Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20295
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李致毅(Jri Lee)
dc.contributor.authorYang-Yang Fuen
dc.contributor.author付陽陽zh_TW
dc.date.accessioned2021-06-08T02:44:24Z-
dc.date.copyright2018-01-27
dc.date.issued2018
dc.date.submitted2018-01-11
dc.identifier.citationReferences
[1] J. D’ambrosia, “40 gigabit Ethernet and 100 gigabit Ethernet: The development of a flexible architecture [Commentary],” IEEE Communications Magazine, vol. 47, no. 3, 2009.
[2] B. Razavi, Design of integrated circuits for optical communications. John Wiley & Sons, 2012.
[3] P.-C. Chiang, J.-Y. Jiang, H.-W. Hung, C.-Y. Wu, G.-S. Chen, and J. Lee, “4× 25 Gb/s transceiver with optical front-end for 100 GbE system in 65 nm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 50, no. 2, pp. 573–585, 2015.
[4] W.-L. Lee, K.-C. Wu, J.-Y. Jiang, and J. Lee, “A laser ranging radar transceiver with modulated evaluation clock in 65nm CMOS technology,” in VLSI Circuits (VLSIC), 2011 Symposium on. IEEE, 2011, pp. 286–287.
[5] J. Lee and K.-C. Wu, “A 20-Gb/s full-rate linear clock and data recovery circuit with automatic frequency acquisition,” IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3590–3602, 2009.
[6] C. Kromer, G. Sialm, T. Morf, M. L. Schmatz, F. Ellinger, D. Erni, and H. Jäckel, “A Low-Power 20-GHz 52-dB Transimpedance Amplifier in 80-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 39, no. 6, p. 885, 2004.
[7] M. Rakowski, M. Ingels, K. De Meyer, M. Steyaert, P. Absil, and J. Van Campenhout, “Highly sensitive, low-power, 10-20Gb/s transimpedance amplifier based on cascaded CMOS inverter gain stages,” in Optical Interconnects Conference, 2014 IEEE. IEEE, 2014, pp. 115–116.
[8] S. M. Park and C. Toumazou, “Low noise current-mode CMOS transimpedance amplifier for giga-bit optical communication,” in Circuits and Systems, 1998. ISCAS’98. Proceedings of the 1998 IEEE International Symposium on, vol. 1. IEEE, 1998, pp. 293–296.
[9] J. Lee, S.-J. Song, S. M. Park, C.-M. Nam, Y.-S. Kwon, and H.-J. Yoo, “A multichip on oxide of 1 Gb/s 80 dB fully differential CMOS transimpedance amplifier for optical interconnect applications,” in Solid-State Circuits Conference, 2002. Digest of Technical Papers. ISSCC. 2002 IEEE International, vol. 1. IEEE, 2002, pp. 80–447.
[10] S. S. Mohan, M. D. M. Hershenson, S. P. Boyd, and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE Journal of Solid-State Circuits, vol. 35, no. 3, pp. 346–355, 2000.
[11] S. Hara, T. Tokumitsu, and M. Aikawa, “Lossless broad-band monolithic microwave active inductors,” IEEE Transactions on Microwave Theory and Techniques, vol. 37, no. 12, pp. 1979–1984, 1989.
[12] J. LEE, “A 20-Gb/s adaptive equalizer in 0.13-μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 41, no. 9, pp. 2058–2066, 2006.
[13] S. Parikh, T. Kao, Y. Hidaka, J. Jiang, A. Toda, S. Mcleod, W. Walker, Y. Koyanagi, T. Shibuya, and J. Yamada, “A 32Gb/s wireline receiver with a low-frequency equalizer, CTLE and 2-tap DFE in 28nm CMOS,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International. IEEE, 2013, pp. 28–29.
[14] H. Wang, C.-C. Lee, A.-M. Lee, and J. Lee, “A 21-Gb/s 87-mw transceiver with FFE/DFE/linear equalizer in 65-nm CMOS technology,” in VLSI Circuits, 2009 Symposium on. IEEE, 2009, pp. 50–51.
[15] S. Galal and B. Razavi, “40Gb/s amplifier and ESD protection circuit in 0.18-μm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, p. 2389–2396, 2004.
[16] J. Lee and M. Liu, “A 20-Gb/s burst-mode clock and data recovery circuit using injection-locking technique,” IEEE Journal of Solid-State Circuits, vol. 43, no. 3, pp. 619–630, 2008.
[17] J. Lee, “High-speed circuit designs for transmitters in broadband data links,” IEEE Journal of Solid-State Circuits, vol. 41, no. 5, pp. 1004–1015, 2006.
[18] A. Pottbacker, U. Langmann, and H.-U. Schreiber, “A Si bipolar phase and frequency detector IC for clock extraction up to 8 Gb/s,” IEEE Journal of Solid-State Circuits, vol. 27, no. 12, pp. 1747–1751, 1992.
[19] E. E. Hegazi, J. Rael, and A. Abidi, The designer’s guide to high-purity oscillators. Springer Science & Business Media, 2006.
[20] J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” in Custom Integrated Circuits Conference, 2000. CICC. Proceedings of the IEEE 2000. IEEE, 2000, pp. 569–572.
[21] A. A. Abidi, How phase noise appears in oscillators. Kluwer Academic, Boston, Mass, 1997.
[22] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179–194, 1998.
[23] E. Hegazi, H. Sjoland, and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE Journal of Solid-State Circuits, vol. 36, no. 12, pp. 1921–1930, 2001.
[24] B. Çatlı, A. Nazemi, T. Ali, S. Fallahi, Y. Liu, J. Kim, M. Abdul-Latif, M. R. Ahmadi, H. Maarefi, A. Momtaz et al., “A sub-200 fs RMS jitter capacitor multiplier loop filter-based PLL in 28 nm CMOS for high-speed serial communication applications,”in Custom Integrated Circuits Conference (CICC), 2013 IEEE. IEEE, 2013, pp. 1–4.
[25] P. Larsson, “An offset-cancelled CMOS clock recovery/demux with a half-rate linear phase detector for 2.5 Gb/s optical communication,” in Solid-State Circuits Conference, 2001. Digest of Technical Papers. ISSCC. 2001 IEEE International. IEEE, 2001, pp. 74–75.
[26] J. Mahattanakul and J. Chutichatuporn, “Design procedure for two-stage CMOS opamp with flexible noise-power balancing scheme,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 8, pp. 1508–1514, 2005.
[27] T. Yoon, J.-Y. Lee, K. Han, J. Lee, S. Lee, T. Kim, H. Won, J. Park, and H.-M. Bae, “A 100-GbE reverse gearbox IC in 40nm CMOS for supporting legacy 10-and 40-GbE standards,” in VLSI Circuits (VLSI Circuits), 2015 Symposium on. IEEE, 2015, pp. C212–C213.
[28] G. Ono, K. Watanabe, T. Muto, H. Yamashita, K. Fukuda, N. Masuda, R. Nemoto, E. Suzuki, T. Takemoto, F. Yuki et al., “A 10: 4 MUX and 4: 10 DEMUX gearbox LSI for 100-gigabit Ethernet link,” IEEE Journal of Solid-State Circuits, vol. 46, no. 12, pp. 3101–3112, 2011.
[29] U. Singh, A. Garg, B. Raghavan, N. Huang, H. Zhang, Z. Huang, A. Momtaz, and J. Cao, “A 780mw 4× 28Gb/s transceiver for 100GbE gearbox PHY in 40nm CMOS,”in Solid-State Circuits Conference, 2014. Digest of Technical Papers. ISSCC. 2014 IEEE International. IEEE, 2014, pp. 40–41.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20295-
dc.description.abstract隨著通訊系統對資料傳送速率的要求越來越高,100-Gb/s 乙太網路系統將開始全面普及。作為乙太網路系統的重要組成部分,光通訊接收器電路的設計顯得尤為關鍵。本論文第一部分介紹了100-Gb/s 乙太網路系統,以及提出了一個突發模式接收器前端電路,可以在幾百納秒以內完成漂移校正。
本論文第二部分提出了一個使用40 納米互補式金屬氧化半導體制程製作之應用於100-Gb/s 乙太網路的25∼28-Gb/s 光通訊接收器,此接收器包括一個RGC 跨阻放大器,若干限幅放大器,連續時間線性等化器,時鐘資料恢復電路以及前饋等化器。此接收器還有一個10-Gb/s 的工作模式,此模式下關閉時鐘資料恢復電路和前饋等化器。RGC 跨阻放大器因為有著更小的輸入電阻,所以在輸入寄生電容一樣的情況下有著更好的頻寬。兩級連續時間線性等化器也可以提供9 dB 的均衡。為了抵消輸出的綁線電感和背板走線的頻寬損失,採用前饋等化器作輸出。
在電域測試中,10-Gb/s 資料在關閉時鐘資料恢復電路模式下靈敏度為1.9mVpp,25-Gb/s 速率下靈敏度為17.6 mVpp,並且誤碼率均小於〖10〗^(-12),接收器的輸入參考雜訊為2.73 uArms。前饋等化器輸出擺幅為375∼931 mVppd,最大均衡能力為8.5 dB。時鐘資料恢復電路在25-Gb/s 速率下的帶外抖動容忍為0.134 UI,在28-Gb/s 速率下抖動容忍為0.148 UI,鎖定時間在微秒等級。
zh_TW
dc.description.abstractThe data transmission speed is getting faster and faster in communication system nowadays, 100-Gb/s Ethernet system will be popular. As an important part of the Ethernet system, the design of the optical communication receiver integrated circuits is particularly critical. The first part of this thesis provides a brief description of 100-Gb/s Ethernet system and proposes a burst mode front-end circuit, which can finish DC-offset calibration in hundreds of nanoseconds.
The second part of this thesis presents a 25∼28-Gb/s optical communication receiver for 100-Gb/s Ethernet fabricated in 40nm CMOS. This receiver includes a RGC TIA, several limiting amplifiers (LAs) and two continuous time linear equalizers (CTLEs), a clock and data recovery circuit (CDR), and a feedforward equalizer (FFE). The receiver also has a 10-Gb/s operation mode, we will bypass CDR and FFE in this mode. RGC
TIA has a smaller input resistance, so it has better bandwidth with the same input parasitic capacitance compared with other kinds of TIA. Two-stage CTLEs can provide 0∼9 dB boosting. 3-tap FFE is applied to overcome the channel loss caused by bonding wire and PCB trace.
Testing under electric domain, the sensitivity is 1.9 mVpp for 10-Gb/s mode, and 17.6 mVpp for 25-Gb/s mode, where the bit error rate is less than 〖10〗^(-12), respectively. FFE output swing varies from 375∼931 mVppd, maximum boosting is 8.5 dB. The out-band jitter tolerance is 0.134 UI for 25-Gb/s and 0.148 UI for 28-Gb/s. CDR locking time is in microseconds.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:44:24Z (GMT). No. of bitstreams: 1
ntu-107-R04943157-1.pdf: 13341592 bytes, checksum: e4d6ae69012a57df082259e9d4d4278f (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContents
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 A 25-Gb/s Burst Mode Front-end Circuit . . . . . . . . . . . . . . . . . . . . 3
2.1 Introduction of 100GbE System . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Architecture and Building Blocks . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Limiting Amplifiers and Equalizers . . . . . . . . . . . . . . . . . . 5
2.2.3 Calibration Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 A 25-Gb/s Continuous Mode Optical Receiver . . . . . . . . . . . . . . . . . 13
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Architecture and Building Blocks . . . . . . . . . . . . . . . . . . . . . . 14
vii
doi:10.6342/NTU201800046
3.2.1 Front-end Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1.1 Transimpedance Amplifiers . . . . . . . . . . . . . . . . . 15
3.2.1.2 Limiting Amplifiers . . . . . . . . . . . . . . . . . . . . . 23
3.2.1.3 Continious Time Linear Equalizers . . . . . . . . . . . . . 28
3.2.2 Feedforward Equalizer . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 Clock and Data Recovery circuit . . . . . . . . . . . . . . . . . . . 36
3.2.3.1 Phase Detector and Delay Calibration Circuits . . . . . . . 37
3.2.3.2 Frequency Detector and Lock Detector . . . . . . . . . . . 40
3.2.3.3 VCO, Clock Buffer and Loop Filter . . . . . . . . . . . . . 42
3.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . 47
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
dc.language.isozh-TW
dc.title25-Gb/s 光通訊接收器設計zh_TW
dc.title25-Gb/s Optical Communication Receiver Designen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee劉宗德(Tsung-Te Liu),彭朋瑞(Peng-Jui Peng)
dc.subject.keyword跨阻放大器,限幅放大器,連續時間線性等化器,時脈資料恢復,前 饋均衡,抖動容忍,靈敏度,zh_TW
dc.subject.keywordtransimpedance amplifier,limiting amplifier,continuous time linear equalizer,feedforward equalizer,jitter tolerance,sensitivity,en
dc.relation.page56
dc.identifier.doi10.6342/NTU201800046
dc.rights.note未授權
dc.date.accepted2018-01-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
13.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved