請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20231完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于明暉 | zh_TW |
| dc.contributor.author | 王雅蕙 | zh_TW |
| dc.contributor.author | Ya-Hui Wang | en |
| dc.date.accessioned | 2021-06-08T02:42:48Z | - |
| dc.date.available | 2023-11-30 | - |
| dc.date.copyright | 2018-03-29 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 參考文獻
1. McMahon BJ, Alberts SR, Wainwright RB, et al. Hepatitis B-related sequelae. Prospective study in 1400 hepatitis B surface antigen-positive Alaska native carriers. Arch Intern Med 1990;150(5):1051-4. 2. Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin Liver Dis 1999;19(3):271-85. 3. Liaw YF, Chu CM. Hepatitis B virus infection. Lancet 2009;373(9663):582-92. 4. Perz JF, Armstrong GL, Farrington LA, et al. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 2006;45(4):529-38. 5. Yu MW, Chen CJ. Hepatitis B and C viruses in the development of hepatocellular carcinoma. Crit Rev Oncol Hematol 1994;17(2):71-91. 6. Chen CF, Lee WC, Yang HI, et al. Changes in serum levels of HBV DNA and alanine aminotransferase determine risk for hepatocellular carcinoma. Gastroenterology 2011;141(4):1240-8, 1248 e1-2. 7. Chen CJ, Yang HI, Iloeje UH, et al. Hepatitis B virus DNA levels and outcomes in chronic hepatitis B. Hepatology 2009;49(5 Suppl):S72-84. 8. Wu CF, Yu MW, Lin CL, et al. Long-term tracking of hepatitis B viral load and the relationship with risk for hepatocellular carcinoma in men. Carcinogenesis 2008;29(1):106-12. 9. Huang CJ, Wu CF, Lan CY, et al. Impact of genetic heterogeneity in polymerase of hepatitis B virus on dynamics of viral load and hepatitis B progression. PLoS One 2013;8(7):e70169. 10. Lee MH, Yang HI, Liu J, et al. Prediction models of long-term cirrhosis and hepatocellular carcinoma risk in chronic hepatitis B patients: risk scores integrating host and virus profiles. Hepatology 2013;58(2):546-54. 11. Chan HL, Hui AY, Wong ML, et al. Genotype C hepatitis B virus infection is associated with an increased risk of hepatocellular carcinoma. Gut 2004;53(10):1494-8. 12. Liu CJ, Chen BF, Chen PJ, et al. Role of hepatitis B viral load and basal core promoter mutation in hepatocellular carcinoma in hepatitis B carriers. J Infect Dis 2006;193(9):1258-65. 13. Yang HI, Yeh SH, Chen PJ, et al. Associations between hepatitis B virus genotype and mutants and the risk of hepatocellular carcinoma. J Natl Cancer Inst 2008;100(16):1134-43. 14. Chen CJ, Yang HI, Su J, et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 2006;295(1):65-73. 15. Fattovich G, Bortolotti F, Donato F. Natural history of chronic hepatitis B: special emphasis on disease progression and prognostic factors. J Hepatol 2008;48(2):335-52. 16. Nelson PK, Mathers BM, Cowie B, et al. Global epidemiology of hepatitis B and hepatitis C in people who inject drugs: results of systematic reviews. Lancet 2011;378(9791):571-83. 17. Sun Z, Chen T, Thorgeirsson SS, et al. Dramatic reduction of liver cancer incidence in young adults: 28 year follow-up of etiological interventions in an endemic area of China. Carcinogenesis 2013;34(8):1800-5. 18. Lai M, Hyatt BJ, Nasser I, et al. The clinical significance of persistently normal ALT in chronic hepatitis B infection. J Hepatol 2007;47(6):760-7. 19. Maini MK, Boni C, Lee CK, et al. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. J Exp Med 2000;191(8):1269-80. 20. Liaw YF. Hepatitis flares and hepatitis B e antigen seroconversion: implication in anti-hepatitis B virus therapy. J Gastroenterol Hepatol 2003;18(3):246-52. 21. Dandri M, Locarnini S. New insight in the pathobiology of hepatitis B virus infection. Gut 2012;61 Suppl 1:i6-17. 22. Ray S, Bandyopadhyay S. Discovering Condition Specific Topological Pattern Changes in Coexpression Network: An Application to HIV-1 Progression. IEEE/ACM Trans Comput Biol Bioinform 2016;13(6):1086-1099. 23. Ruan J, Dean AK, Zhang W. A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst Biol 2010;4:8. 24. Honda M, Yamashita T, Ueda T, et al. Different signaling pathways in the livers of patients with chronic hepatitis B or chronic hepatitis C. Hepatology 2006;44(5):1122-38. 25. Lee CF, Ling ZQ, Zhao T, et al. Distinct expression patterns in hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma. World J Gastroenterol 2008;14(39):6072-7. 