Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20141
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡幸真zh_TW
dc.contributor.author楊采諭zh_TW
dc.contributor.authorTsai-Yu Yangen
dc.date.accessioned2021-06-08T02:40:48Z-
dc.date.available2023-12-15-
dc.date.copyright2018-03-29-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. <105年死因統計結果分析.pdf>.
2. Grunnet, M. and J.B. Sorensen, Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer, 2012. 76(2): p. 138-43.
3. Maestranzi, S., et al., The Effect of Benign and Malignant Liver Disease on the Tumour Markers CA19-9 and CEA. Annals of Clinical Biochemistry, 1998. 35(1): p. 99-103.
4. Zhou, S., A.E. Treloar, and M. Lupien, Emergence of the noncoding cancer genome: a target of genetic and epigenetic alterations. Cancer discovery, 2016. 6(11): p. 1215-1229.
5. da Cunha Santos, G., F.A. Shepherd, and M.S. Tsao, EGFR mutations and lung cancer. Annu Rev Pathol, 2011. 6: p. 49-69.
6. Sakurada, A., F.A. Shepherd, and M.-S. Tsao, Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Lung Cancer: Impact of Primary or Secondary Mutations. Clinical Lung Cancer, 2006. 7: p. S138-S144.
7. Riely, G.J., J. Marks, and W. Pao, KRAS mutations in non-small cell lung cancer. Proc Am Thorac Soc, 2009. 6(2): p. 201-5.
8. Eberhard, D.A., et al., Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol, 2005. 23(25): p. 5900-9.
9. Malanga, D., et al., Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung. Cell Cycle, 2008. 7(5): p. 665-9.
10. Bleeker, F.E., et al., AKT1(E17K) in human solid tumours. Oncogene, 2008. 27(42): p. 5648-50.
11. Waddington, C.H., The epigenotype. 1942. Int J Epidemiol, 2012. 41(1): p. 10-3.
12. Dupont, C., D.R. Armant, and C.A. Brenner, Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med, 2009. 27(5): p. 351-7.
13. <Genes, genetics, and epigenetics a correspondence..pdf>.
14. Allis, C.D. and T. Jenuwein, The molecular hallmarks of epigenetic control. Nat Rev Genet, 2016. 17(8): p. 487-500.
15. Schubeler, D., Function and information content of DNA methylation. Nature, 2015. 517(7534): p. 321-6.
16. Moore, L.D., T. Le, and G. Fan, DNA Methylation and Its Basic Function. Neuropsychopharmacology, 2012. 38: p. 23.
17. Smith, Z.D. and A. Meissner, DNA methylation: roles in mammalian development. Nature Reviews Genetics, 2013. 14: p. 204.
18. Xie, S., et al., Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene, 1999. 236(1): p. 87-95.
19. Bourc'his, D. and T.H. Bestor, Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature, 2004. 431: p. 96.
20. Goll, M.G., et al., Methylation of tRNA<sup>Asp</sup> by the DNA Methyltransferase Homolog Dnmt2. Science, 2006. 311(5759): p. 395.
21. Baylin, S.B., DNA methylation and gene silencing in cancer. Nature Clinical Practice Oncology, 2005. 2: p. S4.
22. Merlo, A., et al., 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nature Medicine, 1995. 1: p. 686.
23. Dammann, R., T. Takahashi, and G.P. Pfeifer, The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas. Oncogene, 2001. 20: p. 3563.
24. Dammann, R., et al., Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nature Genetics, 2000. 25: p. 315.
25. Vinayanuwattikun, C., et al., Epithelial-specific methylation marker: a potential plasma biomarker in advanced non-small cell lung cancer. J Thorac Oncol, 2011. 6(11): p. 1818-25.
26. Rauch, T.A., et al., DNA methylation biomarkers for lung cancer. Tumor Biology, 2012. 33(2): p. 287-296.
27. The Cancer Genome Atlas Research, N., Comprehensive molecular profiling of lung adenocarcinoma. Nature, 2014. 511: p. 543.
28. Toyota, M., et al., CpG island methylator phenotype in colorectal cancer. Proceedings of the National Academy of Sciences, 1999. 96(15): p. 8681.
