accuracy. Retrived June 28, 2017, from http://www.gps.gov/systems/gps/performance/accuracy/. [13] Zhao, Xiaojie, et al, 'Does BTLE measure up against wifi? a comparison of indoor location performance,' in 20th European Wireless Conference, 14-16 May 2014. [14] M.M. Atia, et al, 'A WiFi-aided reduced inertial sensors-based navigation system with fast embedded implementation of particle filtering,' in 8th International Symposium onMechatronics and its Applications, 10-12 April 2012. [15] SKY85314-11: 2.4 GHz, 64 QAM WLAN Front-End Module. Retrived June 28, 2017, from http://www.skyworksinc.com/uploads/documents/SKY85314_11_204336A_PS.pdf. [16] Zhuang, Yuan, et al. 'Smartphone-based indoor localization with bluetooth low energy beacons,' Sensors, vol. 16, no. 5, pp. 596, April, 2016. [17] Copter Attitude Control. Retrieved June 10, 2017, from http://ardupilot.org/dev/docs/apmcopter-programming-attitude-control-2.html. [18] Quadcopter Basics. Retrived June 28, 2017, from https://creativentechno.wordpress.com/2012/06/13/quadcopter-basics/. [19] Sensefly “eBee Plus”. Retrived June 28, 2017, from https://www.sensefly.com/drones/ebee-plus.html. [20] Parrot DISCO FPV. Retrived June 28, 2017, from https://www.parrot.com/us/Drones/Parrot-disco-fpv#parrot-disco-fpv-details. [21] 羅平慶、吳重緯、郭俊傑,”淺談多軸飛行器於工程上之應用,” Journal of Professional Geotechnical Engineers, no. 9, pp. 40-47, Dec., 2014. [22] Types of Drone: Multi-Rotor vs Fixed-Wing vs Single Rotor vs Hybrid VTOL. Retrived July 4, 2017, from https://www.auav.com.au/articles/drone-types/. [23] Featured Product: The Volanti. Retrived July 4, 2017, from http://carbonix.com.au/aerospace/. [24] Luke Jonhson. 9 Things You Need to Know about Amazon Prime Air Drone Delivery Service. Retrived July 4, 2017, from http://www.digitalspy.com/tech/feature/a820748/amazon-prime-air-drone-delivery-service/. [25] Michael Zhang. XCRAFT Raises $1.5M from Shark Tank for its Next Gen Camera Drones. Retrived July 4, 2017, from https://petapixel.com/2015/10/26/xcraft-raises-1-5m-from-shark-tank-for-its-next-gen-cameradrones/ [26] Xplus one. Retrived July 4, 2017, from http://xcraft.io/. [27] Texas Instruments 2.4-GHz Bluetooth low energy System-on-Chip. Retrieved June 11, 2017, from http://www.ti.com/lit/ds/symlink/cc2540.pdf. [28] Texas Instruments 2.4-GHz Range Extender. Retrieved June 11, 2017, from http://www.ti.com/lit/ds/symlink/cc2592.pdf. [29] Steve C. Cripps, RF Power Amplifiers for Wireless Communications(Second Edition), Artech House, May 30, 2006. [30] Arduino MICRO & Genuino MICRO. Retrieved June 11, 2017, from https://www.arduino.cc/en/Main/arduinoBoardMicro. [31] How to Read a RC Receiver with a Microcontroller. Retrieved July 6, 2017, from http://rcarduino.blogspot.tw/2012/01/how-to-read-rc-receiver-with.html. [32] John D. Kraus, Ronald J. Marhefka, Antennas: For All Applications, Third Edition, McGraw-Hill series in electrical engineering, November 12, 2001. [33] Terukazu Kosako, Holger F. Hofmann and Yutaka Kadoya, ”Directional emission of light from a nano-optical Yagi-Uda antenna,” Nature Photonics, vol. 4, pp. 312-315, May, 2010. [34] Jean-Marie Floc’h and Ahmad El Sayed Ahmad, “Broadband Quasi-Yagi Antenna for WiFi and WiMax Applications,” Wireless Engineering and Technology, vol. 4, no. 2, pp.87-91, April, 2013. [35] APM 2.5 and 2.6 Overview. Retrieved June 11, 2017, from http://ardupilot.org/copter/docs/common-apm25-and-26-overview.html. [36] Code Overview(Copter). Retrieved July 6, 2017, from http://ardupilot.org/dev/docs/apmcopter-code-overview.html#apmcopter-code-overview. [37] HOU Jiatong, et al, ”The Analysis and Research on the accuracy of WSN node location under the influence of multipath reflection,” in 35th Control Conference, 27-29 July 2016. [38] Javier Rodas, et al, ”Multiple Antennas Bluetooth System for RSSI Stabilization,” in 4th IEEE ISWCS, 17-19 Oct. 2007. [39] Difference between UART, SPI and I2C. Retrieved July 7, 2017, from http://www.rfwireless-world.com/Terminology/UART-vs-SPI-vs-I2C.html. [40] 機場禁限建管制查詢系統. Retrieved June 12, 2017, from http://web-gis2000.caa.gov.tw/caaPublic/(S(uzk1extrhsksad0dje2nja3m))/Taipei.aspx. [41] R. E. Kalman,”A New Approach to Linear Filtering and Prediction Problems,” Transactions of the ASME–Journal of Basic Engineering, vol. 82, no. 1, pp. 35-45, 1960. [42] Chen Chen, Yan Chen, Yi Han, Hung-Quoc Lai, Feng Zhang, and K. J. Ray Liu,”Achieving Centimeter Accuracy Indoor Localization on WiFi Platforms: An Multi-Antenna Approach,” IEEE Internet of Things Journal, vol. 4, no. 1, pp. 122-134, November, 2016. [43] 蔡兆倫,多天線藍牙車載資通訊系統之設計與應用,碩士論文,國立台灣大學, 台北,2016. [44] Yan, Xiaoyong, et al,'A high accuracy localization based on RSSI measurements,' in Consumer Electronics, Communications and Networks (CECNet), 16-18 April 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20306 | - |