26. Lee SY, Song KH, Koo I, et al. Comparison of pathways associated with hepatitis B- and C-infected hepatocellular carcinoma using pathway-based class discrimination method. Genomics 2012;99(6):347-54. 27. Boyault S, Rickman DS, de Reynies A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 2007;45(1):42-52. 28. Marshall A, Lukk M, Kutter C, et al. Global gene expression profiling reveals SPINK1 as a potential hepatocellular carcinoma marker. PLoS One 2013;8(3):e59459. 29. Gesthalter YB, Vick J, Steiling K, et al. Translating the transcriptome into tools for the early detection and prevention of lung cancer. Thorax 2015;70(5):476-81. 30. Mohr S, Liew CC. The peripheral-blood transcriptome: new insights into disease and risk assessment. Trends Mol Med 2007;13(10):422-32. 31. Zaatar AM, Lim CR, Bong CW, et al. Whole blood transcriptome correlates with treatment response in nasopharyngeal carcinoma. J Exp Clin Cancer Res 2012;31:76. 32. McHale CM, Zhang L, Thomas R, et al. Analysis of the transcriptome in molecular epidemiology studies. Environ Mol Mutagen 2013;54(7):500-17. 33. Piyathilake CJ, Badiga S, Alvarez RD, et al. A lower degree of PBMC L1 methylation is associated with excess body weight and higher HOMA-IR in the presence of lower concentrations of plasma folate. PLoS One 2013;8(1):e54544. 34. Su MW, Yu SL, Lin WC, et al. Smoking-related microRNAs and mRNAs in human peripheral blood mononuclear cells. Toxicol Appl Pharmacol 2016;305:169-175. 35. 吳志峰. B型肝炎病毒量的長期變化趨勢和肝細胞癌的危險性:病例世代研究 碩士論文 台灣大學流行病學研究所 2006. 36. Pontisso P, Poon MC, Tiollais P, et al. Detection of hepatitis B virus DNA in mononuclear blood cells. Br Med J (Clin Res Ed) 1984;288(6430):1563-6. 37. Sobao Y, Tomiyama H, Sugi K, et al. The role of hepatitis B virus-specific memory CD8 T cells in the control of viral replication. J Hepatol 2002;36(1):105-15. 38. Franzese O, Kennedy PT, Gehring AJ, et al. Modulation of the CD8+-T-cell response by CD4+ CD25+ regulatory T cells in patients with hepatitis B virus infection. J Virol 2005;79(6):3322-8. 39. Nan XP, Zhang Y, Yu HT, et al. Circulating CD4+CD25high regulatory T cells and expression of PD-1 and BTLA on CD4+ T cells in patients with chronic hepatitis B virus infection. Viral Immunol 2010;23(1):63-70. 40. Geier A, Dietrich CG, Gartung C. Antiviral therapy in HBe-Ag-positive hepatitis B with normal aminotransferase levels. Hepatology 2003;37(3):712-3; author reply 713. 41. Mommeja-Marin H, Mondou E, Blum MR, et al. Serum HBV DNA as a marker of efficacy during therapy for chronic HBV infection: analysis and review of the literature. Hepatology 2003;37(6):1309-19. 42. Yu MW, Yeh SH, Chen PJ, et al. Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men. J Natl Cancer Inst 2005;97(4):265-72. 43. Sung FY, Jung CM, Wu CF, et al. Hepatitis B virus core variants modify natural course of viral infection and hepatocellular carcinoma progression. Gastroenterology 2009;137(5):1687-97. 44. Okulicz JF, Marconi VC, Landrum ML, et al. Clinical outcomes of elite controllers, viremic controllers, and long-term nonprogressors in the US Department of Defense HIV natural history study. J Infect Dis 2009;200(11):1714-23. 45. Horton H, Frank I, Baydo R, et al. Preservation of T cell proliferation restricted by protective HLA alleles is critical for immune control of HIV-1 infection. J Immunol 2006;177(10):7406-15. 46. Migueles SA, Sabbaghian MS, Shupert WL, et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci U S A 2000;97(6):2709-14. 47. International HIVCS, Pereyra F, Jia X, et al. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 2010;330(6010):1551-7. 48. Magierowska M, Theodorou I, Debre P, et al. Combined genotypes of CCR5, CCR2, SDF1, and HLA genes can predict the long-term nonprogressor status in human immunodeficiency virus-1-infected individuals. Blood 1999;93(3):936-41. 49. Carriere M, Lacabaratz C, Kok A, et al. HIV "elite controllers" are characterized by a high frequency of memory CD8+ CD73+ T cells involved in the antigen-specific CD8+ T-cell response. J Infect Dis 2014;209(9):1321-30. 50. Marras F, Nicco E, Bozzano F, et al. Natural killer cells in HIV controller patients express an activated effector phenotype and do not up-regulate NKp44 on IL-2 stimulation. Proc Natl Acad Sci U S A 2013;110(29):11970-5. 51. Smith NM, Mlcochova P, Watters SA, et al. Proof-of-Principle for Immune Control of Global HIV-1 Reactivation In Vivo. Clin Infect Dis 2015; 10.1093/cid/civ219. 52. Rotger M, Dang KK, Fellay J, et al. Genome-wide mRNA expression correlates of viral control in CD4+ T-cells from HIV-1-infected individuals. PLoS Pathog 2010;6(2):e1000781. 53. Nagin DS, Odgers CL. Group-based trajectory modeling in clinical research. Annu Rev Clin Psychol 2010;6:109-38. 54. Shi Q, Mendoza TR, Gunn GB, et al. Using group-based trajectory modeling to examine heterogeneity of symptom burden in patients with head and neck cancer undergoing aggressive non-surgical therapy. Qual Life Res 2013;22(9):2331-9. 55. Iloeje UH, Yang HI, Chen CJ. Natural history of chronic hepatitis B: what exactly has REVEAL revealed? Liver Int 2012;32(9):1333-41. 56. Liu J, Yang HI, Lee MH, et al. Spontaneous seroclearance of hepatitis B seromarkers and subsequent risk of hepatocellular carcinoma. Gut 2014;63(10):1648-57. 57. Peng Y, Xiong X, Tong X, et al. Correlation of the content of hepatitis B core antigen in peripheral blood mononuclear cells with HBV virus load. Diagn Microbiol Infect Dis 2016;85(2):154-8. 58. Gu XB, Yang XJ, Wang D, et al. Relationship between serum HBV DNA level and HBV-specific, nonspecific cytotoxic T lymphocytes and natural killer cells in patients with chronic hepatitis B. Chin Med J (Engl) 2009;122(18):2129-32. 59. Bertoletti A, Ferrari C. Kinetics of the immune response during HBV and HCV infection. Hepatology 2003;38(1):4-13. 60. Dunn C, Brunetto M, Reynolds G, et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J Exp Med 2007;204(3):667-80. 61. Zhang Z, Zhang S, Zou Z, et al. Hypercytolytic activity of hepatic natural killer cells correlates with liver injury in chronic hepatitis B patients. Hepatology 2011;53(1):73-85. 62. Davis ZB, Cogswell A, Scott H, et al. A Conserved HIV-1-Derived Peptide Presented by HLA-E Renders Infected T-cells Highly Susceptible to Attack by NKG2A/CD94-Bearing Natural Killer Cells. PLoS Pathog 2016;12(2):e1005421. 63. Della Chiesa M, Pesce S, Muccio L, et al. Features of Memory-Like and PD-1(+) Human NK Cell Subsets. Front Immunol 2016;7:351. 64. Li H, Zhai N, Wang Z, et al. Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection. Gut 2017; 10.1136/gutjnl-2017-314098. 65. Tjwa ET, van Oord GW, Hegmans JP, et al. Viral load reduction improves activation and function of natural killer cells in patients with chronic hepatitis B. J Hepatol 2011;54(2):209-18. 66. Reignat S, Webster GJ, Brown D, et al. Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic hepatitis B virus infection. J Exp Med 2002;195(9):1089-101. 67. Golden-Mason L, Palmer B, Klarquist J, et al. Upregulation of PD-1 expression on circulating and intrahepatic hepatitis C virus-specific CD8+ T cells associated with reversible immune dysfunction. J Virol 2007;81(17):9249-58. 68. Maier H, Isogawa M, Freeman GJ, et al. PD-1:PD-L1 interactions contribute to the functional suppression of virus-specific CD8+ T lymphocytes in the liver. J Immunol 2007;178(5):2714-20. 69. Peng G, Li S, Wu W, et al. PD-1 upregulation is associated with HBV-specific T cell dysfunction in chronic hepatitis B patients. Mol Immunol 2008;45(4):963-70. 70. Fisicaro P, Valdatta C, Massari M, et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology 2010;138(2):682-93, 693 e1-4. 71. Fuller MJ, Callendret B, Zhu B, et al. Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1 (PD-1). Proc Natl Acad Sci U S A 2013;110(37):15001-6. 72. Tzeng HT, Tsai HF, Liao HJ, et al. PD-1 blockage reverses immune dysfunction and hepatitis B viral persistence in a mouse animal model. PLoS One 2012;7(6):e39179. 73. Ghosh S, Nandi M, Pal S, et al. Natural killer cells contribute to hepatic injury and help in viral persistence during progression of hepatitis B e-antigen-negative chronic hepatitis B virus infection. Clin Microbiol Infect 2016;22(8):733 e9-733 e19. 74. Zheng Q, Zhu YY, Chen J, et al. Activated natural killer cells accelerate liver damage in patients with chronic hepatitis B virus infection. Clin Exp Immunol 2015;180(3):499-508. 75. Zou Y, Chen T, Han M, et al. Increased killing of liver NK cells by Fas/Fas ligand and NKG2D/NKG2D ligand contributes to hepatocyte necrosis in virus-induced liver failure. J Immunol 2010;184(1):466-75. 76. Liaw YF, Jia JD, Chan HL, et al. Shorter durations and lower doses of peginterferon alfa-2a are associated with inferior hepatitis B e antigen seroconversion rates in hepatitis B virus genotypes B or C. Hepatology 2011;54(5):1591-9. 77. Liaw YF. Impact of hepatitis B therapy on the long-term outcome of liver disease. Liver Int 2011;31 Suppl 1:117-21. 78. Janssen HL, van Zonneveld M, Senturk H, et al. Pegylated interferon alfa-2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B: a randomised trial. Lancet 2005;365(9454):123-9. 79. Marcellin P, Lau GK, Bonino F, et al. Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B. N Engl J Med 2004;351(12):1206-17. 80. Freeman BE, Raue HP, Hill AB, et al. Cytokine-Mediated Activation of NK Cells during Viral Infection. J Virol 2015;89(15):7922-31. 81. Sepulveda FE, Maschalidi S, Vosshenrich CA, et al. A novel immunoregulatory role for NK-cell cytotoxicity in protection from HLH-like immunopathology in mice. Blood 2015;125(9):1427-34. 82. Fioravanti J, Di Lucia P, Magini D, et al. Effector CD8(+) T cell-derived interleukin-10 enhances acute liver immunopathology. J Hepatol 2017;67(3):543-548. 83. Puntambekar SS, Bergmann CC, Savarin C, et al. Shifting hierarchies of interleukin-10-producing T cell populations in the central nervous system during acute and persistent viral encephalomyelitis. J Virol 2011;85(13):6702-13. 84. Zou Q, Wu B, Xue J, et al. CD8+ Treg cells suppress CD8+ T cell-responses by IL-10-dependent mechanism during H5N1 influenza virus infection. Eur J Immunol 2014;44(1):103-14. 85. Ostapchuk YO, Cetin EA, Perfilyeva YV, et al. Peripheral blood NK cells expressing HLA-G, IL-10 and TGF-beta in healthy donors and breast cancer patients. Cell Immunol 2015;298(1-2):37-46. 86. Stelma F, de Niet A, Tempelmans Plat-Sinnige MJ, et al. Natural Killer Cell Characteristics in Patients With Chronic Hepatitis B Virus (HBV) Infection Are Associated With HBV Surface Antigen Clearance After Combination Treatment With Pegylated Interferon Alfa-2a and Adefovir. J Infect Dis 2015;212(7):1042-51. 87. Marras F, Bozzano F, De Maria A. Involvement of activating NK cell receptors and their modulation in pathogen immunity. J Biomed Biotechnol 2011;2011:152430. 88. Peppa D, Gill US, Reynolds G, et al. Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion. J Exp Med 2013;210(1):99-114. 89. Welte S, Kuttruff S, Waldhauer I, et al. Mutual activation of natural killer cells and monocytes mediated by NKp80-AICL interaction. Nat Immunol 2006;7(12):1334-42. 90. Koumbi L, Pollicino T, Raimondo G, et al. Hepatitis B viral replication influences the expression of natural killer cell ligands. Ann Gastroenterol 2016;29(3):348-57. 91. Mukherjee R, Reddy PB, Arava J, et al. Relationship between serum HBsAg level, HBV DNA level, and peripheral immune cells in patients with chronic hepatitis B virus infection. Hepat Med 2010;2:157-62. 92. Wang Y, Wang W, Shen C, et al. NKG2D modulates aggravation of liver inflammation by activating NK cells in HBV infection. Sci Rep 2017;7(1):88. 93. Hung YC, Lin CL, Liu CJ, et al. Development of risk scoring system for stratifying population for hepatocellular carcinoma screening. Hepatology 2015;61(6):1934-44. 94. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003;4(2):249-64. 95. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102(43):15545-50. 96. Chaussabel D, Baldwin N. Democratizing systems immunology with modular transcriptional repertoire analyses. Nat Rev Immunol 2014;14(4):271-80. 97. Ardura MI, Banchereau R, Mejias A, et al. Enhanced monocyte response and decreased central memory T cells in children with invasive Staphylococcus aureus infections. PLoS One 2009;4(5):e5446. 98. Chaussabel D, Quinn C, Shen J, et al. A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity 2008;29(1):150-64. 99. Chiche L, Jourde-Chiche N, Whalen E, et al. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol 2014;66(6):1583-95. 100. Jourde-Chiche N, Whalen E, Gondouin B, et al. Modular transcriptional repertoire analyses identify a blood neutrophil signature as a candidate biomarker for lupus nephritis. Rheumatology (Oxford) 2017;56(3):477-487. 