29. Hughes, L.A.E., et al., The CpG Island Methylator Phenotype: What's in a Name? Cancer Research, 2013. 73(19): p. 5858.
30. Siravegna, G., et al., Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol, 2017. 14(9): p. 531-548.
31. Ignatiadis, M., M. Lee, and S.S. Jeffrey, Circulating Tumor Cells and Circulating Tumor DNA: Challenges and Opportunities on the Path to Clinical Utility. Clinical Cancer Research, 2015. 21(21): p. 4786.
32. Stroun, M., et al., Neoplastic Characteristics of the DNA Found in the Plasma of Cancer Patients. Oncology, 1989. 46(5): p. 318-322.
33. Jahr, S., et al., DNA Fragments in the Blood Plasma of Cancer Patients: Quantitations and Evidence for Their Origin from Apoptotic and Necrotic Cells. Cancer Research, 2001. 61(4): p. 1659.
34. Schwarzenbach, H., D.S. Hoon, and K. Pantel, Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer, 2011. 11(6): p. 426-37.
35. cobas@ EGFR Mutation Test v2
36. Kwapisz, D., The first liquid biopsy test approved. Is it a new era of mutation testing for non-small cell lung cancer? Ann Transl Med, 2017. 5(3): p. 46.
37. Kawakami, K., et al., Hypermethylated APC DNA in Plasma and Prognosis of Patients With Esophageal Adenocarcinoma. JNCI: Journal of the National Cancer Institute, 2000. 92(22): p. 1805-1811.
38. Sze Wong, T., et al., High Frequency of Promoter Hypermethylation of the <strong><em>Death-associated Protein-Kinase</em></strong> Gene in Nasopharyngeal Carcinoma and Its Detection in the Peripheral Blood of Patients. Clinical Cancer Research, 2002. 8(2): p. 433.
39. Lange, C.P.E., et al., Genome-Scale Discovery of DNA-Methylation Biomarkers for Blood-Based Detection of Colorectal Cancer. PLOS ONE, 2012. 7(11): p. e50266.
40. Johnson, D.A., et al., Plasma Septin9 versus Fecal Immunochemical Testing for Colorectal Cancer Screening: A Prospective Multicenter Study. PLoS ONE, 2014. 9(6): p. e98238.
41. Tomczak, K., P. Czerwinska, and M. Wiznerowicz, The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn), 2015. 19(1A): p. A68-77.
42. Walter, K., et al., DNA Methylation Profiling Defines Clinically Relevant Biological Subsets of Non–Small Cell Lung Cancer. Clinical Cancer Research, 2012. 18(8): p. 2360.
43. Argiropoulos, B. and R.K. Humphries, Hox genes in hematopoiesis and leukemogenesis. Oncogene, 2007. 26: p. 6766.
44. Hwang, S.H., et al., Detection of HOXA9 gene methylation in tumor tissues and induced sputum samples from primary lung cancer patients. Clin Chem Lab Med, 2011. 49(4): p. 699-704.
45. Hwang, J.A., et al., HOXA9 inhibits migration of lung cancer cells and its hypermethylation is associated with recurrence in non-small cell lung cancer. Mol Carcinog, 2015. 54 Suppl 1: p. E72-80.
46. Rauch, T.A., et al., High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(1): p. 252-257.
47. Zhang, Y.A., et al., Validation of SCT Methylation as a Hallmark Biomarker for Lung Cancers. J Thorac Oncol, 2016. 11(3): p. 346-360.
48. Biasiotta, A., et al., Ion channels expression and function are strongly modified in solid tumors and vascular malformations. J Transl Med, 2016. 14(1): p. 285.
49. Pradhan, M.P., A. Desai, and M.J. Palakal, Systems biology approach to stage-wise characterization of epigenetic genes in lung adenocarcinoma. BMC Systems Biology, 2013. 7(1): p. 141.
50. Ushio, R., et al., Digital PCR assay detection of circulating Mycobacterium tuberculosis DNA in pulmonary tuberculosis patient plasma. Tuberculosis (Edinb), 2016. 99: p. 47-53.
51. Yi, S., et al., An optimized rapid bisulfite conversion method with high recovery of cell-free DNA. BMC Mol Biol, 2017. 18(1): p. 24.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20141-
dc.description.abstract肺癌於台灣及世界上許多國家皆高居十大癌症死因第一名,五年存活率不到百分之二十; 其中,早期診斷的病患五年存活率可達一半以上,晚期發現的病患其五年存活率則驟降至小於百分之五。然而,肺癌病患只有約百分之十五於第一期發現癌症,超過一半的病患在發現罹患肺癌時,病程發展都已至末期。現今之肺癌診斷方式主要仰賴影像技術,病理檢查及分子診斷。在所有診斷方式中,分子診斷是依據去氧核醣核酸、核醣核酸或蛋白質的異常來區分癌細胞及正常細胞,這些異常包含基因(例如:突變、基因轉置等)及表基因的變化 (例如:組蛋白修飾及去氧核醣核酸甲基化)。去氧核醣核酸之異常甲基化相當穩定且廣泛存在於各種癌症當中,因此可用來當做基因突變之外之癌症特異性生物標記。過去有許多研究使用去氧核醣核酸之異常甲基化當作肺癌生物標記,然而這些甲基化基因皆來自西方國家之病人族群,而亞洲病患肺癌具有不同之成因及分子特徵,故 所提出之甲基化標記並不一定適用於亞洲病患。本研究中,我們使用美國癌症基因體圖譜計畫的全基因體甲基化資料庫,使用生物資訊分析篩選出於肺微低癌組織中表現高度甲基化,且於正常肺組織中具低甲基化的特定基因。我們發現了四個基因之最佳組合,並進一步使用定量甲基化聚合酶連鎖反應偵測此四基因組合於肺癌細胞株、肺癌組織及健康人周邊血液單核球細胞中之甲基化程度。結果發現,此四基因甲基化組合之敏感度高達95.8%,特異度達90%,而其陽性預測值為92.5%,陰性預測值為92.3%。除肺癌組織檢驗之外,我們亦嘗試使用微滴數字甲基化聚合酶連鎖反應偵測血液中之甲基化循環游離核酸,並於數個血清檢體中測試成功。同時,我們於台大醫院啟動肺癌病人之收案,於診斷時及治療中每三個月收集血清檢體,收案仍在進行中。總結而言,我們所研發之四基因甲基化組合具有極佳潛力,可據以發展協助診斷肺癌病患之血液檢測工具。zh_TW
dc.description.abstractLung cancer causes the most cancer-related deaths all over the world. The five-year survival rate of lung cancer patients is over fifty percent with early-staged diseases, but it plummets to less than five percent at advanced stages. Only about 15% of lung cancer patients were diagnosed at early stages while more than half of patients were in late stages when diagnosed. The diagnosis of lung cancer is mainly based on imaging, pathological examination and molecular diagnosis. Among these modalities, molecular diagnosis relies on abnormalities on nucleic acid or protein levels that can distinguish between cancer and normal cells, such as genetic (i.e. mutations, translocations, etc) or epigenetic variations (i.e. histone modifications and DNA methylation). Abnormal DNA methylation is relatively stable and ubiquitously present in virtually all types of cancer; therefore, it can serve as alternative cancer-specific biomarkers as opposed to genetic mutations. For the past decades, many studies have explored the potentials of abnormal DNA methylation as clinically-applicable biomarkers in lung cancer. However, most methylated markers were identified from patient cohorts in which Asian populations were under-represented. Given the fact that Asian lung cancers differ from their counterparts in western countries in terms of etiologies and molecular characteristics, whether methylated biomarkers proposed in previous studies can be used in Asian lung cancer patients are questionable. In this study, we utilized genome-wide methylation data from the database of the Cancer Genome Atlas (TCGA) in the United States, and performed bioinformatics analysis to identify candidate genes that harbor high levels of DNA methylation in the promoter regions in lung cancer and low levels in normal lung tissues. With this approach, we selected for a best combination of four genes. Then, we performed quantitative methylation-specific PCR (qMSP) to measure methylation levels of this four-gene combination in lung cancer cell lines, lung cancer tissues, and peripheral blood mononuclear cells from healthy volunteers. Our results showed that the four-gene combination had sensitivity of 95.8% and specificity of 90%. The positive predictive value of this gene set is 92.5% and the negative predictive value is 92.3%. In addition to tissue-based assays, to further explore the applicability of this four-gene combination in blood-based assays, we attempted to establish a platform using droplet digital MSP (ddMSP) to identify circulated methylated DNAs in the blood, and have successfully implemented the assays on a few plasma samples as a test. We have also started recruited lung cancer patients and obtain their plasmas at diagnosis, and every three months during treatment at National Taiwan University Hospital. The patient enrollment is still ongoing. In summary, DNA methylation of our 4-gene combination has a promising potential to server as a basis for developing blood-based diagnostic assays in Asian lung cancer patients.