Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20202
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor符文美(Wen-Mei Fu)
dc.contributor.authorDai-Hua Luen
dc.contributor.author呂岱樺zh_TW
dc.date.accessioned2021-06-08T02:42:08Z-
dc.date.copyright2018-02-22
dc.date.issued2018
dc.date.submitted2018-02-06
dc.identifier.citationAdolphs, R., Tranel, D., & Damasio, A. R. (1998). The human amygdala in social judgment. Nature, 393(6684), 470-474. doi:10.1038/30982
Allely, C. S. (2013). Pain sensitivity and observer perception of pain in individuals with autistic spectrum disorder. ScientificWorldJournal, 2013, 916178. doi:10.1155/2013/916178
Allen, C., Srivastava, K., & Bayraktutan, U. (2010). Small GTPase RhoA and its effector rho kinase mediate oxygen glucose deprivation-evoked in vitro cerebral barrier dysfunction. Stroke, 41(9), 2056-2063. doi:10.1161/STROKEAHA.109.574939
Amaral, D. G. (2003). The amygdala, social behavior, and danger detection. Ann N Y Acad Sci, 1000, 337-347.
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (5th ed.). Arlington, VA: American Psychiatric Association
Aoki, T., Ueda, S., Kataoka, T., & Satoh, T. (2009). Regulation of mitotic spindle formation by the RhoA guanine nucleotide exchange factor ARHGEF10. BMC Cell Biol, 10, 56. doi:10.1186/1471-2121-10-56
Aslan, J. E., & McCarty, O. J. (2013). Rho GTPases in platelet function. J Thromb Haemost, 11(1), 35-46. doi:10.1111/jth.12051
Auer, M., Hausott, B., & Klimaschewski, L. (2011). Rho GTPases as regulators of morphological neuroplasticity. Ann Anat, 193(4), 259-266. doi:10.1016/j.aanat.2011.02.015
Baron-Cohen, S., Ring, H. A., Bullmore, E. T., Wheelwright, S., Ashwin, C., & Williams, S. C. (2000). The amygdala theory of autism. Neurosci Biobehav Rev, 24(3), 355-364.
Bauer, M., Retzer, M., Wilde, J. I., Maschberger, P., Essler, M., Aepfelbacher, M., . . . Siess, W. (1999). Dichotomous regulation of myosin phosphorylation and shape change by Rho-kinase and calcium in intact human platelets. Blood, 94(5), 1665-1672.
Baxter, A. J., Brugha, T. S., Erskine, H. E., Scheurer, R. W., Vos, T., & Scott, J. G. (2015). The epidemiology and global burden of autism spectrum disorders. Psychol Med, 45(3), 601-613. doi:10.1017/S003329171400172X
Bortolato, M., Godar, S. C., Alzghoul, L., Zhang, J., Darling, R. D., Simpson, K. L., . . . Shih, J. C. (2013). Monoamine oxidase A and A/B knockout mice display autistic-like features. Int J Neuropsychopharmacol, 16(4), 869-888. doi:10.1017/S1461145712000715
Bustelo, X. R., Ledbetter, J. A., & Barbacid, M. (1992). Product of vav proto-oncogene defines a new class of tyrosine protein kinase substrates. Nature, 356(6364), 68-71. doi:10.1038/356068a0
Carper, R. A., & Courchesne, E. (2000). Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain, 123 ( Pt 4), 836-844.
Cases, O., Seif, I., Grimsby, J., Gaspar, P., Chen, K., Pournin, S., . . . et al. (1995). Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science, 268(5218), 1763-1766.
Chakraborti, B., Verma, D., Karmakar, A., Jaiswal, P., Sanyal, A., Paul, D., . . . Rajamma, U. (2016). Genetic variants of MAOB affect serotonin level and specific behavioral attributes to increase autism spectrum disorder (ASD) susceptibility in males. Prog Neuropsychopharmacol Biol Psychiatry, 71, 123-136. doi:10.1016/j.pnpbp.2016.07.001
Chaya, T., Shibata, S., Tokuhara, Y., Yamaguchi, W., Matsumoto, H., Kawahara, I., . . . Inagaki, S. (2011). Identification of a negative regulatory region for the exchange activity and characterization of T332I mutant of Rho guanine nucleotide exchange factor 10 (ARHGEF10). J Biol Chem, 286(34), 29511-29520. doi:10.1074/jbc.M111.236810
Cherfils, J., & Zeghouf, M. (2013). Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev, 93(1), 269-309. doi:10.1152/physrev.00003.2012
Chien, W. H., Gau, S. S., Liao, H. M., Chiu, Y. N., Wu, Y. Y., Huang, Y. S., . . . Chen, C. H. (2013). Deep exon resequencing of DLGAP2 as a candidate gene of autism spectrum disorders. Mol Autism., 4(1), 26. doi: 10.1186/2040-2392-1184-1126.