101. Bernard NF, Kiani Z, Tremblay-McLean A, et al. Natural Killer (NK) Cell Education Differentially Influences HIV Antibody-Dependent NK Cell Activation and Antibody-Dependent Cellular Cytotoxicity. Front Immunol 2017;8:1033. 102. Smyth MJ, Cretney E, Kelly JM, et al. Activation of NK cell cytotoxicity. Mol Immunol 2005;42(4):501-10. 103. Gotthardt D, Putz EM, Grundschober E, et al. STAT5 Is a Key Regulator in NK Cells and Acts as a Molecular Switch from Tumor Surveillance to Tumor Promotion. Cancer Discov 2016;6(4):414-29. 104. Gotthardt D, Sexl V. STATs in NK-Cells: The Good, the Bad, and the Ugly. Front Immunol 2016;7:694. 105. Wilson TJ, Presti RM, Tassi I, et al. FcRL6, a new ITIM-bearing receptor on cytolytic cells, is broadly expressed by lymphocytes following HIV-1 infection. Blood 2007;109(9):3786-93. 106. Boudreau JE, Mulrooney TJ, Le Luduec JB, et al. KIR3DL1 and HLA-B Density and Binding Calibrate NK Education and Response to HIV. J Immunol 2016;196(8):3398-410. 107. Hou J, Brouwer WP, Kreefft K, et al. Unique intrahepatic transcriptomics profiles discriminate the clinical phases of a chronic HBV infection. PLoS One 2017;12(6):e0179920. 108. Ganem D, Prince AM. Hepatitis B virus infection--natural history and clinical consequences. N Engl J Med 2004;350(11):1118-29. 109. Pan CQ, Zhang JX. Natural History and Clinical Consequences of Hepatitis B Virus Infection. Int J Med Sci 2005;2(1):36-40. 110. Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 2005;5(3):215-29. 111. Cheng HY, Kang PJ, Chuang YH, et al. Circulating programmed death-1 as a marker for sustained high hepatitis B viral load and risk of hepatocellular carcinoma. PLoS One 2014;9(11):e95870. 112. Lopes AR, Kellam P, Das A, et al. Bim-mediated deletion of antigen-specific CD8 T cells in patients unable to control HBV infection. J Clin Invest 2008;118(5):1835-45. 113. Lin CY, Tsai MC, Huang CT, et al. Liver injury is associated with enhanced regulatory T-cell activity in patients with chronic hepatitis B. J Viral Hepat 2007;14(7):503-11. 114. Stoop JN, van der Molen RG, Baan CC, et al. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatology 2005;41(4):771-8. 115. Jung MC, Pape GR. Immunology of hepatitis B infection. Lancet Infect Dis 2002;2(1):43-50. 116. Guidotti LG, Ando K, Hobbs MV, et al. Cytotoxic T lymphocytes inhibit hepatitis B virus gene expression by a noncytolytic mechanism in transgenic mice. Proc Natl Acad Sci U S A 1994;91(9):3764-8. 117. Guidotti LG, Rochford R, Chung J, et al. Viral clearance without destruction of infected cells during acute HBV infection. Science 1999;284(5415):825-9. 118. Moretta L, Bottino C, Pende D, et al. Human natural killer cells: Molecular mechanisms controlling NK cell activation and tumor cell lysis. Immunol Lett 2005;100(1):7-13. 119. Rehermann B. Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nat Med 2013;19(7):859-68. 120. Cavanaugh VJ, Guidotti LG, Chisari FV. Interleukin-12 inhibits hepatitis B virus replication in transgenic mice. J Virol 1997;71(4):3236-43. 121. Cote PJ, Toshkov I, Bellezza C, et al. Temporal pathogenesis of experimental neonatal woodchuck hepatitis virus infection: increased initial viral load and decreased severity of acute hepatitis during the development of chronic viral infection. Hepatology 2000;32(4 Pt 1):807-17. 122. Nakamura I, Nupp JT, Cowlen M, et al. Pathogenesis of experimental neonatal woodchuck hepatitis virus infection: chronicity as an outcome of infection is associated with a diminished acute hepatitis that is temporally deficient for the expression of interferon gamma and tumor necrosis factor-alpha messenger RNAs. Hepatology 2001;33(2):439-47. 123. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001;2(8):675-80. 124. Isogawa M, Robek MD, Furuichi Y, et al. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol 2005;79(11):7269-72. 125. Wieland S, Thimme R, Purcell RH, et al. Genomic analysis of the host response to hepatitis B virus infection. Proc Natl Acad Sci U S A 2004;101(17):6669-74. 126. Barone M, Spano D, D'Apolito M, et al. Gene expression analysis in HBV transgenic mouse liver: a model to study early events related to hepatocarcinogenesis. Mol Med 2006;12(4-6):115-23. 127. Hajjou M, Norel R, Carver R, et al. cDNA microarray analysis of HBV transgenic mouse liver identifies genes in lipid biosynthetic and growth control pathways affected by HBV. J Med Virol 2005;77(1):57-65. 128. Fletcher SP, Chin DJ, Ji Y, et al. Transcriptomic analysis of the woodchuck model of chronic hepatitis B. Hepatology 2012;56(3):820-30. 129. Dong H, Qian Z, Zhang L, et al. Genomic and transcriptome profiling identified both human and HBV genetic variations and their interactions in Chinese hepatocellular carcinoma. Genom Data 2015;6:1-3. 130. Wu HL, Hsiao TH, Chen PJ, et al. Liver Gene Expression Profiles Correlate with Virus Infection and Response to Interferon Therapy in Chronic Hepatitis B Patients. Sci Rep 2016;6:31349. 131. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008;9:559. 132. Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005;4:Article17. 133. Dill MT, Makowska Z, Duong FHT, et al. Interferon-gamma-stimulated genes, but not USP18, are expressed in livers of patients with acute hepatitis C. Gastroenterology 2012;143(3):777-786 e6. 134. Waddell SJ, Popper SJ, Rubins KH, et al. Dissecting interferon-induced transcriptional programs in human peripheral blood cells. PLoS One 2010;5(3):e9753. 135. Fletcher SP, Chin DJ, Cheng DT, et al. Identification of an intrahepatic transcriptional signature associated with self-limiting infection in the woodchuck model of hepatitis B. Hepatology 2013;57(1):13-22. 136. Stuart JM, Segal E, Koller D, et al. A gene-coexpression network for global discovery of conserved genetic modules. Science 2003;302(5643):249-55. 137. Taub DD, Anver M, Oppenheim JJ, et al. T lymphocyte recruitment by interleukin-8 (IL-8). IL-8-induced degranulation of neutrophils releases potent chemoattractants for human T lymphocytes both in vitro and in vivo. J Clin Invest 1996;97(8):1931-41. 138. Tan AT, Koh S, Goh W, et al. A longitudinal analysis of innate and adaptive immune profile during hepatic flares in chronic hepatitis B. J Hepatol 2010;52(3):330-9. 139. Pollicino T, Bellinghieri L, Restuccia A, et al. Hepatitis B virus (HBV) induces the expression of interleukin-8 that in turn reduces HBV sensitivity to interferon-alpha. Virology 2013;444(1-2):317-28. 140. Aspord C, Bruder Costa J, Jacob MC, et al. Remodeling of B-Cell Subsets in Blood during Pegylated IFNalpha-2a Therapy in Patients with Chronic Hepatitis B Infection. PLoS One 2016;11(6):e0156200. 141. Tout IM, M.; Chemin, I.; Hasan, U. HBV and the importance of TLR9 on B cell responses. AIMS Allergy Immunol 2017;1(3):124-137. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20231 | - |
| dc.description.abstract | B型肝炎病毒(hepatitis B virus,HBV)感染為臨床上重要的持續感染。同為HBV帶原者中,HBV病毒複製程度在人與人間卻有高度異質性存在。HBV病毒量活躍複製會增加罹患肝臟相關疾病的危險性。HBV是一種非細胞致病性的病毒,在持續病毒感染過程中,宿主的免疫反應在肝損傷和病毒控制中扮演關鍵作用。然而,不同的免疫細胞亞群的作用以及各種臨床結果和病毒控制的潛在機制尚不清楚。最近的研究顯示血液基因轉錄體可以系統性探討與病毒感染相關之複雜的免疫反應機轉。本研究以過去所建立的病毒量與臨床指標病例世代研究為基礎,探討慢性B型肝炎病毒自然感染狀況下之免疫細胞組成與長期病毒量趨勢的關聯性。藉由全基因轉錄體了解周邊免疫細胞和其功能間的關係,並找尋和長期病毒量趨勢相關的免疫機轉。本論文共分三部份。
(I) 免疫細胞組成與長期病毒量趨勢 目的: 探究在慢性B型肝炎帶原者中,血液之免疫細胞組成和長期病毒量趨勢間的關聯性。 研究對象與方法: 本研究起始於1989-1992年所建立的B型肝炎表面抗原陽性男性之長期病毒量追蹤世代研究。並於2010-2011年持續追蹤,共有173名研究對象加入研究。 利用流式細胞儀計算周邊血液單核細胞之B細胞,CD4+ T細胞,CD8+ T細胞,自然殺手(NK)細胞,NKT細胞和調節性T細胞(Treg)等六種免疫細胞的比例。利用群組化軌跡建模以了解病毒量隨時間變化的趨勢。相對危險性(OR)和其95%信賴區間(CI)則由羅吉斯迴歸模式估計。 結果: 173個研究對象在1990-2011年追蹤期間,共有1,537個病毒量測量時點,利用群組化軌跡模型將其分成111名(64.2%)持續低病毒量和62名(35.8%)持續高病毒量兩組。持續高病毒量組在在NK細胞的百分比低於持續低病毒量組(中位數為22.52% vs. 29.09%,p=0.06)。調整年齡和HBV基因型等共變項, NK細胞>= 26.6%相較於NK細胞<26.6%的HBV帶原者,持續高病毒量的調整後OR=0.57(95%CI:0.30-1.09; p = 0.0881)。此外,比較高和低NK細胞比例兩組發現,追蹤期間至少有一次ALT異常(≥40U / L)的調整後OR=0.46(95%CI = 0.25-0.84)。然而,持續高和低病毒量兩組間在其他免疫細胞類型的百分比並沒有顯著差異。 結論: 研究結果顯示,慢性HBV感染可能會影響NK細胞的比例。NK細胞比例低與持續高病毒量有關,並可能導致肝病進展。 (II) 周邊免疫細胞之功能基因組分析 目的: 在持續HBV感染中,找尋能夠區分不同免疫細胞組成和長期病毒量軌跡間的基因表達標記。 研究對象與方法: 本研究包含60名研究對象,這些研究對象根據第一部份之173位受試者的長期病毒量資料分成持續低(n=36)和高(n=24)兩組。全基因轉錄體分析使用Affymetrix Human Gene 1.1 ST基因平台。藉由控制年齡的複線性回歸模式來找尋低(相對於高)NK細胞百分比的顯著差異表現基因探針。利用260個模組之模組轉錄譜分析以表徵免疫反應。 結果: 我們發現共有2,183個基因在比較低與高NK細胞百分比後呈現有顯著差異的基因探針。模組轉錄譜分析顯示,這些基因標記在特異的Cytotoxic/ NK Cell相關是有差異之基因模組(M3.6和M8.46),且大多是上調基因(up-regulated)表現。此外,Cytotoxic/ NK Cell相關的五個基因: FCRL6(p = 0.0237),GPR114(p = 0.0341),KLRF1(p = 0.0175),GZMB(p = 0.0391)和KIR3DL1(p = 0.0256)也和長期病毒量之軌跡模式有關聯性。 結論: 本研究從基因模組方法暗示在持續HBV感染中,NK細胞可能牽涉到抗病毒的機轉。 (III) 長期病毒量趨勢相關基因共基因表現網絡分析 目的: 找尋和持續HBV感染之潛在的免疫反應機轉。 研究對象與方法: 利用複線性回歸模式控制年齡後,找出在持續高(n=24)和低(n=36)病毒量組間有顯著差異表現之基因。基因組富集分析被使用來檢視生物功能路徑。共基因表現模組用來偵測共表現模組和病毒量感染相關的表型之相關性。 結果: 本研究在比較長期病毒量趨勢後,有1,679個顯著差異表現基因被定義出。這些和長期病毒量相關的基因進行基因組富集分析,發現主要富集在在干擾素-γ(Interferon-γ,IFN-γ)(p=0.0181)和單核球(p=0.0039)基因組中。根據共基因表現模組分析,長期病毒量趨勢相關基因可歸類出六個特徵模組。這些特徵模組各別和四個和病毒量感染相關的表型(NK細胞、B細胞、HBV病毒量和B型肝炎自然史階段分期)呈現顯著相關性。其中,和B型肝炎自然史階段分期相關的模組基因最顯著富集於IL-8的訊息傳遞路徑(FDR q value=0.0027)。 結論: 本研究顯示在慢性HBV持續感染者中,和長期病毒量趨勢相關的免疫反應包含IFN-γ, 單核球, NK細胞, 和IL-8訊息傳導路徑。 | zh_TW |
| dc.description.abstract | Hepatitis B virus (HBV) causes clinically important persistent infection. There is remarkable variation in viral replication activity among HBV carriers, and high viral load is a strong predictor associated with hepatitis B progression. It has long been known that HBV is a noncytolytic virus, and host immune response plays a critical role in liver injury and virus control in persistent HBV infection. However, the role of different immune cell subsets and the underlying mechanisms for various clinical outcomes and virus control are not fully understood. Recent studies have shown that blood tanscriptomics can provide insight into the complexity of mechanisms of immune response related to virus infection. Based on an established cohort database of HBV carriers with longitudinally collected viral load and clinical data, this study aimed to examine the association between immune cell profile and the pattern of dynamics of peripheral blood viral load .We also performed a systems biology study using transcriptome analysis to detail the relationship between immune cell profile and function, and to characterize immune pathways for dynamics of viral load. This thesis has three parts.
(I) Relative proportion of immune cell types and dynamic pattern of viral load Specific aim: To examine the association between proportion of immune cell types in blood and dynamic pattern of viral load in chronic HBV carriers. Study subjects and methods: A total of 173 hepatitis B surface antigen-positive men aged 30-65 years old were recruited from a longitudinal viral-load study conducted from 1989 to 1992, with follow-up through 2010 to 2011. Flow cytometry from the peripheral blood mononuclear cells was used to determine proportion of B cells, CD4+ T cells, CD8+ T cells, natural killer (NK) cells, NKT cells, and regulatory T (Treg) cells. Group-based trajectory modeling with longitudinal data was performed to identify patterns of change of viral load over time. Odds ratios (ORs) and their 95% confidence intervals (CIs) were estimated by logistic regression. Results: A total of 173 study subjects contributed 1,537 viral load measurements between 1990 and 2011 and demonstrated high and low trajectory patterns of viral load in 35.8% and 64.2% of study subjects, repsectively. Reduction in the percentage of NK cells was found in high viral load group as compared with low viral load group (median of NK cell frequency: 22.5% vs. 29.1% for high vs. low viral load group; p=0.0608). The adjusted OR of persistent high viral load was 0.57 (95% CI: 0.30-1.09; p=0.0881) for HBV carriers with a NK cell percentage of >= 26.6 as compared with those with a lower percentage of NK cells. In addition, the adjusted OR of subjucts with at least one time abnormal ALT (≥40 U/L) during follow-ups was 0.46 (95%CI=0.25-0.84) between high vs. low NK cell percentage. There were no significant differences between high and low viral load groups with regard to percentages of other immune cell types. Conclusions: The data indicate that chronic HBV infection may have adversely affected the proportion of circulating NK cells which is correlated with persistent high viral load, leading to progression of hepatic disease. (II) Functional genomic analysis for distinct composition of immune cell subsets Specific aim: To characterize gene expression signature for distinct composition of immune cell types that was associated with longitudinal trajectories of viral load in persistent HBV infection. Study subjects and methods: The study included 60 study subjects who represented low (n=36) and high (n=24) extreme of longitudinal trajectories of viral load in the 173 study subjects with immune cell profiling data. Microarray data were generated using Affymetrix Human Gene 1.1 ST array. Multivariate linear regression model controlling for age was used to identify low (vs. high) NK cell percentage associated differentially expressed genes. A modular transcriptional repertoire of 260 modules was used for analysis to characterize immune response. Results: Comparison of blood transcriptomes between low vs. high NK cell percentage identified 2,183 differentially expressed genes. The modular repertoire analysis revealed that the gene signature associated with two differentially active modules (M3.6 and M8.46) comprising exclusive cytotoxic/NK cell function-related genes, with 46.3% or more of the transcripts forming the module being expressed differentially in low vs. high NK cell percentage. In addition, cytotoxic/NK cell function-related genes FCRL6 (p=0.0237), GPR114 (p=0.0341), KLRF1 (p=0.0175), GZMB (p=0.0391), and KIR3DL1 (p=0.0256) were associated with longitudinal trajectories of viral load. . Conclusions: The findings from a gene module approach provide mechanistic insights into a role of NK cells involving antiviral function in persistent HBV infection. (III) Gene co-expression analysis of differentially expressed genes associated with dynamics of viral load Specific aim: To explore potential pathways of immune response related to gene expressions of persistent HBV infection. Study subjects and methods: We conducted multivariable linear regression model controlling for age to identify the differentally expressed genes (DEGs) between high (n=24) and low (n=36) trajectory patterns of viral load. Gene set enrichment analysis were used to identify the biological pathway.Weighted gene co-expression network analysis (WGCNA) to detect co-expression modules that correlate with potential phenotypes related to virus infection. Results: A total of 1,679 DEGs associated with pattern of long-term viral load were identified. These long-term viral load-related genes showed enrichment for IFN-γ (p=0.0181) and monocyte (p=0.0039) gene sets. By using WGCNA, a total of six co-expression modules were significantly associated with four phenotypes, including NK cell, B cell, HBV viral load and phases of HBV infection. The phase-related module genes are enriched in IL-8 signaling pathways (FDR q value=0.0027). Conclusions: Our findings revealed long-term viral load-related genes associated with IFN-γ, monocyte, NK cell, and IL-8 signaling pathways in persistent HBV infection. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:42:48Z (GMT). No. of bitstreams: 1 ntu-107-D98842001-1.pdf: 2255368 bytes, checksum: 6adaf962c7f0ba7889e4ce2ea71b2bff (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 目錄
論文口試委員審定書 i 致謝 ii 表目錄 iv 圖目錄 v 摘要 1 第一章 緒論 7 第二章 研究目的 10 第三章 病毒量與臨床指標資料庫 11 第四章 免疫細胞組成與長期病毒量趨勢 12 第一節 研究背景 12 第二節 材料與方法 14 第三節 結果 16 第四節 討論 17 第五章 周邊免疫細胞之功能基因組分析 27 第一節 研究背景 27 第二節 材料與方法 28 第三節 結果 31 第四節 討論 33 第六章 長期病毒量趨勢相關基因共基因表現網絡分析 43 第一節 研究背景 43 第二節 材料與方法 45 第三節 結果 48 第四節 討論 49 第七章 結論 56 參考文獻 57 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | HBV病毒感染 | zh_TW |
| dc.subject | 免疫反應 | zh_TW |
| dc.subject | 縱式研究 | zh_TW |
| dc.subject | NK細胞 | zh_TW |
| dc.subject | 基因轉錄體 | zh_TW |
| dc.subject | HBV病毒感染 | zh_TW |
| dc.subject | 免疫反應 | zh_TW |
| dc.subject | 縱式研究 | zh_TW |
| dc.subject | NK細胞 | zh_TW |
| dc.subject | 基因轉錄體 | zh_TW |
| dc.subject | longitudinal data | en |
| dc.subject | HBV infection | en |
| dc.subject | transcriptomics | en |
| dc.subject | NK cell | en |
| dc.subject | immune response | en |
| dc.subject | transcriptomics | en |
| dc.subject | HBV infection | en |
| dc.subject | immune response | en |
| dc.subject | longitudinal data | en |
| dc.subject | NK cell | en |
| dc.title | 利用轉錄基因體分析探究B型肝炎病毒與宿主間之交互作用-長期病毒量追蹤研究 | zh_TW |
| dc.title | Characterizing Virus-Host Interaction Using Blood Transcriptomics in Chronic Hepatitis B Virus Infection: A Longitudinal Viral-Load Study | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 106-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 莊雅惠 | zh_TW |
| dc.contributor.coadvisor | ; | en |
| dc.contributor.oralexamcommittee | 楊雅倩;廖勇柏;林志陵 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | HBV病毒感染,基因轉錄體,NK細胞,縱式研究,免疫反應, | zh_TW |
| dc.subject.keyword | HBV infection,transcriptomics,NK cell,longitudinal data,immune response, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU201800268 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-02-01 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