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:40:48Z (GMT). No. of bitstreams: 1
ntu-107-R04447003-1.pdf: 2495223 bytes, checksum: 9c16d12fb32c49713d7bbfac79564c79 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents序言及謝辭 i
中文摘要 ii
Abstract iv
Contents vi
List of Figures ix
List of Tables xi
1. Introduction 1
1.1. Lung cancer 1
1.2. Molecular diagnosis in lung cancer 2
1.3. DNA methylation 3
1.4. DNA methylation in lung cancer 5
1.5. Circulating tumor DNA 7
1.6. Circulating methylated tumor DNA in cancers 8
1.7. Rationale and Significance for the study 9
2. Materials and Methods 11
2.1. Genome-wide methylation analyses of lung cancer data from The Cancer Genome Atlas (TCGA) (done by Yen Wei Chen) 11
2.2. Archive of lung cancer tissues 11
2.3. Archive of peripheral blood mononuclear cell (PBMC) of healthy donors 12
2.4. Genomic DNA extraction from lung cancer tissues and cell lines 12
2.4.1. DNA from lung cancer tissues 12
2.4.2. DNA from lung cancer cell lines 13
2.5. Cell-free DNA extraction from plasma 13
2.6. Sodium bisulfite conversion 14
2.7. Quantitative methylation-specific PCR 15
2.8. Gel electrophoresis 16
2.9. Definition of methylation level 16
2.10. Droplet digital PCR (ddPCR) 16
2.10.1. EvaGreen system 16
2.10.2. Taqman probe system 17
2.11. Patient populations 17
2.12. Plasma preparation 18
3. Results 19
3.1. Identification of candidate genes with cancer-specific methylation in lung cancer from the TCGA database 19
3.2. Primer optimization of candidate methylated probes for methylation-specific PCR 20
3.3. Methylation status of the four-probe combination test in lung cancer cell lines 21
3.4. Methylation status of the four-probe combination test in primary lung cancer tissues 21
3.5. Establish a platform for detection of methylated ctDNA in the plasma of lung cancer patients 23
3.6. Application of the Taqman probe system to droplet digital methylation-specific PCR (ddMSP) 24
3.7. Establish a prospective cohort of patients with non-small cell lung cancer 25
4. Discussion 26
4.1. Our candidate genes are significantly hypermethylated in lung cancer and hypomethylated in the normal peripheral blood mononuclear cells (PBMC). 26
4.2. Droplet digital MSP as a better approach for detection of circulating methylated DNA 28
4.3. Future directions 28
5. Conclusion 30
6. References 31
7. Figures 36
8. Tables 60
-
dc.language.isoen-
dc.title甲基化去氧核醣核酸作為亞洲肺癌病患診斷及疾病監測生物標記之研究zh_TW
dc.titleIdentification of DNA methylation-based biomarkers in the diagnosis and disease surveillance for Asian lung cancer patientsen
dc.typeThesis-
dc.date.schoolyear106-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張永祺;楊鎧鍵zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword肺癌,去氧核醣核酸甲基化,生物標記,zh_TW
dc.subject.keywordlung cancer,DNA methylation,biomarker,en
dc.relation.page70-
dc.identifier.doi10.6342/NTU201800610-
dc.rights.note未授權-
dc.date.accepted2018-02-21-
dc.contributor.author-college醫學院-
dc.contributor.author-dept毒理學研究所-
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
2.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved