Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20184
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張培仁(Pei-Zen Chang)
dc.contributor.authorYu Wangen
dc.contributor.author王煜zh_TW
dc.date.accessioned2021-06-08T02:41:44Z-
dc.date.copyright2018-03-05
dc.date.issued2018
dc.date.submitted2018-02-08
dc.identifier.citation[1] T. E. Spencer, 'Molecular Biology Made Simple and Fun,' In Vitro Cellular & Developmental Biology, vol. 35, no. 7, p. 365, 1999.
[2] P. C. Nowell, 'The clonal evolution of tumor cell populations,' Science, vol. 194, no. 4260, pp. 23-28, 1976.
[3] J. E. Visvader, 'Cells of origin in cancer,' Nature, vol. 469, no. 7330, pp. 314-322, 2011.
[4] 'What You Need To Know About™ Leukemia.,' vol. National Cancer Institute, 2013-12-23 [18 June 2014].
[5] 台灣癌症基金會. Available: http://www.canceraway.org.tw/
[6] J. J. Hutter, 'Childhood leukemia,' Pediatrics in Review, vol. 31, no. 6, p. 234, 2010.
[7] B. Stewart and C. P. Wild, 'World cancer report 2014,' Health, 2017.
[8] 衛生福利部國民健康署, 'CANCER REGISTRY ANNUAL REPORT, 2014,TAIWAN,' 105.12.
[9] C.-H. Pui and W. E. Evans, 'Treatment of acute lymphoblastic leukemia,' New England Journal of Medicine, vol. 354, no. 2, pp. 166-178, 2006.
[10] B. D. Cheson et al., 'National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment,' Blood, vol. 87, no. 12, pp. 4990-4997, 1996.
[11] A. Stift et al., 'Dendritic cell-based vaccination in solid cancer,' Journal of clinical oncology, vol. 21, no. 1, pp. 135-142, 2003.
[12] L. Ruggeri, A. Mancusi, K. Perruccio, E. Burchielli, M. F. Martelli, and A. Velardi, 'Natural killer cell alloreactivity for leukemia therapy,' Journal of Immunotherapy, vol. 28, no. 3, pp. 175-182, 2005.
[13] J. E. Rubnitz et al., 'NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia,' Journal of clinical oncology, vol. 28, no. 6, pp. 955-959, 2010.
[14] G. Suck, 'Novel approaches using natural killer cells in cancer therapy,' in Seminars in cancer biology, 2006, vol. 16, no. 5, pp. 412-418: Elsevier.
[15] H. Fujisaki et al., 'Expansion of highly cytotoxic human natural killer cells for cancer cell therapy,' Cancer research, vol. 69, no. 9, pp. 4010-4017, 2009.
[16] M. Cheng, Y. Chen, W. Xiao, R. Sun, and Z. Tian, 'NK cell-based immunotherapy for malignant diseases,' Cellular & molecular immunology, vol. 10, no. 3, pp. 230-252, 2013.
[17] M. L. Kovarik et al., 'Micro total analysis systems for cell biology and biochemical assays,' Analytical chemistry, vol. 84, no. 2, pp. 516-540, 2011.
[18] L. Ruggeri et al., 'Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants,' Science, vol. 295, no. 5562, pp. 2097-2100, 2002.
[19] M. F. Martelli et al., 'Transplants across human leukocyte antigen barriers,' in Seminars in hematology, 2002, vol. 39, no. 1, pp. 48-56: Elsevier.
[20] M. A. Karimi et al., 'Measuring cytotoxicity by bioluminescence imaging outperforms the standard chromium-51 release assay,' PloS one, vol. 9, no. 2, p. e89357, 2014.
[21] J. M. Klco et al., 'Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia,' Jama, vol. 314, no. 8, pp. 811-822, 2015.
[22] T. F. Gajewski, H. Schreiber, and Y.-X. Fu, 'Innate and adaptive immune cells in the tumor microenvironment,' Nature immunology, vol. 14, no. 10, pp. 1014-1022, 2013.
[23] H. Borghaei, M. R. Smith, and K. S. Campbell, 'Immunotherapy of cancer,' European journal of pharmacology, vol. 625, no. 1, pp. 41-54, 2009.
[24] Y. BECKER, 'Molecular immunological approaches to biotherapy of human cancers-a review, hypothesis and implications,' Anticancer research, vol. 26, no. 2A, pp. 1113-1134, 2006.
[25] B. Catchpole, S. Gould, L. Kellett‐Gregory, and J. Dobson, 'Immunosuppressive cytokines in the regional lymph node of a dog suffering from oral malignant melanoma,' Journal of small animal practice, vol. 43, no. 10, pp. 464-467, 2002.
[26] D. Zagury and R. C. Gallo, 'Anti-cytokine Ab immune therapy: present status and perspectives,' Drug discovery today, vol. 9, no. 2, pp. 72-81, 2004.
[27] M. A. Morse, P. J. Mosca, T. M. Clay, and H. K. Lyerly, 'Dendritic cell maturation in active immunotherapy strategies,' Expert opinion on biological therapy, vol. 2, no. 1, pp. 35-43, 2002.
[28] 台灣癌症防治網. Available: http://cisc.twbbs.org/lib/addon.php?act=post&id=3530
[29] S. S. Farag and M. A. Caligiuri, 'Human natural killer cell development and biology,' Blood reviews, vol. 20, no. 3, pp. 123-137, 2006.
[30] M. R. Parkhurst, J. P. Riley, M. E. Dudley, and S. A. Rosenberg, 'Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression,' Clinical Cancer Research, 2011.
[31] E. Ishikawa et al., 'Autologous natural killer cell therapy for human recurrent malignant glioma,' Anticancer research, vol. 24, no. 3B, pp. 1861-1871, 2004.
[32] J. S. Miller et al., 'Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer,' Blood, vol. 105, no. 8, pp. 3051-3057, 2005.
[33] A. Curti et al., 'Larger size of donor alloreactive NK cell repertoire correlates with better response to NK cell immunotherapy in elderly acute myeloid leukemia patients,' Clinical Cancer Research, 2016.
[34] I.-T. Kao, C.-L. Yao, Z.-L. Kong, M.-L. Wu, T.-L. Chuang, and S.-M. Hwang, 'Generation of natural killer cells from serum-free, expanded human umbilical cord blood CD34+ cells,' Stem cells and development, vol. 16, no. 6, pp. 1043-1052, 2007.
[35] R. Bhat and C. Watzl, 'Serial killing of tumor cells by human natural killer cells–enhancement by therapeutic antibodies,' PloS one, vol. 2, no. 3, p. e326, 2007.
[36] R. Castriconi et al., 'Natural Killer Cell-Mediated Killing of Freshly Isolated Neuroblastoma Cells,' Cancer research, vol. 64, no. 24, pp. 9180-9184, 2004.
[37] L. L. Lanier, A. M. Le, C. Civin, M. Loken, and J. Phillips, 'The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes,' The Journal of Immunology, vol. 136, no. 12, pp. 4480-4486, 1986.
[38] K. Takahashi, A. Hattori, I. Suzuki, T. Ichiki, and K. Yasuda, 'Non-destructive on-chip cell sorting system with real-time microscopic image processing,' Journal of nanobiotechnology, vol. 2, no. 1, p. 5, 2004.
[39] S. Yamamoto et al., 'Efficient capturing of circulating tumor cells using a magnetic capture column and a size-selective filter,' Bioprocess and biosystems engineering, vol. 38, no. 9, pp. 1693-1704, 2015.
[40] S. Sarkar et al., 'Dynamic analysis of human natural Killer cell response at single-cell resolution in B-cell non-hodgkin lymphoma,' Frontiers in immunology, vol. 8, 2017.
[41] M. Yang, C.-W. Li, and J. Yang, 'Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device,' Analytical chemistry, vol. 74, no. 16, pp. 3991-4001, 2002.
[42] F.-L. Lai, 'A study on cell-based biosensor for cytotoxic assay of human natural killer cells against cancer cells,' Doctoral dissertation, NTU, pp. 1-97, 2011.
[43] T. G. Papaioannou and C. Stefanadis, 'Vascular wall shear stress: basic principles and methods,' Hellenic J Cardiol, vol. 46, no. 1, pp. 9-15, 2005.
[44] J. A. Alberts B, Lewis J, et al. (2002). Molecular Biology of the Cell. 4th edition. Available: https://www.ncbi.nlm.nih.gov/books/NBK26873/
[45] G. Majno and I. Joris, 'Apoptosis, oncosis, and necrosis. An overview of cell death,' The American journal of pathology, vol. 146, no. 1, p. 3, 1995.
[46] 科學Online高瞻自然科學教學資源平台. Available: http://highscope.ch.ntu.edu.tw/wordpress/
[47] H. Koeffler and D. Golde, 'Human myeloid leukemia cell lines: a review,' Blood, vol. 56, no. 3, pp. 344-350, 1980.
[48] M. Nishimura, S. Mitsunaga, T. Akaza, Y. Mitomi, K. Tadokoro, and T. Juji, 'Protection against natural killer cells by interferon-gamma treatment of K562 cells cannot be explained by augmented major histocompatibility complex class I expression,' Immunology, vol. 83, no. 1, p. 75, 1994.
[49] S. Saito et al., 'Ex vivo generation of highly purified and activated natural killer cells from human peripheral blood,' Human gene therapy methods, vol. 24, no. 4, pp. 241-252, 2013.
[50] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, 'Cell movements and the shaping of the vertebrate body,' 2002.
[51] M. Brown and C. Wittwer, 'Flow cytometry: principles and clinical applications in hematology,' Clinical chemistry, vol. 46, no. 8, pp. 1221-1229, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20184-
dc.description.abstract自然殺手細胞療法是近代癌症治療方法之一,相較於傳統化療、放射線治療等方法,其具備有治療副作用小,且可使患者維持較好的生活品質等優勢。自然殺手細胞為人體內先天免疫系統的細胞,會主動辨識癌細胞並進行攻擊,藉由分泌細胞因子或炎性物質,啟動癌細胞凋亡程序,進而達成消滅癌細胞之目的。
本研究使用微流體技術,開發一人類自然殺手細胞毒殺率快速檢測微型化仿生平台,將自然殺手細胞(NK-92MI)與標靶癌細胞(K562)接觸後,利用微流道出入口水頭壓力差的原理,將懸浮的細胞混合液導入晶片當中,並以微結構捕捉固定後,利用螢光染色法來判定 K562細胞是否存在早期細胞凋亡的現象,用以檢測NK-92MI對 K562細胞毒殺率。利用計算流體力學(computational fluid dynamics, CFD)來預估微流體中應力作用對細胞的影響,確認在此微系統環境下,流場剪應力對於細胞存活率並無顯著影響,以增加微型化仿生平台檢測可靠度。實驗方面針對傳統流式細胞儀與本平台,比較不同接觸時間與不同效應細胞對目標細胞比例(effector to target cell ratio, E:T ratio)混合之樣本,進行自然殺手細胞毒殺能力的檢測與分析。結果顯示使用微型化仿生平台所獲得的結果與流式細胞儀一致性極高,此外本平台能捕捉少量(約〖10〗^2)懸浮細胞樣本,提供自然殺手細胞療法一嶄新的毒殺率檢測方式。並實際抽取人體血樣,驗證人類自然殺手細胞毒殺率變化,證明此裝置於自然殺手細胞療法中對醫師有臨床檢測功效。未來可規劃循環式流動系統,以達模擬真實血管中自然殺手細胞毒殺癌細胞的作用進行觀察。
本微型化仿生平台成功且有效檢測出自然殺手細胞之細胞毒殺率,可應用於為患者尋找合適的自然殺手細胞捐贈來源,提高自然殺手細胞療法成功率,實現個人化醫療(personalized medicine)的目標。此外本平台尚擁有製造低成本和低樣品消耗量等特性,充分具備未來於醫療實務應用上的發展潛力。
zh_TW
dc.description.abstractNatural killer cell therapy is one of the most recent forms of cancer treatment. Natural killer cell therapy has fewer side effects and better quality of life than chemotherapy and radiotherapy. Natural killer cells are cells of the innate immune system in the human body. They actively attack cancer cells by secreting cytokines or inflammatory cell apoptosis programs.
Cytotoxicity assays were performed on natural killer cells and K562 cells. By manipulating microfluidics, the cell mixture was injected into the chip to detect cytotoxicity.
In this study, computational fluid dynamics (CFD) software was used to study the effect of shear stress on microfluidic cells. It was confirmed that the shear stress had no significant effect on cell in the flow. Increase the reliability of the miniaturized biomimetic platform. The cells are mixed according to the effector to target cell ratio (E: T ratio). The cytotoxicity of natural killer cells was compared with traditional flow cytometry. The results show that the analytical results using a miniaturized biomimetic platform are highly consistent with flow cytometry. In addition, the miniaturized biomimetic platform can capture a small amount of suspended cell samples (about 10^2 cells) and improve the shortcomings that flow cytometry requires a large number of cells (about 5 × 10^5 ~10^6). Blood was drawn off from donors to verify changes in cytotoxicity. This device proved to be clinically effective for physicians in natural killer cell therapy.
The miniaturized biomimetic platform successfully and effectively detects the cytotoxicity of natural killer cells. It can be used to find suitable natural killer cell donation sources for patients. Increase the success rate of natural killer cell therapy. In addition, this platform still has manufacturing features such as low cost and low sample consumption. This research has the potential for development in practical medical treatment.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:41:44Z (GMT). No. of bitstreams: 1
ntu-107-R04543094-1.pdf: 4138566 bytes, checksum: 185be5c05fceae5fa6cba2536f4c086e (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 i
中文摘要 ii
英文摘要 iii
第1章 緒論 1
1-1 前言 1
1-2 研究動機 4
1-3 文獻回顧 5
1-3.1 免疫細胞療法 5
1-3.2 自然殺手細胞療法 7
1-3.3 自然殺手細胞特性與毒殺機制 11
1-3.4 實驗室晶片 (Lab on chip) 13
1-3.5 生物晶片細胞操控技術 14
1-4 論文架構 18
第2章 研究方法 19
2-1 流微體晶片製作 19
2-1.1 微流體晶片流道設計 19
2-1.2 微流體晶片母模製程 20
2-1.3 微流體晶片製作整合 22
2-2 微流道流場理論分析 26
2-2.1 水力聚焦流場分析 26
2-2.2 微流道內細胞受力分析 28
2-3 微流道流場模擬分析 31
2-4 細胞生物技術介紹 35
2-4.1 細胞培養 35
2-4.2 細胞凋亡機制 37
2-4.3 初代細胞與細胞株 38
2-4.4 血癌細胞與自然殺手細胞培養 39
2-5 毒殺分析方法―細胞膜螢光染色 43
2-5.1 K562細胞膜螢光標定 43
2-5.2 K562凋亡螢光標定 43
2-6 流式細胞分析儀 44
第3章 實驗流程 47
3-1 實驗架構 47
3-2 實驗操作流程 48
3-2.1 CFD軟體基本設定 48
3-2.2 微流體晶片毒殺分析 49
3-2.3 流式細胞儀毒殺分析 51
第4章 實驗結果 53
4-1 微流道流場模擬結果 53
4-2 細胞毒殺率計算 57
4-2.1 K562細胞螢光標定測試 57
4-2.2 微流體晶片之毒殺率計算 58
4-2.3 流式細胞儀之毒殺率計算 58
4-3 細胞在晶片內受損傷實驗 59
4-4 細胞株毒殺檢測 61
4-5 臨床應用檢測 63
第5章 實驗討論 65
5-1 細胞株毒殺檢測 65
5-2 臨床應用檢測 65
第6章 結論與未來展望 66
6-1 結論 66
6-2 未來展望 67
參考文獻 68
dc.language.isozh-TW
dc.title人類自然殺手細胞毒殺率快速檢測微型化仿生平台-以血癌細胞為例zh_TW
dc.titleA Rapid Cytotoxicity Detection Method for the Human Natural Killer Cell and Leukemia Cell in the Miniaturized Biomimetic Platformen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.coadvisor蔣雅郁(Ya-Yu Chiang)
dc.contributor.oralexamcommittee李雨(U Lei),沈弘俊(Horn-Jiunn Sheen),蔡博宇(Bor-Yu Tsai)
dc.subject.keyword自然殺手細胞,微流體,細胞毒性,流式細胞儀,免疫細胞療法,zh_TW
dc.subject.keywordNatural killer cell,microfluidics,Cytotoxicity,Flow Cytometry,Immune cell therapy,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201601816
dc.rights.note未授權
dc.date.accepted2018-02-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved