請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20164完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃升龍(Sheng-Lung Huang) | |
| dc.contributor.author | Chia-Kai Chang | en |
| dc.contributor.author | 張家凱 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:41:17Z | - |
| dc.date.copyright | 2018-03-02 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-12 | |
| dc.identifier.citation | 1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, 'Optical coherence tomography,' Science 254, 1178–1181 (1991).
2. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, 'Optical biopsy and imaging using optical coherence tomography,' Nat. Med. 1, 970–972 (1995). 3. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, 'Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,' JOSA B 9, 903–908 (1992). 4. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, 'Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,' Opt. Express 16, 15149–15169 (2008). 5. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, 'Submicrometer axial resolution optical coherence tomography,' Opt. Lett. 27, 1800–1802 (2002). 6. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer Science & Business Media, 2008). 7. E. Proksch, J. M. Brandner, and J. M. Jensen, 'The skin: an indispensable barrier,' Exp. Dermatol. 17, 1063–1072 (2008). 8. K. C. Madison, 'Barrier Function of the Skin: “La Raison d’Être” of the Epidermis,' J. Invest. Dermatol. 121, 231–241 (2003). 9. T. Burns, S. Breathnach, N. Cox, and C. Griffiths, Rook’s Textbook of Dermatology: 4 Volume Set (Wiley, 2004). 10. G. E. Costin and V. J. Hearing, 'Human skin pigmentation: melanocytes modulate skin color in response to stress,' Faseb J. 21, 976–994 (2007). 11. S. Kippenberger, A. Bernd, J. Bereiter-Hahn, A. Ramirez-Bosca, and R. Kaufmann, 'The mechanism of melanocyte dendrite formation: The impact of differentiating keratinocytes,' Pigment Cell Res. 11, 34–37 (1998). 12. R. A. Briggaman and C. E. Wheeler, 'The epidermal-dermal junction,' J. Invest. Dermatol. 65, 71–84 (1975). 13. D. Breitkreutz, N. Mirancea, and R. Nischt, 'Basement membranes in skin: unique matrix structures with diverse functions?,' Histochem. Cell Biol. 132, 1–10 (2009). 14. R. K. Wang and V. V. Tuchin, Advanced Biophotonics: Tissue Optical Sectioning (CRC Press, 2013). 15. D. F. Galletta, R. Henry, S. McCoy, and P. Polak, 'Web site delays: How tolerant are users?,' J. Assoc. Inf. Syst. 5, 1–28 (2004). 16. D. G. Lowe, 'Distinctive Image Features from Scale-Invariant Keypoints,' Int J Comput Vis. 60, 91–110 (2004). 17. P. J. Burt and E. H. Adelson, 'A multiresolution spline with application to image mosaics,' ACM Trans Graph 2, 217–236 (1983). 18. J. Fung, F. Tang, and S. Mann, 'Mediated reality using computer graphics hardware for computer vision,' in Proceedings. Sixth International Symposium on Wearable Computers, (IEEE, 2002), pp. 83–89. 19. J. Fung and S. Mann, 'Computer vision signal processing on graphics processing units,' in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (2004), Vol. 5, p. V-93-6. 20. K. Zhang and J. U. Kang, 'Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,' Opt. Express 18, 23472–23487 (2010). 21. K. Zhang and J. U. Kang, 'Real-time numerical dispersion compensation using graphics processing unit for Fourier-domain optical coherence tomography,' Electron. Lett. 47, 309–310 (2011). 22. K. Zhang and J. U. Kang, 'Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance,' Biomed. Opt. Express 2, 764–770 (2011). 23. P. Memmolo, L. Miccio, F. Merola, O. Gennari, P. A. Netti, and P. Ferraro, '3D morphometry of red blood cells by digital holography,' Cytometry A 85, 1030–1036 (2014). 24. Y. H. Liao, S. Y. Chen, S. Y. Chou, P. H. Wang, M. R. Tsai, and C. K. Sun, 'Determination of chronological aging parameters in epidermal keratinocytes by in vivo harmonic generation microscopy,' Biomed. Opt. Express 4, 77–88 (2013). 25. N. C. Cheng, T. H. Hsieh, Y. T. Wang, C. C. Lai, C. K. Chang, M. Y. Lin, D. W. Huang, J. W. Tjiu, and S. L. Huang, 'Cell death detection by quantitative three-dimensional single-cell tomography,' Biomed. Opt. Express 3, 2111–2120 (2012). 26. A. J. Creager, M. B. Pitman, and K. R. Geisinger, 'Cytologic features of clear cell sarcoma (malignant melanoma) of soft parts: a study of fine-needle aspirates and exfoliative specimens,' Am. J. Clin. Pathol. 117, 217–224 (2002). 27. V. Kumar, A. K. Abbas, and J. C. Aster, Robbins Basic Pathology, 9th ed. (Elsevier Health Sciences, 2012). 28. J. M. Okamura, R. J. Barr, and K. A. Cantos, 'Benign atypical junctional melanocytic hyperplasia associated with intradermal nevi: A common finding that may be confused with melanoma in situ,' Mod. Pathol. 13, 857–860 (2000). 29. A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, 'Three-dimensional cellular-level imaging using full-field optical coherence tomography,' Phys. Med. Biol. 49, 1227 (2004). 30. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, 'Ultrahigh-resolution full-field optical coherence tomography,' Appl. Opt. 43, 2874–2883 (2004). 31. M. Akiba, K. P. Chan, and N. Tanno, 'Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras,' Opt. Lett. 28, 816–818 (2003). 32. C. C. Tsai, Y. T. Wang, T. S. Ho, M. Y. Lin, J. W. Tjiu, K. Y. Hsu, C. K. Chang, and S. L. Huang, 'Mirau-based full-field time-domain optical coherence tomography using Ce3+ :YAG crystal fiber light source,' in (International Society for Optics and Photonics, 2013), Vol. 8802, p. 880209. 33. C. C. Tsai, C. K. Chang, K. Y. Hsu, T. S. Ho, M. Y. Lin, J. W. Tjiu, and S. L. Huang, 'Full-depth epidermis tomography using a Mirau-based full-field optical coherence tomography,' Biomed. Opt. Express 5, 3001 (2014). 34. C. C. Tsai, T. H. Chen, Y. S. Lin, Y. T. Wang, W. Chang, K. Y. Hsu, Y. H. Chang, P. K. Hsu, D. Y. Jheng, K. Y. Huang, E. Sun, and S. L. Huang, 'Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea,' Opt. Lett. 35, 811 (2010). 35. R. A. Drebin, L. Carpenter, and P. Hanrahan, 'Volume rendering,' in Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’88 (ACM, 1988), pp. 65–74. 36. J. Kniss, G. Kindlmann, and C. Hansen, 'Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets,' in Visualization, 2001. VIS ’01. Proceedings (2001), pp. 255–562. 37. J. Kniss, G. Kindlmann, and C. Hansen, 'Multidimensional transfer functions for interactive volume rendering,' IEEE Trans. Vis. Comput. Graph. 8, 270–285 (2002). 38. A. Rodriguez, D. B. Ehlenberger, P. R. Hof, and S. L. Wearne, 'Rayburst sampling, an algorithm for automated three-dimensional shape analysis from laser scanning microscopy images,' Nat. Protoc. 1, 2152–2161 (2006). 39. C. Tomasi and R. Manduchi, 'Bilateral filtering for gray and color images,' in Sixth International Conference on Computer Vision, 1998 (1998), pp. 839–846. 40. E. W. Weisstein, 'Euler angles,' http://mathworld.wolfram.com/EulerAngles.html. 41. T. Tsuji and A. J. Cox, 'Ultrastructural studies of nuclei and nucleoli in psoriatic epidermis compared to those in normal epidermis,' J. Invest. Dermatol. 69, 205–210 (1977). 42. J. Maszewski and M. Kwiatkowska, 'Number, size, and transcriptional activity of nucleoli during different periods of interphase in antheridial filaments of Chara vulgaris L,' Folia Histochem. Cytobiol. 22, 9–19 (1984). 43. H. E. Grossniklaus, J. H. Oakman, C. Cohen, F. P. Calhoun, P. B. DeRose, and C. Drews-Botsch, 'Histopathology, morphometry, and nuclear DNA content of iris melanocytic lesions,' Invest. Ophthalmol. Vis. Sci. 36, 745–750 (1995). 44. M. Derenzini, D. Trerè, A. Pession, L. Montanaro, V. Sirri, and R. L. Ochs, 'Nucleolar function and size in cancer cells.,' Am. J. Pathol. 152, 1291–1297 (1998). 45. R. D. Kornberg, 'Chromatin structure: A repeating unit of histones and DNA,' Science 184, 868–871 (1974). 46. K. Luger, A. W. Mäder, R. K. Richmond, D. F. Sargent, and T. J. Richmond, 'Crystal structure of the nucleosome core particle at 2.8 Å resolution,' Nature 389, 251–260 (1997). 47. E. B. Lum and K. L. Ma, 'Hardware-accelerated parallel non-photorealistic volume rendering,' in Proceedings of the 2Nd International Symposium on Non-Photorealistic Animation and Rendering, NPAR ’02 (ACM, 2002), p. 67–ff. 48. J. A. Stuart, C. K. Chen, K. L. Ma, and J. D. Owens, 'Multi-GPU volume rendering using MapReduce,' in Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, HPDC ’10 (ACM, 2010), pp. 841–848. 49. J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. Hinrichs, 'Voreen: a rapid-prototyping environment for ray-casting-based volume visualizations,' IEEE Comput. Graph. Appl. 29, 6–13 (2009). 50. 'Online Etymology Dictionary,' http://www.etymonline.com/. 51. E. Bianconi, A. Piovesan, F. Facchin, A. Beraudi, R. Casadei, F. Frabetti, L. Vitale, M. C. Pelleri, S. Tassani, F. Piva, S. Perez-Amodio, P. Strippoli, and S. Canaider, 'An estimation of the number of cells in the human body,' Ann. Hum. Biol. 40, 463–471 (2013). 52. N. A. Campbell, B. Williamson, and R. J. Heyden, Biology: Exploring Life, 2006 edition (Pearson Prentice Hall, 2006). 53. B. A. Gilchrest, 'Age-associated changes in the skin,' J. Am. Geriatr. Soc. 30, 139–143 (1982). 54. C. K. Chang, C. C. Tsai, W. Y. Hsu, J. S. Chen, Y. H. Liao, Y. S. Sheen, J. B. Hong, M. Y. Lin, J. W. Tjiu, and S. L. Huang, 'Segmentation of nucleus and cytoplasm of a single cell in three-dimensional tomogram using optical coherence tomography,' J. Biomed. Opt. 22, 036003–036003 (2017). 55. E. B. Lum and K. L. Ma, 'Hardware-accelerated parallel non-photorealistic volume rendering,' in Proceedings of the 2Nd International Symposium on Non-Photorealistic Animation and Rendering, NPAR ’02 (ACM, 2002), pp. 67–73. 56. R. Fernando, GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics, First Edition (Addison-Wesley Professional, 2004). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20164 | - |
| dc.description.abstract | 以往的生物細胞分析是透過二維影像來建立量化資訊,我們通過解析度為橫向0.8 µm,縱向0.9 µm的全域式同調斷層掃描(FF-OCT)系統,獲取三維斷層掃描立體影像,以三維立體資訊來分析,可以得到較全面的資訊。本研究開發隨機射線取樣(Random rayburst sampling; RRBS)框架,用於檢測三維空間中的細胞核與細胞膜的邊界,從而進行單細胞的量化分析,計算出單細胞的體積核質比(nuclear-to-cytoplasmic ratio)與細胞立體形貌。此RRBS框架的設計原則是透過隨機的取樣來得到最終的穩定客觀結果,因此可以減少人工操作的不便並避免人為干預。RRBS對雜訊不敏感,不同隨機選擇的RRBS計算所得到的體積核質比之間的相對標準偏差為2%。以螢光共焦顯微鏡做驗證,RRBS算法於體積核質比的誤差僅為1%。經模擬計算,若以二維影像來確認細胞的體積核質比,需要500顆細胞的橫切面才可得到穩定的統計數據(%RSD < 5%)。本研究透過三維斷層掃描技術與RRBS框架,可以測量並計算每顆個別細胞的體積核質比。為了提升計算效率,本研究使用圖形處理器(Graphics processing unit; GPU)的平行計算,若使用Nvidia的GTX 1080圖形處理器,於三維雙邊濾波器之計算可以得到280倍的速度提升。
RRBS框架也可應用於活體皮膚組織的量化分析。角質形成細胞(Keratinocytes)之細胞核的體積由顆粒層(Stratum granulosum)到基底層(Stratum basale)逐漸變小,結合FF-OCT的快速三維斷層掃描與RRBS框架可以提取位於表皮層(Epidermis)不同深度的角質形成細胞之細胞核的三維形態特徵,進而對活體皮膚進行量化分析,同時,使用RRBS框架可分析活體皮膚組織的角質形成細胞核的三維空間分佈,角質形成細胞核在基底層的平均縱向和橫向直徑分別為5.1±0.34和7.2±0.74 µm,RRBS框架與本實驗室的細胞等級高解析度FF-OCT搭配,有潛力作為皮膚之疾病與癌症的早期診斷的有效方法。 | zh_TW |
| dc.description.abstract | In the past, the quantitative analysis of biological cell is to establish information via two-dimensional (2D) images. Now, raw volumetric images were acquired through a full-field optical coherence tomography (FF-OCT) system with submicron resolution—i.e. 0.8 µm in lateral and 0.9 µm in axial direction. With the tomographic volumetric image data, more comprehensive information could be acquired. A random rayburst sampling (RRBS) framework was developed to detect the nucleus and cell membrane boundaries in three-dimensional (3D) space for determining the volumetric nuclear-to-cytoplasmic (N/C) ratio and morphology of a single cell. The design principle of this RRBS framework is to obtain the stable and objective results through random sampling. Therefore, the RRBS framework could reducing the inconvenience of manual operation and avoiding human intervention. The RRBS framework was insensitive to the selection of seeds and voxel noise. The relative standard deviation of the N/C ratio between different randomly selected seed sets was only 2%. Compared with the fluorescence confocal microscopy, the error of our algorithm is 1%. Compare with 2D images, need more than 500 exactly identical cells to obtain a precise (%RSD < 5%) volumetric N/C ratio. In this research, the volumetric N/C ratio of every single cell measured by FF-OCT could be calculated by RRBS framework. To improve computational efficiency, the graphics processing unit (GPU) is used for parallel processing. By using Nvidia GTX 1080, we have 280 times speed up for 3D bilateral filter.
The RRBS framework was applied to in vivo human skin tissue with quantitative studies of the spatial distribution and morphometry of keratinocytes. The volume size of the keratinocyte nuclei became smaller from the stratum granulosum to the stratum basale. The rapid measurement of FF-OCT combined with a random rayburst sampling framework for the extraction of nuclear morphological features could serve as an effective approach to acquiring essential quantitative information for in vivo human skin tissue. Also, the spatial distribution of keratinocytes nuclei from in vivo human skin tissue were analyzed by this segmentation algorithm. The average axial and lateral diameters of keratinocyte nuclei in the stratum basale were 5.1±0.34 and 7.2±0.74 µm, respectively. The RRBS framework working with the high-resolution home-made OCT could serve as an effective approach to acquiring essential quantitative information for early stage disease diagnosis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:41:17Z (GMT). No. of bitstreams: 1 ntu-107-D99941014-1.pdf: 6495590 bytes, checksum: 2bbcb9426ba1a3844e155f0eae39a157 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii Table of Content iv List of Figures vi List of Tables xii Chapter 1 Introduction of optical coherence tomography (OCT) 1 1.1 Historical review – Michelson interferometer 1 1.2 Michelson interferometer with low coherence light source 4 1.3 Full-field OCT 8 1.4 Introduction of human skin tissue 9 Chapter 2 Full-field OCT system 12 2.1 System setup 12 2.2 FF-OCT instrument control program 14 2.3 System applications – ex vivo, in vitro, and in vivo 23 Chapter 3 Software toolkits 27 3.1 Web-based biomedical images storage server 30 3.1.1 Volumetric tomographic data 33 3.1.2 Stitched medical image 35 3.2 General-purpose computing on graphics processing units 42 Chapter 4 Algorithm – Random rayburst sampling 46 4.1 Random rayburst sampling algorithm 47 4.1.1 Step A: Filtering 57 4.1.2 Step B: Randomly selecting seeds 59 4.1.3 Step C: Detecting boundaries 63 4.1.4 Step D: Labeling 67 4.1.5 Feature extraction 73 4.1.6 Parameter selection 74 4.1.7 Implementation 77 4.2 Robustness verification 78 4.2.1 Effect of the iteration number of the bilateral filter 78 4.2.2 Effect of seed selection 79 4.2.3 Effect of seed number 80 4.2.4 N/C ratio estimation: comparison of 2D and 3D scanning 81 4.3 Computing performance 83 Chapter 5 Applications on cellular segmentation 85 5.1 Single cell 85 5.1.1 Keratinocyte from stratum spinosum 86 5.1.2 Melanocyte 88 5.2 In vivo nuclei segmentation of human skin tissue 90 5.2.1 Nuclei localization 95 5.2.2 Nuclei segmentation 101 Chapter 6 Conclusions and future work 110 6.1 Conclusions 110 6.2 Future work 111 Appendix 1: Introduction of the web-based storage server 112 Appendix 2: CUDA code for bilateral filter 125 Appendix 3: CUDA code for labeling 127 Reference 133 | |
| dc.language.iso | en | |
| dc.title | 全域式光學同調斷層掃描儀於皮膚組織之量化參數研究 | zh_TW |
| dc.title | Quantitative analyses of human skin using full-field optical coherence tomography | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 邱政偉(Jeng-Wei Tjiu),廖怡華(Yi-Hua Liao),傅楸善(Chiou-Shann Fuh),林晃巖(Hoang-Yan Lin),邱國創(Kuo-Chuang Chiu) | |
| dc.subject.keyword | 光學同調斷層掃描儀,影像分析,隨機射線取樣,單細胞分割,組織特徵, | zh_TW |
| dc.subject.keyword | optical coherence tomography,image analysis,random rayburst sampling,single-cell segmentation,tissue characterization, | en |
| dc.relation.page | 137 | |
| dc.identifier.doi | 10.6342/NTU201800508 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-02-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 6.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