| dc.description.abstract | 本論文提出了一個整合智慧型手機、藍牙模組、微控制器、飛控板以及多個天線的自動跟隨系統,並將其安置在一台四軸無人機上。本系統利用低功耗藍牙協議地址的專一性以及RSSI的偵測技術,試圖解決現行基於影像辨識的自動跟隨系統常常遇到的一些問題。為了使系統精確地執行跟隨功能,本論文探討了兩種平滑化RSSI 曲線的方法,並且提出了一套演算法,把以無人機為中心的區域進行劃分,系統會根據使用者所在的區域進行相對應的移動。自動跟隨系統在古亭河濱公園分別對行走以及騎單車的使用者進行實測。本自動跟隨系統能在這兩種情境下順利地跟隨使用者,證實了本論文所提出的想法的可行性。 | zh_TW |
| dc.description.abstract | This thesis proposes an auto-following system for drone, which is composed of a smart phone, Bluetooth Low Energy modules, a microcontroller, a flight-control board, and multiple antennas. Utilizing the device’s unique address in Bluetooth protocol and the estimation technique of RSSI, the proposed system can solve the problems often plaguing an image recognition-based auto-following system. To assure its ability to follow the user accurately, the system employs two methods to smooth the RSSI curve. Moreover, the thesis proposes an algorithm that can divide the area with the drone at its center into several sections. The system will direct the drone to the move correspondingly according to the section where the user is located. The auto-following system mounted on a drone is tested at Guting riverside park in Taipei under two scenarios, with the user walking and the other with the user riding a bike. The system performed satisfactorily in both scenarios, proving the validity of the methods proposed in this thesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:44:42Z (GMT). No. of bitstreams: 1 ntu-106-R04942023-1.pdf: 4931678 bytes, checksum: 260f8ae5fff0cd18b69f7829fbd3bb71 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書…….………………………………………………………..i
誌謝…………………………………………………………………………….. ii 中文摘要……………………………………………………………………………..iii ABSTRACT…………………………………………………………...……………..iv 目錄…………………………………………………………………………………..v 圖目錄……………………………………………………………………………..vii 表目錄………………………………………………………………………………...x 第一章緒論.……………………………………………………………………….1 1.1 概論……………...………………………………………………………….1 1.2 低功耗藍牙……………………………………………………………........5 1.3 四軸無人機…………………………………………………………..…….10 1.4 作品分工與個人貢獻………………………………………………..…….16 第二章自動跟隨系統之硬體架構.………………………………………………18 2.1 CC2540 F256 低功耗藍牙模組………….……… …….……. . .19 2.2 CC2592 射頻放大器…............................................................22 2.3 Arduino Micro 開發板...................................................................27 2.4 準八木天線............................................................................ ....30 2.5 APM2.6 飛控板...... ... .. ... ... .. ... . ... ... ... .. ... .. ... .. ... .. ... ... ... .. ... .. ..33 2.6 自動跟隨無人機之實體圖...................................................................35 第三章 自動跟隨系統之程式架構………………..……………………………..37 3.1 RSSI 曲線平滑化……………………..……………………………….38 3.2 智慧型手機上的使用者位置判讀流程.....................................................44 3.3 UART 通信協議…….………………………………..……………….......49 3.4 Arduino 無人機控制流程…………………..…..……………..……….....53 第四章 具自動跟隨功能無人機之實測環境與情境……………………..…….57 4.1 實測一:行走跟隨.…………………………..……………………………..59 4.2 實測二:腳踏車跟隨…...…………..………..……………………………..61 第五章 總結與未來展望…………………………..………………………..…….63 參考文獻…………………………………………………………………….……....65 | |
| dc.language.iso | zh-TW | |
| dc.title | 四軸無人機之射頻自動跟隨系統設計 | zh_TW |
| dc.title | Design of an Auto-Following System with Radio Signal for Quadcopter | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳瑞北,鄭士康 | |
| dc.subject.keyword | 藍牙,無人機,自動跟隨系統,天線,多重路徑干擾, | zh_TW |
| dc.subject.keyword | Bluetooth,drone,auto-following system,antenna,multipath interference, | en |
| dc.relation.page | 68 | |
| dc.identifier.doi | 10.6342/NTU201704181 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-01-03 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