Chien, W. H., Gau, S. S., Wu, Y. Y., Huang, Y. S., Fang, J. S., Chen, Y. J., . . . Chen, C. H. (2010). Identification and molecular characterization of two novel chromosomal deletions associated with autism. Clin Genet, 78(5), 449-456. doi:10.1111/j.1399-0004.2010.01395.x
Chugani, D. C. (2002). Role of altered brain serotonin mechanisms in autism. Mol Psychiatry, 7 Suppl 2, S16-17. doi:10.1038/sj.mp.4001167
Cryan, J. F., Markou, A., & Lucki, I. (2002). Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci, 23(5), 238-245.
Diergaarde, L., Gerrits, M. A., Stuy, A., Spruijt, B. M., & van Ree, J. M. (2004). Neonatal amygdala lesions and juvenile isolation in the rat: differential effects on locomotor and social behavior later in life. Behav Neurosci, 118(2), 298-305. doi:10.1037/0735-7044.118.2.298
Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420(6916), 629-635. doi:10.1038/nature01148
Farook, M. F., DeCuypere, M., Hyland, K., Takumi, T., LeDoux, M. S., & Reiter, L. T. (2012). Altered serotonin, dopamine and norepinepherine levels in 15q duplication and Angelman syndrome mouse models. PLoS One, 7(8), e43030. doi:10.1371/journal.pone.0043030
Goggs, R., Williams, C. M., Mellor, H., & Poole, A. W. (2015). Platelet Rho GTPases-a focus on novel players, roles and relationships. Biochem J, 466(3), 431-442. doi:10.1042/BJ20141404
Gregg, D., & Goldschmidt-Clermont, P. J. (2003). Cardiology patient page. Platelets and cardiovascular disease. Circulation, 108(13), e88-90. doi:10.1161/01.CIR.0000086897.15588.4B
Gu, F., Chauhan, V., & Chauhan, A. (2017). Monoamine oxidase-A and B activities in the cerebellum and frontal cortex of children and young adults with autism. J Neurosci Res. doi:10.1002/jnr.24027
Hall, A. (2012). Rho family GTPases. Biochem Soc Trans, 40(6), 1378-1382. doi:10.1042/BST20120103
Jaffe, A. B., & Hall, A. (2005). Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol, 21, 247-269. doi:10.1146/annurev.cellbio.21.020604.150721
Jiang-Xie, L. F., Liao, H. M., Chen, C. H., Chen, Y. T., Ho, S. Y., Lu, D. H., . . . Gau, S. S. (2014). Autism-associated gene Dlgap2 mutant mice demonstrate exacerbated aggressive behaviors and orbitofrontal cortex deficits. Mol Autism., 5:32.(doi), 10.1186/2040-2392-1185-1132. eCollection 2014.
Jungerius, B. J., Hoogendoorn, M. L., Bakker, S. C., Van't Slot, R., Bardoel, A. F., Ophoff, R. A., . . . Sinke, R. J. (2008). An association screen of myelin-related genes implicates the chromosome 22q11 PIK4CA gene in schizophrenia. Mol Psychiatry, 13(11), 1060-1068. doi:10.1038/sj.mp.4002080
Kadar, A., Wittmann, G., Liposits, Z., & Fekete, C. (2009). Improved method for combination of immunocytochemistry and Nissl staining. J Neurosci Methods, 184(1), 115-118. doi:10.1016/j.jneumeth.2009.07.010
Klages, B., Brandt, U., Simon, M. I., Schultz, G., & Offermanns, S. (1999). Activation of G12/G13 results in shape change and Rho/Rho-kinase-mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol, 144(4), 745-754.
Klages, B., Brandt, U., Simon, M. I., Schultz, G., & Offermanns, S. . (1999). Activation of G12/G13 Results in Shape Change and Rho/Rho-Kinase–mediated Myosin Light Chain Phosphorylation in Mouse Platelets . . The Journal of Cell Biology, 144(4), 745-754.
