請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20124
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃慶怡(Ching-I Huang) | |
dc.contributor.author | Chin-Hung Chang | en |
dc.contributor.author | 張進鴻 | zh_TW |
dc.date.accessioned | 2021-06-08T02:40:31Z | - |
dc.date.copyright | 2018-04-18 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-03-28 | |
dc.identifier.citation | 1. https://www.mgi.gov/
2. C. Park, J. Yoon and E. L. Thomas, Polymer, 2003, 44, 6725-6760. 3. W. Li and M. Müller, Annual review of chemical and biomolecular engineering, 2015, 6, 187-216. 4. M. Muthukumar, C. Ober and E. Thomas, Science, 1997, 277, 1225-1232. 5. J. Ruokolainen, R. Mäkinen, M. Torkkeli, T. Mäkelä, R. Serimaa, G. ten Brinke and O. Ikkala, Science, 1998, 280, 557-560. 6. Z. Li, K. Hur, H. Sai, T. Higuchi, A. Takahara, H. Jinnai, S. M. Gruner and U. Wiesner, Nature communications, 2014, 5. 7. H.-C. Lee, H.-Y. Hsueh, U.-S. Jeng and R.-M. Ho, Macromolecules, 2014, 47, 3041-3051. 8. H.-F. Wang, L.-H. Yu, X.-B. Wang and R.-M. Ho, Macromolecules, 2014, 47, 7993-8001. 9. X.-B. Wang, T.-C. Lin, H.-Y. Hsueh, S.-C. Lin, X.-D. He and R.-M. Ho, Langmuir, 2016, 32, 6419-6428. 10. Q. Zhang, Y. Gu, Y. M. Li, P. A. Beaucage, T. Kao and U. Wiesner, Chemistry of Materials, 2016, 28, 3870-3876. 11. S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg and U. Steiner, Advanced Materials, 2012, 24. 12. S. S. Oh, A. Demetriadou, S. Wuestner and O. Hess, Advanced Materials, 2013, 25, 612-617. 13. J. H. Moon, Y. Xu, Y. Dan, S. M. Yang, A. T. Johnson and S. Yang, Advanced Materials, 2007, 19, 1510-1514. 14. A. Muslim, Y. Shi, Y. Yan, D. Yao and A. A. Rexit, RSC Advances, 2015, 5, 85446-85452. 15. E. Poggi, C. Guerlain, A. Debuigne, C. Detrembleur, D. Gigmes, S. Hoeppener, U. S. Schubert, C.-A. Fustin and J.-F. Gohy, European Polymer Journal, 2015, 62, 418-425. 16. M. Matsen and F. S. Bates, Macromolecules, 1996, 29, 1091-1098. 17. M. W. Matsen, The European Physical Journal E: Soft Matter and Biological Physics, 2009, 30, 361-369. 18. A. K. Khandpur, S. Foerster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal and K. Mortensen, Macromolecules, 1995, 28, 8796-8806. 19. E. Detsi, E. De Jong, A. Zinchenko, Z. Vuković, I. Vuković, S. Punzhin, K. Loos, G. Ten Brinke, H. De Raedt and P. Onck, Acta Materialia, 2011, 59, 7488-7497. 20. Y. Mogi, H. Kotsuji, Y. Kaneko, K. Mori, Y. Matsushita and I. Noda, Macromolecules, 1992, 25, 5408-5411. 21. Y. Mogi, K. Mori, Y. Matsushita and I. Noda, Macromolecules, 1992, 25, 5412-5415. 22. Y. Mogi, M. Nomura, H. Kotsuji, K. Ohnishi, Y. Matsushita and I. Noda, Macromolecules, 1994, 27, 6755-6760. 23. V. Abetz and T. Goldacker, Macromolecular rapid communications, 2000, 21, 16-34. 24. T. S. Bailey, C. M. Hardy, T. H. Epps and F. S. Bates, Macromolecules, 2002, 35, 7007-7017. 25. J. Chatterjee, S. Jain and F. S. Bates, Macromolecules, 2007, 40, 2882-2896. 26. C. A. Tyler, J. Qin, F. S. Bates and D. C. Morse, Macromolecules, 2007, 40, 4654-4668. 27. J. Qin, F. S. Bates and D. C. Morse, Macromolecules, 2010, 43, 5128-5136. 28. C. Auschra and R. Stadler, Macromolecules, 1993, 26, 2171-2174. 29. Y. Matsushita, M. Tamura and I. Noda, Macromolecules, 1994, 27, 3680-3682. 30. U. Krappe, R. Stadler and I. Voigt-Martin, Macromolecules, 1995, 28, 4558-4561. 31. R. Stadler, C. Auschra, J. Beckmann, U. Krappe, I. Voight-Martin and L. Leibler, Macromolecules, 1995, 28, 3080-3097. 32. U. Breiner, U. Krappe and R. Stadler, Macromolecular rapid communications, 1996, 17, 567-575. 33. U. Breiner, U. Krappe, V. Abetz and R. Stadler, Macromolecular Chemistry and Physics, 1997, 198, 1051-1083. 34. T. Shefelbine, M. E. Vigild, M. Matsen, D. Hajduk, M. Hillmyer, E. Cussler and F. Bates, Journal of the American Chemical Society, 1999, 121, 8457-8465. 35. H. Hückstädt, T. Goldacker, A. Göpfert and V. Abetz, Macromolecules, 2000, 33, 3757-3761. 36. T. S. Bailey, H. D. Pham and F. S. Bates, Macromolecules, 2001, 34, 6994-7008. 37. H. Ott, V. Abetz and V. Altstädt, Macromolecules, 2001, 34, 2121-2128. 38. W. Li, F. Qiu and A.-C. Shi, Macromolecules, 2011, 45, 503-509. 39. M. Liu, W. Li, F. Qiu and A.-C. Shi, Macromolecules, 2012, 45, 9522-9530. 40. M. R. Radlauer, C. Sinturel, Y. Asai, A. Arora, F. S. Bates, K. D. Dorfman and M. A. Hillmyer, Macromolecules, 2016, 50, 446-458. 41. Z. Guo, G. Zhang, F. Qiu, H. Zhang, Y. Yang and A.-C. Shi, Physical review letters, 2008, 101, 028301. 42. V. Saranathan, C. O. Osuji, S. G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne and R. O. Prum, Proceedings of the National Academy of Sciences, 2010, 107, 11676-11681. 43. A. Argyros, S. Manos, M. Large, D. McKenzie, G. Cox and D. Dwarte, Micron, 2002, 33, 483-487. 44. M. Saba, M. Thiel, M. D. Turner, S. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke and G. E. Schröder-Turk, Physical Review Letters, 2011, 106, 103902. 45. S. Lee, M. J. Bluemle and F. S. Bates, Science, 2010, 330, 349-353. 46. N. Xie, M. Liu, H. Deng, W. Li, F. Qiu and A.-C. Shi, Journal of the American Chemical Society, 2014, 136, 2974-2977. 47. H.-H. Liu, C.-I. Huang and A.-C. Shi, Macromolecules, 2015, 48, 6214-6223. 48. M. Liu, B. Xia, W. Li, F. Qiu and A.-C. Shi, Macromolecules, 2015, 48, 3386-3394. 49. S. Chanpuriya, K. Kim, J. Zhang, S. Lee, A. Arora, K. D. Dorfman, K. T. Delaney, G. H. Fredrickson and F. S. Bates, ACS nano, 2016, 10, 4961-4972. 50. M. Liu, W. Li, F. Qiu and A.-C. Shi, Soft matter, 2016, 12, 6412-6421. 51. M. W. Matsen, Journal of Physics: Condensed Matter, 2001, 14, R21. 52. M. Matsen and F. Bates, UMSI research report/University of Minnesota (Minneapolis, Mn). Supercomputer institute, 1997, 96, 125. 53. C. I. Huang, H. Y. Hsueh, Y. K. Lan and Y. C. Lin, Macromolecular theory and simulations, 2007, 16, 77-85. 54. C.-I. Huang and H.-T. Yu, Polymer, 2007, 48, 4537-4546. 55. M. W. Matsen, Macromolecules, 2012, 45, 2161-2165. 56. J. Masuda, A. Takano, Y. Nagata, A. Noro and Y. Matsushita, Physical review letters, 2006, 97, 098301. 57. J. Masuda, A. Takano, J. Suzuki, Y. Nagata, A. Noro, K. Hayashida and Y. Matsushita, Macromolecules, 2007, 40, 4023-4027. 58. G. Fleury and F. S. Bates, Macromolecules, 2009, 42, 1691-1694. 59. G. Fleury and F. S. Bates, Macromolecules, 2009, 42, 3598-3610. 60. L. Wang, J. Lin and L. Zhang, Macromolecules, 2010, 43, 1602-1609. 61. F. S. Bates, M. A. Hillmyer, T. P. Lodge, C. M. Bates, K. T. Delaney and G. H. Fredrickson, Science, 2012, 336, 434-440. 62. J. M. Yu, P. Dubois and R. Jérôme, Macromolecules, 1997, 30, 4984-4994. 63. U. Datta and M. Rehahn, Macromolecular rapid communications, 2004, 25, 1615-1622. 64. R. F. Storey, A. Scheuer and B. Achord, Polymer, 2005, 46, 2141-2152. 65. J. G. Kopchick, R. F. Storey, F. L. Beyer and K. A. Mauritz, Polymer, 2007, 48, 3739-3748. 66. A. J. Meuler, G. Fleury, M. A. Hillmyer and F. S. Bates, Macromolecules, 2008, 41, 5809-5817. 67. M. Hirata, K. Masutani and Y. Kimura, Biomacromolecules, 2013, 14, 2154-2161. 68. L. Gardella, D. Cavallo, S. Colonna, A. Fina and O. Monticelli, Journal of Polymer Science Part A: Polymer Chemistry, 2014, 52, 3269-3282. 69. M. Uz, S. K. Mallapragada and S. A. Altinkaya, RSC Advances, 2015, 5, 43515-43527. 70. C. W. Lee, C. Na, Y. Kimura and K. Masutani, Macromolecular Materials and Engineering, 2016, 301, 1121-1131. 71. H. Mao, G. Shan, Y. Bao, Z. L. Wu and P. Pan, Soft matter, 2016, 12, 4628-4637. 72. S. P. Patel, R. Vaishya, A. Patel, V. Agrahari, D. Pal and A. K. Mitra, Journal of microencapsulation, 2016, 33, 103-113. 73. S. P. Ertem, B. R. Caire, T. H. Tsai, D. Zeng, M. A. Vandiver, A. Kusoglu, S. Seifert, R. C. Hayward, A. Z. Weber and A. M. Herring, Journal of Polymer Science Part B: Polymer Physics, 2017, 55, 612-622. 74. J. S. Haataja, N. Houbenov, V. Aseyev, P. Fragouli, H. Iatrou, R. Sougrat, N. Hadjichristidis and O. Ikkala, Chemical Communications, 2018. 75. F. Huang, T. D. Largier, W. Zheng and C. J. Cornelius, Journal of Membrane Science, 2018, 545, 1-10. 76. G. Lee, E. Choi, S. Yang and E.-B. Cho, The Journal of Physical Chemistry C, 2018. 77. K. M. Meek, R. Sun, C. Willis and Y. A. Elabd, Polymer, 2018, 134, 221-226. 78. P. V. Truong, S. Shingleton, M. Kammoun, R. L. Black, M. Charendoff, C. Willis, H. Ardebili and G. E. Stein, Macromolecules, 2018. 79. A. J. Meuler, Network morphologies in monodisperse and polydisperse multiblock terpolymers, University of Minnesota, 2009. 80. M. W. Matsen and F. S. Bates, Macromolecules, 1996, 29, 7641-7644. 81. H.-H. Liu, 臺灣大學高分子科學與工程學研究所學位論文, 2016, 1-78. 82. K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig and U. Wiesner, Angewandte Chemie International Edition, 2011, 50, 11985-11989. 83. G. Tzeremes, K. Ø. Rasmussen, T. Lookman and A. Saxena, Physical Review E, 2002, 65, 041806. 84. H. Frielinghaus, N. Hermsdorf, K. Almdal, K. Mortensen, L. Messé, L. Corvazier, J. Fairclough, A. Ryan, P. Olmsted and I. Hamley, EPL (Europhysics Letters), 2001, 53, 680. 85. M. Takenaka, T. Wakada, S. Akasaka, S. Nishitsuji, K. Saijo, H. Shimizu, M. I. Kim and H. Hasegawa, Macromolecules, 2007, 40, 4399-4402. 86. E. W. Cochran, D. C. Morse and F. S. Bates, Macromolecules, 2003, 36, 782-792. 87. K. Yamada, M. Nonomura and T. Ohta, Macromolecules, 2004, 37, 5762-5777. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20124 | - |
dc.description.abstract | 本研究運用自洽平均場理論探討非失措型之ABCBA線性五嵌段共聚合物於熔融態之自組裝,我們著重在Flory-Huggins作用力參數之影響,非失措型意指A與C兩者之Flory-Huggins作用力參數最大;隨著對稱型作用力(χ_AB N=χ_AC N=χ_BC N)下降,因為成分間相容性變好,相行為與ABC線性三嵌段共聚合物類似,所以diamond、hexagonally perforated lamellae和Fddd等連續性結構轉變為gyroid,另一方面,B做為主成分所形成之交替型球狀與柱狀變為有相同A/C配位數之CsCl、NaCl和C_A^4/C_C^4。接著我們觀察在χ_AC N≥χ_AB N=χ_BC N下之變化,當χ_AC N固定時,χ_AB N=χ_BC N之下降使的聚集減弱以及結構尺寸縮小,固定χ_AB N=χ_BC N時,因為χ_AC N下降導致A和C聚集減弱,與B接觸面積增加,所以導致interfacial energy上升以及entropic energy下降;接著將χ_AC N固定,我們發現χ_BC N大於χ_AB N時,BC介面之能量較高,為避免其能量太高,B/C介面曲率改變並使的結構轉變為C-core/B-shell之型態;最後利用合適之χ_AB N、χ_AC N和χ_BC N建構三角相圖後,可以看到A為主成分時,結構以C-core/B-shell之型態為主,這是因為高分子鏈拓樸從ABC擴展為ABCBA時,因為C鏈段被兩邊B相鄰,所以B/C介面形成曲面時,C鏈段從兩邊被拉長,曲率變化幅度更大,也讓其結構變化更多元。 | zh_TW |
dc.description.abstract | In this study, we employ the self-consistent mean field theory to explore the effect of flory-huggins interaction parameter on self-assembly behavior of non-frustrated ABCBA linear pentablock terpolymer, where the flory-huggins interaction parameter of A and C (χ_AC) is the strongest, in the melt. As the symmetric interaction parameters (χ_AB N=χ_AC N=χ_BC N) decrease, the compatibility between different component becomes better, thus, the phase behavior is similar to ABC triblock and the continuous structures including diamond, hexagonally perforated lamellae, Fddd transfer to gyroid. On the other hand, the packing orders of alternating spheres and cylinders with unequal coordination numbers tend to transfer to those with equal coordination numbers. Then we move to the system ofχ_AC N≥χ_AB N=χ_BC N, observing that the decrease of χ_AB N=χ_BC N make the segregation weaker and structure size smaller at fixed χ_AC N. Also, the decrease of χ_AC N at fixed χ_AB N=χ_BC N induces the interfacial energy to increase and entropic energy to decrease due to the fact that the B/C and A/B interfaces become larger. Subsequently, we explore the condition ofχ_AB N≠χ_BC N at fixed χ_AC N and notice that whenχ_BC N>χ_AB N, the curvature of B/C interface increases for preventing the interfacial energy of B/C interface too large and the structrues transform to C-core/B-shell type. Finally, we construct a phase triangle by using appropriate interaction parameter and discuss the diagram completely. In this phase triangle, the C-core/B-shell structures ocuppy a broad region as A is the major component. The reason is that when the topology expands from ABC to ABCBA, becase C is stretched from two side, the varing of curvature of B/C interface becomes significant. Therefore, the morphological transition is more diverse. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:40:31Z (GMT). No. of bitstreams: 1 ntu-107-R04549029-1.pdf: 6702711 bytes, checksum: ee5be0a08c1b4aa098732c1292b03ccd (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 v 表目錄 viii 第 1 章 前言 1 第 2 章 研究方法 13 2.1 自洽平均場理論 13 2.2 以準譜方法求解擴散方程式 15 第 3 章 結果與討論 19 3.1 對稱型作用力參數對共聚合物之相變化 19 3.1.1 當固定fA以及fA=fC, 值改變對微結構之變化 19 3.1.2 中弱聚集之對稱型作用力下,組成對相衍變之影響 21 3.2 在作用力參數 下共聚合物之微結構衍變 22 3.2.1 當共聚合物組成固定為fA=0.35, fB=0.38, fC=0.27 22 3.2.2 當共聚合物組成固定為fA=0.41, fB=0.43, fC=0.16 23 3.3 在 且 下微結構衍變 25 3.3.1 固定共聚合物組成為fA=0.35, fB=0.38, fC=0.27 25 3.3.2 固定共聚合物組成為fA=0.41, fB=0.43, fC=0.16 27 3.4 組成對於非失措型ABCBA線性五嵌段共聚合物自組裝影響 28 第 4 章 結論 41 第 5 章 參考文獻 43 第 6 章 附錄 47 6.1 附圖 47 6.2 附表 50 | |
dc.language.iso | zh-TW | |
dc.title | 探討”非失措”之ABCBA線性五嵌段共聚合物於熔融態之自組裝行為 | zh_TW |
dc.title | Exploring the Self-Assembly Behavior of Non-Frustrated ABCBA Linear Pentablock Terpolymers in the Melt | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王麗芳(Li-Fang Wang),趙基揚(Chi-Yang Chao),莊偉綜(Wei-Tsung Chuang) | |
dc.subject.keyword | 自洽平均場理論;ABCBA線性五嵌段共聚合物;Flory-Huggins作用力參數, | zh_TW |
dc.subject.keyword | self-consistent mean field theory,ABCBA linear pentablock terpolymer,Flory-Huggins interaction parameter, | en |
dc.relation.page | 50 | |
dc.identifier.doi | 10.6342/NTU201800260 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-03-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 6.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。