請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20089完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊立,賴凌平 | |
| dc.contributor.author | Yuan-Hung Liu | en |
| dc.contributor.author | 劉芫宏 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:39:54Z | - |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-06-03 | |
| dc.identifier.citation | Abbate, A., Kontos, M.C., Grizzard, J.D., Biondi-Zoccai, G.G., Van Tassell, B.W., Robati, R., Roach, L.M., Arena, R.A., Roberts, C.S., Varma, A., et al. (2010). Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). The American journal of cardiology 105, 1371-1377 e1371.
Abdel-Latif, A., Bolli, R., Tleyjeh, I.M., Montori, V.M., Perin, E.C., Hornung, C.A., Zuba-Surma, E.K., Al-Mallah, M., and Dawn, B. (2007). Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Archives of internal medicine 167, 989-997. Abel, E.D., Kaulbach, H.C., Tian, R., Hopkins, J.C., Duffy, J., Doetschman, T., Minnemann, T., Boers, M.E., Hadro, E., Oberste-Berghaus, C., et al. (1999). Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. The Journal of clinical investigation 104, 1703-1714. Agah, R., Frenkel, P.A., French, B.A., Michael, L.H., Overbeek, P.A., and Schneider, M.D. (1997). Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. The Journal of clinical investigation 100, 169-179. Aguirre, A., Sancho-Martinez, I., and Izpisua Belmonte, J.C. (2013). Reprogramming toward heart regeneration: stem cells and beyond. Cell stem cell 12, 275-284. Ahuja, P., Sdek, P., and MacLellan, W.R. (2007). Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 87, 521-544. Assmus, B., Honold, J., Schachinger, V., Britten, M.B., Fischer-Rasokat, U., Lehmann, R., Teupe, C., Pistorius, K., Martin, H., Abolmaali, N.D., et al. (2006). Transcoronary transplantation of progenitor cells after myocardial infarction. The New England journal of medicine 355, 1222-1232. Balsam, L.B., Wagers, A.J., Christensen, J.L., Kofidis, T., Weissman, I.L., and Robbins, R.C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668-673. Bel, A., Planat-Bernard, V., Saito, A., Bonnevie, L., Bellamy, V., Sabbah, L., Bellabas, L., Brinon, B., Vanneaux, V., Pradeau, P., et al. (2010). Composite cell sheets: a further step toward safe and effective myocardial regeneration by cardiac progenitors derived from embryonic stem cells. Circulation 122, S118-123. Bellamy, L.M., Johnston, A.P., De Lisio, M., and Parise, G. (2010). Skeletal muscle-endothelial cell cross talk through angiotensin II. Am J Physiol Cell Physiol 299, C1402-1408. Beltrami, A.P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., Kasahara, H., Rota, M., Musso, E., Urbanek, K., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763-776. Beltrami, A.P., Urbanek, K., Kajstura, J., Yan, S.M., Finato, N., Bussani, R., Nadal-Ginard, B., Silvestri, F., Leri, A., Beltrami, C.A., et al. (2001). Evidence that human cardiac myocytes divide after myocardial infarction. The New England journal of medicine 344, 1750-1757. Bergmann, O., Bhardwaj, R.D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., Zupicich, J., Alkass, K., Buchholz, B.A., Druid, H., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science 324, 98-102. Bersell, K., Arab, S., Haring, B., and Kuhn, B. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138, 257-270. Boland, M.J., Hazen, J.L., Nazor, K.L., Rodriguez, A.R., Gifford, W., Martin, G., Kupriyanov, S., and Baldwin, K.K. (2009). Adult mice generated from induced pluripotent stem cells. Nature 461, 91-94. Bondue, A., Lapouge, G., Paulissen, C., Semeraro, C., Iacovino, M., Kyba, M., and Blanpain, C. (2008). Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell stem cell 3, 69-84. Brazelton, T.R., Rossi, F.M., Keshet, G.I., and Blau, H.M. (2000). From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775-1779. Briggs, L.E., Takeda, M., Cuadra, A.E., Wakimoto, H., Marks, M.H., Walker, A.J., Seki, T., Oh, S.P., Lu, J.T., Sumners, C., et al. (2008). Perinatal loss of Nkx2-5 results in rapid conduction and contraction defects. Circulation research 103, 580-590. Brooke, G., Cook, M., Blair, C., Han, R., Heazlewood, C., Jones, B., Kambouris, M., Kollar, K., McTaggart, S., Pelekanos, R., et al. (2007). Therapeutic applications of mesenchymal stromal cells. Seminars in cell & developmental biology 18, 846-858. Brooke, G., Rossetti, T., Pelekanos, R., Ilic, N., Murray, P., Hancock, S., Antonenas, V., Huang, G., Gottlieb, D., Bradstock, K., et al. (2009). Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials. British journal of haematology 144, 571-579. Buckingham, M., Meilhac, S., and Zaffran, S. (2005). Building the mammalian heart from two sources of myocardial cells. Nature reviews Genetics 6, 826-835. Cai, C., Martin, J.C., Sun, Y., Cui, L., Wang, L., Ouyang, K., Yang, L., Bu, L., Liang, X., Zhang, X., et al. (2008a). A myocardial lineage derives from Tbx18 epicardial cells. Nature 454, 104-108. Cai, C.L., Liang, X., Shi, Y., Chu, P.H., Pfaff, S.L., Chen, J., and Evans, S. (2003). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5, 877-889. Cai, C.L., Martin, J.C., Sun, Y., Cui, L., Wang, L., Ouyang, K., Yang, L., Bu, L., Liang, X., Zhang, X., et al. (2008b). A myocardial lineage derives from Tbx18 epicardial cells. Nature 454, 104-108. Chang, C.J., Yen, M.L., Chen, Y.C., Chien, C.C., Huang, H.I., Bai, C.H., and Yen, B.L. (2006). Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells 24, 2466-2477. Chen, F., Kook, H., Milewski, R., Gitler, A.D., Lu, M.M., Li, J., Nazarian, R., Schnepp, R., Jen, K., Biben, C., et al. (2002). Hop is an unusual homeobox gene that modulates cardiac development. Cell 110, 713-723. Chen, W.P., Liu, Y.H., Ho, Y.J., and Wu, S.M. (2015). Pharmacological inhibition of TGFbeta receptor improves Nkx2.5 cardiomyoblast-mediated regeneration. Cardiovascular research 105, 44-54. Chien, C.C., Yen, B.L., Lee, F.K., Lai, T.H., Chen, Y.C., Chan, S.H., and Huang, H.I. (2006). In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells 24, 1759-1768. Chong, J.J., Chandrakanthan, V., Xaymardan, M., Asli, N.S., Li, J., Ahmed, I., Heffernan, C., Menon, M.K., Scarlett, C.J., Rashidianfar, A., et al. (2011). Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell stem cell 9, 527-540. Christoforou, N., Oskouei, B.N., Esteso, P., Hill, C.M., Zimmet, J.M., Bian, W., Bursac, N., Leong, K.W., Hare, J.M., and Gearhart, J.D. (2010). Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts. PloS one 5, e11536. Conway, S.J., Henderson, D.J., and Copp, A.J. (1997). Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant. Development 124, 505-514. Dawn, B., Tiwari, S., Kucia, M.J., Zuba-Surma, E.K., Guo, Y., Sanganalmath, S.K., Abdel-Latif, A., Hunt, G., Vincent, R.J., Taher, H., et al. (2008). Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells 26, 1646-1655. Delewi, R., Andriessen, A., Tijssen, J.G., Zijlstra, F., Piek, J.J., and Hirsch, A. (2013). Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a meta-analysis of randomised controlled clinical trials. Heart 99, 225-232. Dispersyn, G.D., Mesotten, L., Meuris, B., Maes, A., Mortelmans, L., Flameng, W., Ramaekers, F., and Borgers, M. (2002). Dissociation of cardiomyocyte apoptosis and dedifferentiation in infarct border zones. Eur Heart J 23, 849-857. Driesen, R.B., Verheyen, F.K., Debie, W., Blaauw, E., Babiker, F.A., Cornelussen, R.N., Ausma, J., Lenders, M.H., Borgers, M., Chaponnier, C., et al. (2009). Re-expression of alpha skeletal actin as a marker for dedifferentiation in cardiac pathologies. Journal of cellular and molecular medicine 13, 896-908. Engel, F.B., Hauck, L., Cardoso, M.C., Leonhardt, H., Dietz, R., and von Harsdorf, R. (1999). A mammalian myocardial cell-free system to study cell cycle reentry in terminally differentiated cardiomyocytes. Circulation research 85, 294-301. Engel, F.B., Hsieh, P.C., Lee, R.T., and Keating, M.T. (2006). FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America 103, 15546-15551. Engelmann, M.G., Theiss, H.D., Hennig-Theiss, C., Huber, A., Wintersperger, B.J., Werle-Ruedinger, A.E., Schoenberg, S.O., Steinbeck, G., and Franz, W.M. (2006). Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: final results from the G-CSF-STEMI (Granulocyte Colony-Stimulating Factor ST-Segment Elevation Myocardial Infarction) trial. Journal of the American College of Cardiology 48, 1712-1721. Eulalio, A., Mano, M., Dal Ferro, M., Zentilin, L., Sinagra, G., Zacchigna, S., and Giacca, M. (2012). Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492, 376-381. Evangelista, M., Soncini, M., and Parolini, O. (2008). Placenta-derived stem cells: new hope for cell therapy? Cytotechnology 58, 33-42. Evans-Anderson, H.J., Alfieri, C.M., and Yutzey, K.E. (2008). Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Circulation research 102, 686-694. Feinberg, A.W., Feigel, A., Shevkoplyas, S.S., Sheehy, S., Whitesides, G.M., and Parker, K.K. (2007). Muscular thin films for building actuators and powering devices. Science 317, 1366-1370. Ferreira-Martins, J., Ogorek, B., Cappetta, D., Matsuda, A., Signore, S., D'Amario, D., Kostyla, J., Steadman, E., Ide-Iwata, N., Sanada, F., et al. (2012). Cardiomyogenesis in the developing heart is regulated by C-kit-positive cardiac stem cells. Circulation research 110, 701-715. Frangogiannis, N.G. (2012). Regulation of the inflammatory response in cardiac repair. Circulation research 110, 159-173. Gamble, J.R., Matthias, L.J., Meyer, G., Kaur, P., Russ, G., Faull, R., Berndt, M.C., and Vadas, M.A. (1993). Regulation of in vitro capillary tube formation by anti-integrin antibodies. The Journal of cell biology 121, 931-943. Gnecchi, M., He, H., Liang, O.D., Melo, L.G., Morello, F., Mu, H., Noiseux, N., Zhang, L., Pratt, R.E., Ingwall, J.S., et al. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11, 367-368. Goldmuntz, E., Geiger, E., and Benson, D.W. (2001). NKX2.5 mutations in patients with tetralogy of fallot. Circulation 104, 2565-2568. Hanna, J., Wernig, M., Markoulaki, S., Sun, C.W., Meissner, A., Cassady, J.P., Beard, C., Brambrink, T., Wu, L.C., Townes, T.M., et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318, 1920-1923. Hare, J.M., Fishman, J.E., Gerstenblith, G., DiFede Velazquez, D.L., Zambrano, J.P., Suncion, V.Y., Tracy, M., Ghersin, E., Johnston, P.V., Brinker, J.A., et al. (2012). Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA : the journal of the American Medical Association 308, 2369-2379. Hiroi, Y., Kudoh, S., Monzen, K., Ikeda, Y., Yazaki, Y., Nagai, R., and Komuro, I. (2001). Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat Genet 28, 276-280. Ho, P.J., Yen, M.L., Tang, B.C., Chen, C.T., and Yen, B.L. (2013). H2O2 Accumulation Mediates Differentiation Capacity Alteration, But Not Proliferative Decline, in Senescent Human Fetal Mesenchymal Stem Cells. Antioxidants & redox signaling 18, 1895-1905. Hsieh, P.C., Segers, V.F., Davis, M.E., MacGillivray, C., Gannon, J., Molkentin, J.D., Robbins, J., and Lee, R.T. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13, 970-974. Hsueh, Y.C., Wu, J.M., Yu, C.K., Wu, K.K., and Hsieh, P.C. (2014). Prostaglandin E2 promotes post-infarction cardiomyocyte replenishment by endogenous stem cells. EMBO molecular medicine. Ikenaka, Y., Yoshiji, H., Kuriyama, S., Yoshii, J., Noguchi, R., Tsujinoue, H., Yanase, K., Namisaki, T., Imazu, H., Masaki, T., et al. (2003). Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibits tumor growth and angiogenesis in the TIMP-1 transgenic mouse model. International journal of cancer Journal international du cancer 105, 340-346. Ismat, F.A., Zhang, M., Kook, H., Huang, B., Zhou, R., Ferrari, V.A., Epstein, J.A., and Patel, V.V. (2005). Homeobox protein Hop functions in the adult cardiac conduction system. Circulation research 96, 898-903. Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., Feldman, O., Gepstein, A., Arbel, G., Hammerman, H., et al. (2011). Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471, 225-229. Ivanova, A., Signore, M., Caro, N., Greene, N.D., Copp, A.J., and Martinez-Barbera, J.P. (2005). In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A. Genesis 43, 129-135. Janssens, S., Dubois, C., Bogaert, J., Theunissen, K., Deroose, C., Desmet, W., Kalantzi, M., Herbots, L., Sinnaeve, P., Dens, J., et al. (2006). Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367, 113-121. Jeevanantham, V., Butler, M., Saad, A., Abdel-Latif, A., Zuba-Surma, E.K., and Dawn, B. (2012). Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation 126, 551-568. Jopling, C., Sleep, E., Raya, M., Marti, M., Raya, A., and Belmonte, J.C. (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606-609. Kajstura, J., Gurusamy, N., Ogorek, B., Goichberg, P., Clavo-Rondon, C., Hosoda, T., D'Amario, D., Bardelli, S., Beltrami, A.P., Cesselli, D., et al. (2010). Myocyte turnover in the aging human heart. Circ Res 107, 1374-1386. Kajstura, J., Rota, M., Cappetta, D., Ogorek, B., Arranto, C., Bai, Y., Ferreira-Martins, J., Signore, S., Sanada, F., Matsuda, A., et al. (2012). Cardiomyogenesis in the aging and failing human heart. Circulation 126, 1869-1881. Kajstura, J., Rota, M., Whang, B., Cascapera, S., Hosoda, T., Bearzi, C., Nurzynska, D., Kasahara, H., Zias, E., Bonafe, M., et al. (2005). Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circulation research 96, 127-137. Kattman, S.J., Huber, T.L., and Keller, G.M. (2006). Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11, 723-732. Kikuchi, K., Gupta, V., Wang, J., Holdway, J.E., Wills, A.A., Fang, Y., and Poss, K.D. (2011). tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138, 2895-2902. Kikuchi, K., Holdway, J.E., Werdich, A.A., Anderson, R.M., Fang, Y., Egnaczyk, G.F., Evans, T., Macrae, C.A., Stainier, D.Y., and Poss, K.D. (2010). Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464, 601-605. Kikuchi, K., and Poss, K.D. (2012). Cardiac regenerative capacity and mechanisms. Annual review of cell and developmental biology 28, 719-741. Kim, J.B., Zaehres, H., Wu, G., Gentile, L., Ko, K., Sebastiano, V., Arauzo-Bravo, M.J., Ruau, D., Han, D.W., Zenke, M., et al. (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature. Kisanuki, Y.Y., Hammer, R.E., Miyazaki, J., Williams, S.C., Richardson, J.A., and Yanagisawa, M. (2001). Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Developmental biology 230, 230-242. Kobara, M., Noda, K., Kitamura, M., Okamoto, A., Shiraishi, T., Toba, H., Matsubara, H., and Nakata, T. (2010). Antibody against interleukin-6 receptor attenuates left ventricular remodelling after myocardial infarction in mice. Cardiovascular research 87, 424-430. Kolossov, E., Bostani, T., Roell, W., Breitbach, M., Pillekamp, F., Nygren, J.M., Sasse, P., Rubenchik, O., Fries, J.W., Wenzel, D., et al. (2006). Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. The Journal of experimental medicine 203, 2315-2327. Kubin, T., Poling, J., Kostin, S., Gajawada, P., Hein, S., Rees, W., Wietelmann, A., Tanaka, M., Lorchner, H., Schimanski, S., et al. (2011). Oncostatin m is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell stem cell 9, 420-432. Kuhn, B., del Monte, F., Hajjar, R.J., Chang, Y., Lebeche, D., Arab, S., and Keating, M.T. (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13, 962-969. Laflamme, M.A., Chen, K.Y., Naumova, A.V., Muskheli, V., Fugate, J.A., Dupras, S.K., Reinecke, H., Xu, C., Hassanipour, M., Police, S., et al. (2007a). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25, 1015-1024. Laflamme, M.A., Zbinden, S., Epstein, S.E., and Murry, C.E. (2007b). Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annu Rev Pathol 2, 307-339. Landmesser, U., Wollert, K.C., and Drexler, H. (2008). Potential novel pharmacological therapies for myocardial remodelling. Cardiovascular research. Lang, D., Lu, M.M., Huang, L., Engleka, K.A., Zhang, M., Chu, E.Y., Lipner, S., Skoultchi, A., Millar, S.E., and Epstein, J.A. (2005). Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature 433, 884-887. Laugwitz, K.L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., Lin, L.Z., Cai, C.L., Lu, M.M., Reth, M., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433, 647-653. Lepilina, A., Coon, A.N., Kikuchi, K., Holdway, J.E., Roberts, R.W., Burns, C.G., and Poss, K.D. (2006). A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607-619. Lewitzky, M., and Yamanaka, S. (2007). Reprogramming somatic cells towards pluripotency by defined factors. Curr Opin Biotechnol 18, 467-473. Libby, P., Ridker, P.M., and Hansson, G.K. (2009). Inflammation in atherosclerosis: from pathophysiology to practice. Journal of the American College of Cardiology 54, 2129-2138. Liehn, E.A., Postea, O., Curaj, A., and Marx, N. (2011). Repair after myocardial infarction, between fantasy and reality: the role of chemokines. Journal of the American College of Cardiology 58, 2357-2362. Lien, C.L., Wu, C., Mercer, B., Webb, R., Richardson, J.A., and Olson, E.N. (1999). Control of early cardiac-specific transcription of Nkx2-5 by a GATA-dependent enhancer. Development 126, 75-84. Limana, F., Germani, A., Zacheo, A., Kajstura, J., Di Carlo, A., Borsellino, G., Leoni, O., Palumbo, R., Battistini, L., Rastaldo, R., et al. (2005). Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation. Circulation research 97, e73-83. Lin, Y.D., Luo, C.Y., Hu, Y.N., Yeh, M.L., Hsueh, Y.C., Chang, M.Y., Tsai, D.C., Wang, J.N., Tang, M.J., Wei, E.I., et al. (2012). Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair. Science translational medicine 4, 146ra109. Lin, Y.D., Yeh, M.L., Yang, Y.J., Tsai, D.C., Chu, T.Y., Shih, Y.Y., Chang, M.Y., Liu, Y.W., Tang, A.C., Chen, T.Y., et al. (2010). Intramyocardial peptide nanofiber injection improves postinfarction ventricular remodeling and efficacy of bone marrow cell therapy in pigs. Circulation 122, S132-141. Lipinski, M.J., Biondi-Zoccai, G.G., Abbate, A., Khianey, R., Sheiban, I., Bartunek, J., Vanderheyden, M., Kim, H.S., Kang, H.J., Strauer, B.E., et al. (2007). Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. Journal of the American College of Cardiology 50, 1761-1767. Liu, Y.H., Karra, R., and Wu, S.M. (2008). Cardiovascular Stem Cells in Regenerative Medicine: Ready for Prime Time? Drug Discov Today Ther Strateg 5, 201-207. Liu, Y.H., Kuhn, E.N., and Wu, S.M. (2010). Cardiac progenitor cells: from embryonic to the aging heart. Aging Health 6, 679-686. Liu, Y.H., Lai, L.P., Huang, S.Y., Lin, Y.S., Wu, S.C., Chou, C.J., and Lin, J.L. (2016). Developmental origin of postnatal cardiomyogenic progenitor cells. Future science OA 2, FSO120. Liu, Y.H., Peng, K.Y., Chiu, Y.W., Ho, Y.L., Wang, Y.H., Shun, C.T., Huang, S.Y., Lin, Y.S., de Vries, A.A., Pijnappels, D.A., et al. (2015). Human Placenta-Derived Multipotent Cells (hPDMCs) Modulate Cardiac Injury: From Bench to Small & Large Animal Myocardial Ischemia Studies. Cell transplantation. Lloyd-Jones, D., Adams, R.J., Brown, T.M., Carnethon, M., Dai, S., De Simone, G., Ferguson, T.B., Ford, E., Furie, K., Gillespie, C., et al. (2010). Heart disease and stroke statistics 2010 update: A report from the American Heart Association. Circulation 121, 46-215. Loffredo, F.S., Steinhauser, M.L., Gannon, J., and Lee, R.T. (2011). Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell stem cell 8, 389-398. Lunde, K., Solheim, S., Aakhus, S., Arnesen, H., Abdelnoor, M., Egeland, T., Endresen, K., Ilebekk, A., Mangschau, A., Fjeld, J.G., et al. (2006). Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. The New England journal of medicine 355, 1199-1209. Lyons, I., Parsons, L.M., Hartley, L., Li, R., Andrews, J.E., Robb, L., and Harvey, R.P. (1995). Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes & development 9, 1654-1666. Macias, M.I., Grande, J., Moreno, A., Dominguez, I., Bornstein, R., and Flores, A.I. (2010). Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layers. American journal of obstetrics and gynecology 203, 495 e499-495 e423. Madisen, L., Zwingman, T.A., Sunkin, S.M., Oh, S.W., Zariwala, H.A., Gu, H., Ng, L.L., Palmiter, R.D., Hawrylycz, M.J., Jones, A.R., et al. (2010). A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13, 133-140. Martin, C.M., Meeson, A.P., Robertson, S.M., Hawke, T.J., Richardson, J.A., Bates, S., Goetsch, S.C., Gallardo, T.D., and Garry, D.J. (2003). Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265, 262-275. Martin, C.M., Meeson, A.P., Robertson, S.M., Hawke, T.J., Richardson, J.A., Bates, S., Goetsch, S.C., Gallardo, T.D., and Garry, D.J. (2004). Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Developmental biology 265, 262-275. Menard, C., Hagege, A.A., Agbulut, O., Barro, M., Morichetti, M.C., Brasselet, C., Bel, A., Messas, E., Bissery, A., Bruneval, P., et al. (2005). Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet 366, 1005-1012. Menasche, P. (2007). Skeletal myoblasts as a therapeutic agent. Prog Cardiovasc Dis 50, 7-17. Menasche, P., Alfieri, O., Janssens, S., McKenna, W., Reichenspurner, H., Trinquart, L., Vilquin, J.T., Marolleau, J.P., Seymour, B., Larghero, J., et al. (2008). The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117, 1189-1200. Merki, E., Zamora, M., Raya, A., Kawakami, Y., Wang, J., Zhang, X., Burch, J., Kubalak, S.W., Kaliman, P., Belmonte, J.C., et al. (2005). Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proceedings of the National Academy of Sciences of the United States of America 102, 18455-18460. Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., Salio, M., Battaglia, M., Latronico, M.V., Coletta, M., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation research 95, 911-921. Michael, L.H., Entman, M.L., Hartley, C.J., Youker, K.A., Zhu, J., Hall, S.R., Hawkins, H.K., Berens, K., and Ballantyne, C.M. (1995). Myocardial ischemia and reperfusion: a murine model. Am J Physiol 269, H2147-2154. Mignone, J.L., and Murry, C.E. (2011). A repair 'kit' for the infarcted heart. Cell stem cell 8, 350-352. Mjaatvedt, C.H., Nakaoka, T., Moreno-Rodriguez, R., Norris, R.A., Kern, M.J., Eisenberg, C.A., Turner, D., and Markwald, R.R. (2001). The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 238, 97-109. Moretti, A., Bellin, M., Welling, A., Jung, C.B., Lam, J.T., Bott-Flugel, L., Dorn, T., Goedel, A., Hohnke, C., Hofmann, F., et al. (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. The New England journal of medicine 363, 1397-1409. Moretti, A., Caron, L., Nakano, A., Lam, J.T., Bernshausen, A., Chen, Y., Qyang, Y., Bu, L., Sasaki, M., Martin-Puig, S., et al. (2006). Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 1151-1165. Morishita, R., Nakamura, S., Hayashi, S., Taniyama, Y., Moriguchi, A., Nagano, T., Taiji, M., Noguchi, H., Takeshita, S., Matsumoto, K., et al. (1999). Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy. Hypertension 33, 1379-1384. Morrisey, E.E. (2011). Rewind to recover: dedifferentiation after cardiac injury. Cell stem cell 9, 387-388. Murry, C.E., and Keller, G. (2008). Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661-680. Murry, C.E., Soonpaa, M.H., Reinecke, H., Nakajima, H., Nakajima, H.O., Rubart, M., Pasumarthi, K.B., Virag, J.I., Bartelmez, S.H., Poppa, V., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664-668. Narula, J., Haider, N., Virmani, R., DiSalvo, T.G., Kolodgie, F.D., Hajjar, R.J., Schmidt, U., Semigran, M.J., Dec, G.W., and Khaw, B.A. (1996). Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335, 1182-1189. Nygren, J.M., Jovinge, S., Breitbach, M., Sawen, P., Roll, W., Hescheler, J., Taneera, J., Fleischmann, B.K., and Jacobsen, S.E. (2004). Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10, 494-501. Oh, H., Bradfute, S.B., Gallardo, T.D., Nakamura, T., Gaussin, V., Mishina, Y., Pocius, J., Michael, L.H., Behringer, R.R., Garry, D.J., et al. (2003). Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America 100, 12313-12318. Okamoto, K., Miyoshi, S., Toyoda, M., Hida, N., Ikegami, Y., Makino, H., Nishiyama, N., Tsuji, H., Cui, C.H., Segawa, K., et al. (2007). 'Working' cardiomyocytes exhibiting plateau action potentials from human placenta-derived extraembryonic mesodermal cells. Exp Cell Res 313, 2550-2562. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S.M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D.M., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature 410, 701-705. Ott, H.C., Matthiesen, T.S., Goh, S.K., Black, L.D., Kren, S.M., Netoff, T.I., and Taylor, D.A. (2008). Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 14, 213-221. Parolini, O., Alviano, F., Bagnara, G.P., Bilic, G., Buhring, H.J., Evangelista, M., Hennerbichler, S., Liu, B., Magatti, M., Mao, N., et al. (2008). Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 26, 300-311. Pashmforoush, M., Lu, J.T., Chen, H., Amand, T.S., Kondo, R., Pradervand, S., Evans, S.M., Clark, B., Feramisco, J.R., Giles, W., et al. (2004). Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117, 373-386. Peng, K.Y., Liu, Y.H., Li, Y.W., Yen, B.L., and Yen, M.L. (2017). Extracellular matrix protein laminin enhances mesenchymal stem cell (MSC) paracrine function through alphavbeta3/CD61 integrin to reduce cardiomyocyte apoptosis. Journal of cellular and molecular medicine 21, 1572-1583. Pfeffer, M.A., and Braunwald, E. (1990). Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81, 1161-1172. Pijnappels, D.A., Gregoire, S., and Wu, S.M. (2010). The integrative aspects of cardiac physiology and their implications for cell-based therapy. Ann N Y Acad Sci 1188, 7-14. Pijnappels, D.A., Schalij, M.J., Ramkisoensing, A.A., van Tuyn, J., de Vries, A.A., van der Laarse, A., Ypey, D.L., and Atsma, D.E. (2008). Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circulation research 103, 167-176. Pijnappels, D.A., Schalij, M.J., van Tuyn, J., Ypey, D.L., de Vries, A.A., van der Wall, E.E., van der Laarse, A., and Atsma, D.E. (2006). Progressive increase in conduction velocity across human mesenchymal stem cells is mediated by enhanced electrical coupling. Cardiovascular research 72, 282-291. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147. Porrello, E.R., Mahmoud, A.I., Simpson, E., Hill, J.A., Richardson, J.A., Olson, E.N., and Sadek, H.A. (2011). Transient regenerative potential of the neonatal mouse heart. Science 331, 1078-1080. Portmann-Lanz, C.B., Schoeberlein, A., Huber, A., Sager, R., Malek, A., Holzgreve, W., and Surbek, D.V. (2006). Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. American journal of obstetrics and gynecology 194, 664-673. Poss, K.D., Wilson, L.G., and Keating, M.T. (2002). Heart regeneration in zebrafish. Science 298, 2188-2190. Ptaszek, L.M., Mansour, M., Ruskin, J.N., and Chien, K.R. (2012) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20089 | - |
| dc.description.abstract | 心肌梗塞與心臟衰竭的盛行率及死亡率一直高居不下,其中一個最重要的原因是心肌細胞的數量減少到心臟無法代償的程度,目前治療方式並無法有效改善此現象,而心臟再生被認為是最有潛力的治療方法之一。心臟再生在哺乳動物是否存在一直是個問號,最近的研究發現出生後哺乳動物的心肌細胞有再生的現象,但再生細胞的起源並不清楚。目前並沒有直接的證據顯示內源性心臟先驅細胞在心肌受損後可分化為心肌細胞來修補受損的心臟。在胚胎發育期,Nkx2.5+心臟先驅細胞可分裂並分化為心臟內的心肌細胞、血管平滑肌細胞及部分內皮細胞而架構成心臟。
我們的研究的目的是 (1)證實心臟先驅細胞存在出生後哺乳動物心臟且可分化為心肌細胞,(2)證明出生後哺乳動物心臟先驅細胞具再生心臟的能力,(3)確認心臟先驅細胞的來源,(4)探討哺乳動物心臟再生的機轉,(5)應用細胞移植增進心臟再生及修補。我們可以進一步將心臟再生應用在人類受損心臟的修補。 我們發現在心肌受損後心外層的心肌生成基因會被活化,表現類似胚胎心臟發育過程的基因變化,我們進一步證實出生後Nkx2.5+細胞可分化為心肌細胞,Nkx2.5 enhancer-eGFP基因轉殖鼠在心肌梗塞後Nkx2.5 enhancer-eGFP+細胞顯著增加。我們並發現Nkx2.5 enhancer-eGFP+多位於心外膜下 (subepicardium)且表現心臟中胚層標記GATA4和心臟先驅細胞標記Nkx2.5,但不表現血球細胞、纖維母細胞、血球幹細胞及心肌細胞等標記。微陣列分析Nkx2.5 enhancer-eGFP+細胞發現心臟發育相關基因表現顯著增加。我們進一步用雙基因轉殖鼠Inducible Nkx2.5 enhancer Cre/R26R-lacZ作lineage tracing,結果發現Nkx2.5+及其衍生細胞在心臟受損後被活化,由心臟心包膜下逐步移動至心肌層內並分化為心肌細胞。當去除心肌梗塞後的心臟先驅細胞,我們發現心臟功能惡化,此結果提供內源性心臟再生功能性證據。我們更發現使用抗發炎藥物會抑制心臟先驅細胞的活化並減少心肌細胞再生,這顯示心肌梗塞後發炎反應可促進心肌再生。 為探討出生後心臟先驅細胞的來源,我們用三基因轉殖鼠不同的lineage Cre/Nkx2.5 enhancer-eGFP/R26R-LacZ,在心肌梗塞後分析Nkx2.5 enhancer-eGFP+細胞的源頭,發現出後Nkx2.5 enhancer-eGFP+細胞源自胚胎發育期的心外膜細胞 (embryonic epicardial cells)。 我們的研究提供心臟先驅細胞在心肌受損後可分化為心肌細胞來修補受損的心臟的直接證據並證實其來自胚胎發育期的心外膜細胞,此研究有助於了解調節心臟再生的影響因子及機轉,這些研究結果可望在心臟修補及再生治療提供重要的貢獻,未來若能應用於心肌梗塞及心臟衰竭的病人的治療,將可大幅改善病人的預後。 為研究細胞治療是可促進心臟再生及修補,我們使用人類胎盤幹細胞 (human placenta-derived multipotent cells, hPDMCs)作研究。人類胎盤幹細胞已知具三胚層細胞分化的能力,此外它的取得無倫理上的爭議、容易分離、低排斥及具免疫調控能力等特性使它成為非常有潛力的細胞治療方式。我們發現它可表現心臟發育的轉錄因子GATA4及Hand2,我們假設它可透過心肌分化潛力而具心臟修復的能力。 我們證實人類胎盤幹細胞可改善心臟功能,其機制是透過心肌細胞心生、促進血管生成功能及抑制心肌細胞凋亡 (apoptosis),我們可進一步將這無倫理上的爭議、容易分離、低排斥及具免疫調控能力的細胞用於治療嚴重心血管疾病的病患以改善他們的預後。 | zh_TW |
| dc.description.abstract | Recent studies report that postnatal mammalian hearts undergo cardiomyocyte refreshment; however, evidence is lacking for the cell origin of the cells involved in postnatal cardiomyogenesis.
We first confirmed that myocardial infarction (MI) triggers the expression of embryonic cardiogenesis genes in the external aspects of the heart. We further documented that Nkx2.5 enhancer-eGFP (Nkx2.5 enh-eGFP) cells exist in the postnatal Nkx2.5 enh-eGFP transgenic mice and would differentiate into striated cardiomyocytes in vitro. We created coronary artery ligation on the Nkx2.5 enh-eGFP transgenic mice. The number of Nkx2.5 enh-eGFP cells increased following MI. The Nkx2.5 enh-eGFP cells resided mostly in the subepicardium and expressed precardiac mesoderm marker GATA4 and cardiac precursor marker Nkx2.5. eGFP signaling was not expressed in mature cardiomyocytes, hematopoietic cells or fibroblasts. Transcriptomic analysis of activated Nkx2.5 enh-eGFP cells showed heart development genes up-regulated remarkably and significantly. Using inducible Nkx2.5 enhancer-Cre/ROSA26 reporter double transgenic mice to lineage trace the fate of activated Nkx2.5 enh-eGFP cells, we documented that the activated Nkx2.5 enh-eGFP cells proliferate and differentiate into mature cardiomyocyte in vivo. To trace the developmental origin of the activated Nkx2.5 enh-eGFP cells, we created different lineage-Cre/Nkx2.5 enh-eGFP/ROSA26 reporter triple transgenic mice. Post-MI Nkx2.5 enh-eGFP+ cells originated from the embryonic epicardial cells, not from the pre-existing cardiomyocytes, endothelial cells, cardiac neural crest cells, or perinatal/postnatal epicardial cells. Together, this study confirmed that cardiac lineage-specific progenitor cells, which originate from embryonic epicardium-derived cells, contribute to postnatal mammalian cardiomyogenesis. The discovery of a cardiomyogenic cell population in the postnatal heart enables future cell therapy for cardiac regeneration. Human placenta-derived multipotent cells (hPDMCs) have the capacity of multilineage differentiation into cells with ectodermal, mesodermal, and endodermal phenotypes. These hPDMCs can be obtained without ethical concerns or the need for invasive procedures. Also, their relative ease of isolation and immunosuppressive properties make these multilineage cells very good candidates for cell therapy to treat damaged organs. We confirmed that hPDMCs can modulate cardiac injury in small and large animal models of myocardial injury and elucidate the mechanisms involved. We found that hPDMCs can undergo in vitro cardiomyogenic differentiation when cocultured with mouse neonatal cardiomyocytes. Moreover, hPDMCs exert strong proangiogenic responses in vitro toward human endothelial cells mediated by secretion of hepatocyte growth factor, growth-regulated oncogene-α, and interleukin-8. To test the in vivo relevance of these results, small and large animal models of acute myocardil injury were induced in mice and minipigs. Transplantation of hPDMCs into the animal heart post-acute MI induction improved left ventricular function, with significantly enhanced vascularity, cardiomyogenic differentiation, and antiapoptotic effects. Our study offers mechanistic insights and preclinical evidence on using hPDMCs as a therapeutic strategy to treat severe cardiovascular diseases. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:39:54Z (GMT). No. of bitstreams: 1 ntu-107-D92421005-1.pdf: 5980560 bytes, checksum: 11012ddf3993bbb5bb7f637c7d5ec494 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………….……..….1
誌謝……………………………………………………………………….…….….….2 中文摘要……………………………………………………………………..…….….3 英文摘要………………………………………………………….………….…….….5 博士論文內容 1. 緒論 (Introduction) ……………………………………….…………………….10 1.1 心臟外的先驅細胞在心臟修復的角色…………………………….……..12 1.2 心臟再生的證據…………………………………………………….. ……15 1.3 胚胎心臟發育中的心臟先驅細胞 ……………………………….……….16 1.4 出生後的心臟先驅細胞………………………………………….………..19 1.5 心臟先驅細胞在治療心臟血管疾病的應用……………………………...21 1.6 Nkx2.5……………………………………………………………………..23 1.7 人類胎盤幹細胞…………………………………………………………...24 1.8 研究假說、目的、重要性及說明…………………………………………25 2. 研究方法與材料 (Methods and Materials)……………………………………26 2.1 心臟先驅細胞在心臟再生角色…………………………………………...26 2.2 人類胎盤幹細胞促進心臟再生及修補…………………………………...33 3. 結果 (Results)………………………………………………………………….39 3.1 心臟先驅細胞在心臟再生角色…………………………………………...39 3.1.1心臟受損後啟動心臟新生的基因表現…………………………….39 3.1.2 Nkx2.5 enhancer-eGFP基因轉殖小鼠綠色螢光細胞的表現……..41 3.1.3出生後心臟特異性先驅細胞具分化為心肌細胞的能力………..42 3.1.4 Nkx2.5 enhancer表現細胞在心臟受損後顯著增生………………43 3.1.5 出生後Nkx2.5 enhancer表現細胞在心臟的分布………………..46 3.1.6 出生後Nkx2.5 enhancer表現細胞表現心臟特異性先驅細胞的標誌但不表現成熟心肌細胞的標誌……………………………………………..47 3.1.7 出生後Nkx2.5 enhancer表現細胞的特性………………………..49 3.1.8 出生後Nkx2.5 enhancer表現細胞並非心肌細胞………………...51 3.1.9 出生後Nkx2.5 enhancer表現細胞的功能性分析………………..53 3.1.10 心肌梗塞後Nkx2.5 enhancer表現細胞於體內分化為心肌細胞-- 譜系追踪………………………………………………………………………..55 3.1.11 新生小鼠出生後的Nkx2.5 enhancer表現細胞的譜系追踪……59 3.1.12 心肌梗塞促進Nkx2.5 enhancer表現細胞表達心臟生成的相關基因 ………………………………………………………………………………61 3.1.13 功能性心臟再生………………………………………………...64 3.1.14 發炎反應會活化心臟先驅細胞進行心臟修補………………….67 3.1.15 出生後心臟先驅細胞的發育源頭……………………………….70 3.1.16 胚胎期的心外膜:出生後心臟先驅細胞的發育源頭……………75 3.2 人類胎盤幹細胞促進心臟再生及修補…………………………………...79 3.2.1 人類胎盤幹細胞表現心肌生成基因………………………………79 3.2.2 體外證據顯示hPDMCs可分化成心肌細胞………………………82 3.2.3 體外證據顯示hPDMCs促進血管生成……………………………82 3.2.4 hPDMCs心臟保護作用的分子機制……………………………….83 3.2.5 hPDMCs在小鼠心肌梗塞調節心臟損傷………………………….85 3.2.6 hPDMCs移植後小鼠損傷心臟的血管增加……………………….87 3.2.7 hPDMCs在豬心肌梗塞減少心臟損傷…………………………….89 3.2.8 hPDMCs促進豬心肌梗塞後心臟的血管生成…………………….91 3.2.9 hPDMCs在豬心內可分化為心肌細胞………………….…………94 3.2.10 hPDMCs抑制心肌細胞凋亡……………………………………...96 4. 討論……………………………………………………………………………..98 5. 展望……………………………………………………………………………111 6. 論文英文簡述…………………………………………………………………115 7. 參考文獻………………………………………………………………………170 附錄:博士班修業期間所發表之相關論文清冊…………………………………187 | |
| dc.language.iso | zh-TW | |
| dc.title | 出生後心臟的再生與細胞移植 | zh_TW |
| dc.title | Cardiac Regeneration in the Postnatal Heart and Cell-Based Transplantation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 楊偉勛,蘇銘嘉,陳信孚,林幸榮,顏伶汝 | |
| dc.subject.keyword | 心臟再生,心臟先驅細胞,Nkx2.5,心肌梗塞,心臟衰竭,細胞移植,人類胎盤幹細胞, | zh_TW |
| dc.subject.keyword | cardiac regeneration,cardiac progenitor cells,Nkx2.5,myocardial infarction,heart failure,cell transplantation,human placenta-derived multipotent cells (hPDMCs), | en |
| dc.relation.page | 187 | |
| dc.identifier.doi | 10.6342/NTU201800870 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-06-04 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 5.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
