請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20197完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭柏齡 | |
| dc.contributor.author | Fu-Sheng Jiang | en |
| dc.contributor.author | 蔣富昇 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:42:01Z | - |
| dc.date.copyright | 2018-02-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-06 | |
| dc.identifier.citation | [1] 劉華昌,(1988),基本骨科學,合記書局,p.243.
[2] 王則青,(中華民國九十七年六月),創新足壓量測與客製化鞋墊開發, 國立台北科技大學機電整合研究所碩士論文,p.3-33. [3] Peter R.Cavanagh, P. M. (1987,4). Pressure Distribution under Symptom-Free Feet during Barefoot Standing. Foot & Ankle , p.269. [4] 林彥任、洪辰宇、李俊傑、謝有丁、王亭貴,(2014),客製足部矯具對一般足部疼痛之療效及療效預測因子之探討,台灣復健醫誌,p.137-145. [5] 許盛發、楊世偉,(中華民國八十五年),鞋墊對減低足底壓力效益之生物力學分析,中華醫學工程學刊,第十六卷第四期,p.367. [6] Stephen Urry,(1999),Plantar pressure-measurement sensors,Meas. Sci. Technol. 10,p.20-22. [7] Alex Krizhevsky,(2010),Convolutional Deep Belief Networks on CIFAR-10,Toronto university ,p.1-6. [8] Andre Esteva,(2017,2,2),Dermatologist-level classification of skin cancer with deep neural networks,Nature , p.1-12. [9] Y.LeCun, Bengio Yoshua,Hinton Geoffrey (2015). Deep learning,Nature 521 , p.436-444. [10] Y.LeCun,(1989),Back propagation Applied to Handwritten Zip Code Recognition,Neural Computation,p.548. [11]Y.LeCun, B.Boser, Denker, Henderson, Howard, & ubbard, a.L.,(1990). Hand written Digit Recognition with a Back-Propagation Network. AT&T Bell Laboratories , p.396-404. [12] Y.LeCun. (1998),THE MNIST DATABASE of handwritten digits. New Work, http://yann.lecun.com/exdb/mnist/ [13]Alex Krizhevsky, Ilya Sutskever, & Hinton, G. E,(2012). ImageNet Classification with Deep Convolutional,Toronto University,p.2-6. [14] Samer Hijazi, Rishi Kumar, and Chris Rowen,(2015),Using Convolutional Neural Networks for Image Recognition,Cadence IP Group,p.1-12. [15]Maas, A. L., Hannun, A. Y., & Ng, A. Y.,(2013). Rectifier Nonlinearities Improve Neural Network Acoustic Models. Computer Science Department, Stanford University. [16] Alex Krizhevsky,(2010,8),Convolutional Deep Belief Networks on CIFAR-10,p.2-p8. [17]Boer, P.T. d., Kroese, D., Mannor, S., & Rubinstein, R. Y.,(2005,1). A Tutorial on the Cross-Entropy Method. Annals of operations research , p.19-67. [18] Jeff Dean,(2015,11), TensorFlow官方技術文件V1.2,https://www.tensorflow.org/,p.36. [19] Wikipedia,(2017),One-hot,https://en.wikipedia.org/wiki/One-hot [20]Behnam Neyshabur, R. S. (2015). Path-SGD: Path-Normalized Optimization in Deep Neural Networks. Advances in Neural Information Processing Systems .p.8-9. [21] Diederik P. Kingma, Jimmy Lei Ba,(2015),ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION,conference paper at ICLR,p.7. [22] Xavier Glorot, Yoshua Bengio,(2010),Understanding the difficulty of training deep feed forward neural networks, International Conference on Artificial Intelligence and Statistics,p.253. [23] Scherer, Dominik; Müller, Andreas C.; Behnke, Sven,(2010,9),Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition,20th International Conference on Artificial Neural Networks (ICANN),p.3-9. [24] Keras Documentation,The Python Deep Learning library, keras.io,https://keras.io/#keras-the-python-deep-learning-library [25] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ruslan Salakhutdinov. (2014,11). Dropout: A Simple Way to Prevent Neural Networks from. Journal of Machine Learning Research , p.1929-1958. [26] Alex Krizhevsky,(2009,4),Learning Multiple Layers of Features from Tiny Images,p.32-35.、p.52-57. [27] Zaccone, G. (2016). Getting Started with TensorFlow. Birmingham. Packt Publishing Ltd. ,Chap5 CNN architecture ,p.124-143. [28] Y.LeCun, Leon Bottou,Genevieve B.Orr,Klaus-Robert Miiller,(1998),Efficient BackProp,AT&T Lab p.41. [29]李輝煌. (2008). 田口方法-品質設計的原理與實務. 台灣: 高立圖書. Chap1、Chap3 [30]潘浙楠. (2016/01/27). 品質管理:理論與實務(3版). 華泰文化.chap17 [31] Achyut K, Panda, R. K. Singhb,(2013,8),Optimization of Process Parameters by Taguchi Method: Catalytic degradation of polypropylene to liquid fuel,International Journal of Multidisciplinary and Current,p.53. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20197 | - |
| dc.description.abstract | 足部不適為常見病症,而近年來,功能性鞋墊的興起使國人對足部健康意識感到重視。為避免足部不適進一步影響到膝蓋偏斜、甚至脊椎側彎等問題,需做提早預防性治療。現行挑選功能性鞋墊做法,由復健治療師審視足部健康狀況後提供選擇建議為主。另外常用做法為使用壓力測試墊片或是壓力量測儀器,進行足壓分析後給出相應的足墊選擇建議。本研究以鞋底磨損資訊取代一次性壓力測試墊片或是由價格高昂的壓力量測儀器所量測的數據。在經濟與時間的考量下,鞋底磨損的資訊較一次性量測資訊,可提供更多關於使用者長時間運動資訊,較符合使用者實際狀況。另外鞋底磨損也帶有足部功能性或結構性問題,以及使用者的運動習慣資訊,值得進一步研究。
本研究收集鞋底磨損影像,並以卷積神經網路來分類鞋底磨損程度。經往復訓練得到與人類專家判定一致性結果,訓練機器成為挑選合適鞋墊的好幫手,來解決不同人類專家可能導致判讀上不一致的問題,並節省高昂的量測費用。正確選擇鞋墊參數,可提供使用者更舒適足部體驗。本研究使用了57 筆鞋底影像資料,整理收集鞋底磨損影像並處理為人工智慧使用之資料集,以供卷積神經網路分類訓練。 研究顯示,以人類專家判定結果為標準答案,使用卷積神經網路自行取出的特徵做分類結果,可達到準確率80%以上 ,可有效輔助人類專家的判斷,以找出相匹配的功能性鞋墊。 | zh_TW |
| dc.description.abstract | Foot discomfort is a common disease. In recent years the functional insoles make people feel the importance of foot health. In order to avoid foot discomfort and further affect the knee deflection and even scoliosis, it’s need to do early preventive treatment. The current selection of functional insoles which is reviewed foot health status by the rehabilitation therapist. In addition there are commonly used pressure test pad or pressure gauge, foot pressure analysis gives the corresponding choice of functional insoles. This study replaced one-time pressure test pads with shoe-wear information or measured data from costly pressure gauges. Under the consideration of economy and time the information of the sole abrasion provides more information about the user's exercise. The sole abrasion is a longer period of time than the one-time measurement. It is more fit the user actual situation. In addition to the soles abrasion with functional or structural foot problems and the user's exercise habits information, it is worth further study.
In this study the images of abrasion were collected and the degree of sole abrasion was classified by convolution neural networks. The artificial intelligence and human experts determine the consistency of the results. The machine becomes a good helper for choosing the right insole. To solve the differences between different human experts are saving expensive measurement costs. It provides users with a more comfortable foot experience. In this study, 57 pieces of image data were used to complete the image acquisition of soles abrasion and the processing of artificial intelligence data set, which was used to classify the training of convolution neural network. The research shows that taking human experts' judgment as the standard answer. The feature extracted by convolution neural network as the classification result can achieve an accuracy of 80%, It can help human to judge the matching insoles. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:42:01Z (GMT). No. of bitstreams: 1 ntu-107-P99945002-1.pdf: 2888622 bytes, checksum: 03ab3fa0815578b923d9e7dc8d17b619 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致 謝 ii 摘 要 iii ABSTRACT iv 目 錄 v 表 目 錄 vii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 論文架構 1 第二章 文獻探討 2 2.1 足部構造簡介 2 2.2 人工智慧與醫學診斷的關係 3 2.3 CNN卷積神經網路文獻與實作分析 4 2.3.1 CNN卷積神經網路文獻探討 4 2.3.2 卷積神經網路數學模式 5 2.3.3 激活函數 6 2.3.4 權重更新 7 2.3.5 卷積運算說明 9 2.3.6 池化運算說明 9 2.3.7 平坦層資料輸出入處理 10 2.3.8 過度擬合現象與隨機放棄處理 11 2.4 資料集說明 12 2.5 CNN卷積神經網路模型訓練步驟 13 2.6 田口方法 16 第三章 鞋底影像判讀訓練系統 19 3.1 開發平台選擇 19 3.2 標籤資料集建置 19 3.3 影像資料集建置 24 第四章 實驗結果與分析討論 42 4.1 實驗結果 42 4.2 實驗分析 43 第五章 結論與未來研究方向 44 參 考 文 獻 45 | |
| dc.language.iso | zh-TW | |
| dc.title | 卷積神經網路應用於鞋底磨損影像分析 | zh_TW |
| dc.title | Convolution Neural Network Applied to Sole Abrasion Image Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 施吉昇,葉佳倫 | |
| dc.subject.keyword | 卷積神經網路,鞋底磨損影像,田口方法,人工智慧,鞋墊, | zh_TW |
| dc.subject.keyword | Convolution Neural network,Sole Abrasion image,Taguchi Method,Artificial intelligence,Insoles, | en |
| dc.relation.page | 47 | |
| dc.identifier.doi | 10.6342/NTU201800327 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-02-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