Kutsche, K., Yntema, H., Brandt, A., Jantke, I., Nothwang, H. G., Orth, U., . . . Gal, A. (2000). Mutations in ARHGEF6, encoding a guanine nucleotide exchange factor for Rho GTPases, in patients with X-linked mental retardation. Nat Genet, 26(2), 247-250. doi:10.1038/80002
Lake, C. R., Ziegler, M. G., & Murphy, D. L. (1977). Increased norepinephrine levels and decreased dopamine-beta-hydroxylase activity in primary autism. Arch Gen Psychiatry, 34(5), 553-556.
Lam, K. S., Aman, M. G., & Arnold, L. E. (2006). Neurochemical correlates of autistic disorder: a review of the literature. Res Dev Disabil, 27(3), 254-289. doi:10.1016/j.ridd.2005.03.003
Leng, L., Kashiwagi, H., Ren, X. D., & Shattil, S. J. (1998). RhoA and the function of platelet integrin alphaIIbbeta3. Blood, 91(11), 4206-4215.
Li, J., Chai, A., Wang, L., Ma, Y., Wu, Z., Yu, H., . . . Zhang, D. (2015). Synaptic P-Rex1 signaling regulates hippocampal long-term depression and autism-like social behavior. Proc Natl Acad Sci U S A, 112(50), E6964-6972. doi:10.1073/pnas.1512913112
Li, Z., Delaney, M. K., O'Brien, K. A., & Du, X. (2010). Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol, 30(12), 2341-2349. doi:10.1161/ATVBAHA.110.207522
Lyall, K., Croen, L., Daniels, J., Fallin, M. D., Ladd-Acosta, C., Lee, B. K., . . . Newschaffer, C. (2016). The Changing Epidemiology of Autism Spectrum Disorders. Annu Rev Public Health. doi:10.1146/annurev-publhealth-031816-044318
Matsushita, T., Ashikawa, K., Yonemoto, K., Hirakawa, Y., Hata, J., Amitani, H., . . . Kubo, M. (2010). Functional SNP of ARHGEF10 confers risk of atherothrombotic stroke. Hum Mol Genet, 19(6), 1137-1146. doi:10.1093/hmg/ddp582
McFarlane, H. G., Kusek, G. K., Yang, M., Phoenix, J. L., Bolivar, V. J., & Crawley, J. N. (2008). Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav, 7(2), 152-163. doi:10.1111/j.1601-183X.2007.00330.x
Moadab, G., Bliss-Moreau, E., Bauman, M. D., & Amaral, D. G. (2017). Early amygdala or hippocampus damage influences adolescent female social behavior during group formation. Behav Neurosci, 131(1), 68-82. doi:10.1037/bne0000181
Mohl, M., Winkler, S., Wieland, T., & Lutz, S. (2006). Gef10--the third member of a Rho-specific guanine nucleotide exchange factor subfamily with unusual protein architecture. Naunyn Schmiedebergs Arch Pharmacol, 373(5), 333-341. doi:10.1007/s00210-006-0083-0
Moy, S. S., Nadler, J. J., Perez, A., Barbaro, R. P., Johns, J. M., Magnuson, T. R., . . . Crawley, J. N. (2004). Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav, 3(5), 287-302. doi:10.1111/j.1601-1848.2004.00076.x
Mueller, B. K., Mack, H., & Teusch, N. (2005). Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov, 4(5), 387-398. doi:10.1038/nrd1719
Owens, A. P., 3rd, Lu, Y., Whinna, H. C., Gachet, C., Fay, W. P., & Mackman, N. (2011). Towards a standardization of the murine ferric chloride-induced carotid arterial thrombosis model. J Thromb Haemost, 9(9), 1862-1863. doi:10.1111/j.1538-7836.2011.04287.x
Paul, B. Z., Kim, S., Dangelmaier, C., Nagaswami, C., Jin, J., Hartwig, J. H., . . . Kunapuli, S. P. (2003). Dynamic regulation of microtubule coils in ADP-induced platelet shape change by p160ROCK (Rho-kinase). Platelets, 14(3), 159-169.
Penagarikano, O., Abrahams, B. S., Herman, E. I., Winden, K. D., Gdalyahu, A., Dong, H., . . . Geschwind, D. H. (2011). Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell, 147(1), 235-246. doi:10.1016/j.cell.2011.08.040
Perry, W., Minassian, A., Lopez, B., Maron, L., & Lincoln, A. (2007). Sensorimotor gating deficits in adults with autism. Biol Psychiatry, 61(4), 482-486. doi:10.1016/j.biopsych.2005.09.025
Pleines, I., Hagedorn, I., Gupta, S., May, F., Chakarova, L., van Hengel, J., . . . Nieswandt, B. (2012). Megakaryocyte-specific RhoA deficiency causes macrothrombocytopenia and defective platelet activation in hemostasis and thrombosis. Blood, 119(4), 1054-1063. doi:10.1182/blood-2011-08-372193
Radyushkin, K., Hammerschmidt, K., Boretius, S., Varoqueaux, F., El-Kordi, A., Ronnenberg, A., . . . Ehrenreich, H. (2009). Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes Brain Behav, 8(4), 416-425. doi:10.1111/j.1601-183X.2009.00487.x
Ridley, A. J., & Hall, A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70(3), 389-399.
Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., & Hall, A. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell, 70(3), 401-410.
Rossman, K. L., Der, C. J., & Sondek, J. (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol, 6(2), 167-180. doi:10.1038/nrm1587
Ruggeri, B., Sarkans, U., Schumann, G., & Persico, A. M. (2014). Biomarkers in autism spectrum disorder: the old and the new. Psychopharmacology (Berl), 231(6), 1201-1216. doi:10.1007/s00213-013-3290-7
Schain, R. J., & Freedman, D. X. (1961). Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. J Pediatr, 58, 315-320.
Schmeisser, M. J., Ey, E., Wegener, S., Bockmann, J., Stempel, A. V., Kuebler, A., . . . Boeckers, T. M. (2012). Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature, 486(7402), 256-260. doi:10.1038/nature11015
Shattil, S. J., Kashiwagi, H., & Pampori, N. (1998). Integrin signaling: the platelet paradigm. Blood, 91(8), 2645-2657.
Stankiewicz, T. R., & Linseman, D. A. (2014). Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci, 8, 314. doi:10.3389/fncel.2014.00314
Suzuki, Y., Yamamoto, M., Wada, H., Ito, M., Nakano, T., Sasaki, Y., . . . Nishikawa, M. (1999). Agonist-induced regulation of myosin phosphatase activity in human platelets through activation of Rho-kinase. Blood, 93(10), 3408-3417.
Tassone, F., Qi, L., Zhang, W., Hansen, R. L., Pessah, I. N., & Hertz-Picciotto, I. (2011). MAOA, DBH, and SLC6A4 variants in CHARGE: a case-control study of autism spectrum disorders. Autism Res, 4(4), 250-261. doi:10.1002/aur.196
van Buul, J. D., Geerts, D., & Huveneers, S. (2014). Rho GAPs and GEFs. Cell Adhesion & Migration, 8(2), 108-124. doi:10.4161/cam.27599
van Steensel, F. J., Bogels, S. M., & Perrin, S. (2011). Anxiety disorders in children and adolescents with autistic spectrum disorders: a meta-analysis. Clin Child Fam Psychol Rev, 14(3), 302-317. doi:10.1007/s10567-011-0097-0
Vega, F. M., & Ridley, A. J. (2008). Rho GTPases in cancer cell biology. FEBS Lett, 582(14), 2093-2101. doi:10.1016/j.febslet.2008.04.039
Verhoeven, K., De Jonghe, P., Van de Putte, T., Nelis, E., Zwijsen, A., Verpoorten, N., . . . Timmerman, V. (2003). Slowed conduction and thin myelination of peripheral nerves associated with mutant rho Guanine-nucleotide exchange factor 10. Am J Hum Genet, 73(4), 926-932. doi:10.1086/378159
Werling, D. M., & Geschwind, D. H. (2013). Sex differences in autism spectrum disorders. Curr Opin Neurol, 26(2), 146-153. doi:10.1097/WCO.0b013e32835ee548
Yang, M. T., Lu, D. H., Chen, J. C., & Fu, W. M. (2015). Inhibition of hyperactivity and impulsivity by carbonic anhydrase inhibitors in spontaneously hypertensive rats, an animal model of ADHD. Psychopharmacology (Berl), 232(20), 3763-3772. doi:10.1007/s00213-015-4036-5
Yin, C. L., Chen, H. I., Li, L. H., Chien, Y. L., Liao, H. M., Chou, M. C., . . . Gau, S. S. (2016). Genome-wide analysis of copy number variations identifies PARK2 as a candidate gene for autism spectrum disorder. Mol Autism., 7:23.(doi), 10.1186/s13229-13016-10087-13227. eCollection 12016.
Yin, Y. Y., Zhang, B., Zhou, M. K., Guo, J., Lei, L., He, X. H., . . . He, L. (2011). The functional SNP rs4376531 in the ARHGEF gene is a risk factor for the atherothrombotic stroke in Han Chinese. Neurol India, 59(3), 408-412. doi:10.4103/0028-3886.82755
Yiu, G., & He, Z. (2006). Glial inhibition of CNS axon regeneration. Nat Rev Neurosci, 7(8), 617-627. doi:10.1038/nrn1956
Zee, R. Y., Wang, Q. M., Chasman, D. I., Ridker, P. M., & Liao, J. K. (2014). Gene variations of ROCKs and risk of ischaemic stroke: the Women's Genome Health Study. Clin Sci (Lond), 126(12), 829-835. doi:10.1042/CS20130652
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20202-
dc.description.abstractRho GTPase 在人體內調控許多生理反應,外部刺激會透過G蛋白偶聯受體(G protein-coupled receptor)來活化Rho GTPase,進而調控各種細胞的功能,而鳥嘌呤核苷酸交換因子(guanine nucleotide exchange factors, GEFs) 是調控 Rho GTPase的重要因子之一。而鳥嘌呤核苷酸交換因子透過結合到G蛋白來啟動Rho GTPase 呈現活化的狀態,藉由將Rho GTPase的GDP轉換為GTP而使Rho蛋白活化。進而能夠繼續相關的訊號傳遞。ARHGEF10是GEFs其中的一員,在臨床上發現該基因的單核苷酸多型性(single-nucleotide polymorphism)與缺血性中風有很大的關聯性。但Arhgef10是如何調節血栓形成仍未知。我們於是建立了Arhgef10基因剔除小鼠,藉由此動物模式來研究Arhgef10與血小板功能的相關性。在本研究中發現,剔除Arhgef10並不會影響小鼠的血小板數目,和其他血液相關的細胞 。但 Arhgef10基因剔除的血小板在利用膠原酶(collagen), 腺苷二磷酸(ADP), 血小板凝血酶(thrombin), U46619 和 PAR4 等刺激下的凝集反應顯著的減少。另外,在塗有纖維蛋白原的(fibrinogen-coated)玻片的貼附反應的實驗中Arhgef10基因剔除的血小板表現較少板狀偽足狀(lamellipodia)的形態。正常的血小板在受到刺激後活化、貼附後會進一步凝集成凝塊,而在利用凝血酶刺激劑來形成凝塊的實驗中Arhgef10缺失的血小板則出現較為鬆散凝塊。從凝塊形成的實驗結果和凝集反應的實驗所觀察到的現象相類似,顯示ARHGEF10對於血小板從活化到凝集的過程中扮演了重要的角色。因此我們也檢驗了ARHGEF10主要調控的目標蛋白RhoA和其下游相關的蛋白,發現RhoA直接作用的蛋白ROCK有顯著減少,此外磷酸化的肌球蛋白輕鏈激酶(myosin light chain)也有顯著的減少。在動物體內的實驗中 利用氯化鐵引起的頸動脈栓塞動物模型及腦中主動脈的缺血性中風模式中,Arhgef10基因剔除對氯化鐵所引起頸動脈栓塞有顯著地抑制作用而對缺血性中風有顯著的保護作用。基於以上的實驗結果我們發現,Arhgef10在血小板凝集的過程中扮演了重要的角色。
此外,Arhgef10基因剔除小鼠也顯示出自閉症相關的行為。從動物行
為實驗的觀察中我們發現, 在社交行為測試中Arhgef10基因剔除小鼠表現出較不喜歡與其他小鼠互動,在社交再認的行為測試中也顯現出對社交行為的不敏感。此外,與野生型的小鼠相比,Arhgef10基因剔除小鼠也表現較為過動的行為特徵。這些行為特徵亦與臨床上自閉症病人的行為相似。生理上我們針對與自閉症相關的腦區進行神經傳導物質的檢驗。在高效液相層析儀的分析中發現,Arhgef10基因剔除小鼠在前額葉和杏仁核兩個腦區中的去甲腎上腺素和血清張素有顯著的增加。進一步分析與神經傳導物質合成與降解相關的蛋白也發現,單胺氧化酶在前額葉及杏仁核的表現量顯著的降低,但與神經傳導物質合成相關的蛋白並無改變。因此可以推論Arhgef10基因剔除小鼠的自閉症相關行為的表現型可能與前額葉和杏仁核兩個腦區的單胺氧化酶表現量降低進而導致神經傳導物質改變有關。
透過Arhgef10基因剔除小鼠的研究,由血小板的實驗可以發現,Arhgef10不僅參與了血小板凝集的過程,更可能在缺血性中風的病理現象中扮演了重要角色; 在中樞神經系統部分,Arhgef10亦影響了神經傳導物質代謝相關的蛋白表現,而神經傳導物質與單胺氧化酶表現量之改變則可能是造成Arhgef10基因剔除小鼠表現出自閉症相關行為的原因。
zh_TW
dc.description.abstractA Rho guanine nucleotide exchange factors (ARHGEF10), a member of Rho guanine nucleotide exchange factors (GEF) family, stimulates the Rho GTPases. Rho GTPases have been reported to regulate a variety of cellular behaviors such as cell polarity, cytoskeletal organization and gene transcription. Our previous copy number variation (CNV) study on CNV discovered that ARHGEF10 was deleted in a patient with an autism spectrum disorder (ASD). ARHGEF10 Single-neucleotide-polymorphisms (SNPs) are also linked with the risk of ischemic stroke. A missense mutation of ARHGEF10 has been reported to be one of the contributory factors in several diseases of the central nervous system. However, the relationship between the loss of ARHGEF10 and platelet function as well as the clinical symptoms of ASD is unclear.
To examine the role of ARHGEF10 in platelet function, we generated Arhgef10 knockout mice to study the in vitro and in vivo effect of Arhgef10 knockout on the platelet function and arterial thrombosis formation. Arhgef10 knockout mice had normal platelet counts, but displayed altered aggregation in response to thrombin, collagen, adenosine diphosphate (ADP), proteinase-activated receptor 4 (PAR-4 ) peptide and U46619 stimulation. Knockout of Arhgef10 influenced platelets spreading on fibrinogen - coated surface and formed less lamellipodia-like extension than wild-type platelets from wild-type mice. Arhgef10 deficiency also inhibited platelet clot retraction induced by thrombin stimulation. Knockout of Arhgef10 resulted in prolonged tail bleeding time and inhibited the stable thrombus formation induced by FeCl3 in carotid artery in vivo.
In the second part, Arhgef10 knockout mice were used as a model of ASD and characterized the social behaviors and the biochemical changes in the brains of the knockout mice. Compared with their wild-type littermates, the Arhgef10-KO mice showed impaired social interaction, hyperactivity and decreased depression-like and anxiety-like behaviors. Behavioral measurements of learning in the Morris water maze were not affected by the Arhgef10 deficiency. Moreover, neurotransmitters including serotonin, norepinephrine, and dopamine were significantly increased in different brain regions of the Arhgef10 knockout mice. In addition, monoamine oxidase A (MAO-A) decreased in several brain regions.
In summary, ARHGEF10 serves as an important regulator in platelet shape change, spreading and aggregation. Moreover, the results in autistic-like symptoms suggest that ARHGEF10 is a candidate risk gene for ASD. Taken together, Arhgef10 knockout mice model could be a tool for studying the mechanisms of arterial thrombosis formation and neurotransmission in ASD.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:42:08Z (GMT). No. of bitstreams: 1
ntu-107-D01443002-1.pdf: 3204250 bytes, checksum: 967e08080fb30c8a015e7c44ca9467a1 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsAbbreviations 1
Abstract in Chinese 4
Abstract in English 8
Chapter 1. Introduction 12
1-1. Rho GTPase and Rho GTPases’ regulators 13
1-2. ARHGEF10 17
1-3. ARHGEF10 and platelet function 20
1-4. ARHGEF10 and autism spectrum disorder (ASD) 23
Chapter 2. Materials and Methods 26
Chapter 3. Arhgef10 knockout inhibits platelet aggregation and protects mice from thrombus formation 43
Chapter 4. Impairment of social behaviors in Arhgef10 knockout mice 71
Chapter 5. Conclusion and Perspective 106
References 110
dc.language.isoen
dc.title探討 ARHGEF10 於血小板功能及自閉症相關行為所扮演之角色zh_TW
dc.titleThe role of ARHGEF10 in platelet function and autistic-like syndromeen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.oralexamcommittee林琬琬(Wan-Wan Lin),高淑芬(Susan Shur-Fen Gau),劉宏輝(Horng-Huei Liou),林滿玉(A. Maan-Yuh Lin)
dc.subject.keyword血小板,自閉症,Arhgef10 基因缺失轉殖鼠,zh_TW
dc.subject.keywordplatelet function,autistic-like syndrome,Arhgef10 knockout mice,en
dc.relation.page116
dc.identifier.doi10.6342/NTU201800325
dc.rights.note未授權
dc.date.accepted2018-02-06
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved