請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20077
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蕭大智(Ta-Chih Hsiao) | |
dc.contributor.author | Kuan Wu | en |
dc.contributor.author | 吳寬 | zh_TW |
dc.date.accessioned | 2021-06-08T02:39:43Z | - |
dc.date.copyright | 2020-11-12 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-10-23 | |
dc.identifier.citation | Adams, K., Davis Jr, L., Japar, S., Pierson, W. (1989). Real-time, in situ measurements of atmospheric optical absorption in the visible via photoacoustic spectroscopy—II. Validation for atmospheric elemental carbon aerosol. Atmospheric Environment (1967), 23(3), 693-700. Adams, K., Davis Jr, L., Japar, S. M., Finley, D. (1990). Real-time, in situ measurements of atmospheric optical absorption in the visible via photoacoustic spectroscopy--IV. Visibility degradation and aerosol optical properties in Los Angeles. Atmospheric Environment. Andreae, M. O. (1983). Soot carbon and excess fine potassium: long-range transport of combustion-derived aerosols. Science, 220(4602), 1148-1151. Bauer, J. J., Yu, X.-Y., Cary, R., Laulainen, N., Berkowitz, C. (2009). Characterization of the sunset semi-continuous carbon aerosol analyzer. Journal of the Air Waste Management Association, 59(7), 826-833. Belis, C., Karagulian, F., Larsen, B. R., Hopke, P. (2013). Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmospheric Environment, 69, 94-108. Belis, C., Larsen, B., Amato, F. (2013). European guide on with receptor models air pollution source apportionment. JRC References Report. Birch, M., Cary, R. (1996). Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Science and Technology, 25(3), 221-241. Blifford Jr, I. H., Meeker, G. O. (1967). A factor analysis model of large scale pollution. Atmospheric Environment (1967), 1(2), 147-157. Brown, S. G., Eberly, S., Paatero, P., Norris, G. A. (2015). Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Science of the Total Environment, 518, 626-635. Brown, S. G., Hafner, H. R. (2005). Multivariate receptor modeling workbook. USEPA, Research Triangle Park, NC. Cao, J., Chow, J. C., Lee, S., Li, Y., Chen, S., An, Z., . . . Liu, S. (2005). Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China. Cao, J., Lee, S., Ho, K., Fung, K., Chow, J. C., Watson, J. G. (2006). Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong. Aerosol Air Qual. Res, 6(2), 106-122. Chen, L.-W. A., Lowenthal, D. H., Watson, J. G., Koracin, D., Kumar, N., Knipping, E. M., . . . Reid, S. (2010). Toward effective source apportionment using positive matrix factorization: Experiments with simulated PM2. 5 data. Journal of the Air Waste Management Association, 60(1), 43-54. Chen, W.-N., Chen, Y.-C., Kuo, C.-Y., Chou, C.-H., Cheng, C.-H., Huang, C.-C., . . . Chuang, T.-Y. (2014). The real-time method of assessing the contribution of individual sources on visibility degradation in Taichung. Science of the Total Environment, 497, 219-228. Chow, J., Watson, J. (2011). Air quality management of multiple pollutants and multiple effects. Air Quality and Climate Change, 45(3), 26. Chow, J. C., Wang, X., Sumlin, B. J., Gronstal, S. B., Chen, L.-W. A., Trimble, D. L., . . . Hurbain, P. R. (2015). Optical calibration and equivalence of a multiwavelength thermal/optical carbon analyzer. Aerosol and Air Quality Research, 15(4), 1145-1159. Chow, J. C., Watson, J. G., Chen, L.-W. A., Chang, M. O., Robinson, N. F., Trimble, D., Kohl, S. (2007). The IMPROVE_A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. Journal of the Air Waste Management Association, 57(9), 1014-1023. Chow, J. C., Watson, J. G., Kuhns, H., Etyemezian, V., Lowenthal, D. H., Crow, D., . . . Green, M. C. (2004). Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere, 54(2), 185-208. Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., Purcell, R. G. (1993). The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in US air quality studies. Atmospheric Environment. Part A. General Topics, 27(8), 1185-1201. Colucci, J. M., Begeman, C. R. (1965). The Automotive Contribution to Air-Borne Polynuclear Aromatic Hydrocarbons in Detroit: Informative Report No. 6. Journal of the Air Pollution Control Association, 15(3), 113-122. Deng, J., Zhang, Y., Qiu, Y., Zhang, H., Du, W., Xu, L., . . . Chen, J. (2018). Source apportionment of PM2. 5 at the Lin'an regional background site in China with three receptor models. Atmospheric Research, 202, 23-32. Draxler, R., Hess, G. (2004). Description of the HYSPLIT 4 modeling system (NOAA technical memorandum ERL ARL-224). NOAA Air Resources Laboratory, Silver Spring, MD. Duce, R., Unni, C., Ray, B., Prospero, J., Merrill, J. (1980). Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: Temporal variability. Science, 209(4464), 1522-1524. Dunker, A. M. (1981). Efficient calculation of sensitivity coefficients for complex atmospheric models. Atmospheric Environment (1967), 15(7), 1155-1161. Dunker, A. M., Yarwood, G., Ortmann, J. P., Wilson, G. M. (2002). The decoupled direct method for sensitivity analysis in a three-dimensional air quality model - Implementation, accuracy, and efficiency. Environmental Science Technology, 36(13), 2965-2976. Retrieved from <Go to ISI>://WOS:000176591600042 Esmaeilirad, S., Lai, A., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., Uzu, G., . . . Arhami, M. (2020). Source apportionment of fine particulate matter in a Middle Eastern Metropolis, Tehran-Iran, using PMF with organic and inorganic markers. Science of the Total Environment, 705, 135330. Graybill, F. A. (1994). Regression analysis: concepts and applications: Duxbury Resource Center. Hansen, A., Rosen, H., Novakov, T. (1984). The aethalometer—an instrument for the real-time measurement of optical absorption by aerosol particles. Science of the Total Environment, 36, 191-196. Henry, R. C. (2003). Multivariate receptor modeling by N-dimensional edge detection. Chemometrics and intelligent laboratory systems, 65(2), 179-189. doi:10.1016/s0169-7439(02)00108-9 Henry, R. C. (2005). Duality in multivariate receptor models. Chemometrics and intelligent laboratory systems, 77(1-2), 59-63. Japar, S., Brachaczek, W., Gorse Jr, R., Norbeck, J., Pierson, W. (1986). The contribution of elemental carbon to the optical properties of rural atmospheric aerosols. Atmospheric Environment (1967), 20(6), 1281-1289. Jeong, C. H., McGuire, M. L., Herod, D., Dann, T., Dabek–Zlotorzynska, E., Wang, D., . . . Evans, G. (2011). Receptor model based identification of PM2. 5 sources in Canadian cities. Atmospheric Pollution Research, 2(2), 158-171. Johnson, T. M., Guttikunda, S., Wells, G. J., Artaxo, P., Bond, T. C., Russell, A. G., . . . West, J. (2011). Tools for improving air quality management: A review of top-down source apportionment techniques and their application in developing countries. Karagulian, F., Belis, C. A. (2012). Enhancing source apportionment with receptor models to foster the air quality directive implementation. International Journal of Environment and Pollution, 50(1-4), 190-199. doi:10.1504/ijep.2012.051192 Kim, E., Hopke, P. K. (2004a). Improving source identification of fine particles in a rural northeastern US area utilizing temperature‐resolved carbon fractions. Journal of Geophysical Research: Atmospheres, 109(D9). Kim, E., Hopke, P. K. (2004b). Source apportionment of fine particles in Washington, DC, utilizing temperature-resolved carbon fractions. Journal of the Air Waste Management Association, 54(7), 773-785. Kim, E., Hopke, P. K. (2005). Improving source apportionment of fine particles in the eastern United States utilizing temperature-resolved carbon fractions. Journal of the Air Waste Management Association, 55(10), 1456-1463. Kim, E., Hopke, P. K., Edgerton, E. S. (2003). Source identification of Atlanta aerosol by positive matrix factorization. Journal of the Air Waste Management Association, 53(6), 731-739. Kim, E., Hopke, P. K., Edgerton, E. S. (2004). Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment, 38(20), 3349-3362. Kim, E., Larson, T. V., Hopke, P. K., Slaughter, C., Sheppard, L. E., Claiborn, C. (2003). Source identification of PM2. 5 in an arid Northwest US City by positive matrix factorization. Atmospheric Research, 66(4), 291-305. Kirchstetter, T. W., Novakov, T., Hobbs, P. V. (2004). Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. Journal of Geophysical Research: Atmospheres, 109(D21). Lawson, C. L., Hanson, R. J. (1995). Solving least squares problems (Vol. 15): Siam. Lewis, C. W., Norris, G. A., Conner, T. L., Henry, R. C. (2003). Source apportionment of Phoenix PM2. 5 aerosol with the Unmix receptor model. Journal of the Air Waste Management Association, 53(3), 325-338. Li, R., Wang, Q., He, X., Zhu, S., Zhang, K., Duan, Y., . . . Yu, J. Z. (2020). Source apportionment of PM2.5 in Shanghai based on hourly molecular organic markers and other source tracers. Atmos. Chem. Phys. Discuss., 2020, 1-26. doi:10.5194/acp-2019-951 Liu, B., Yang, J., Yuan, J., Wang, J., Dai, Q., Li, T., . . . Zhang, Y. (2017). Source apportionment of atmospheric pollutants based on the online data by using PMF and ME2 models at a megacity, China. Atmospheric Research, 185, 22-31. Liu, B., Zhang, J., Wang, L., Liang, D., Cheng, Y., Wu, J., . . . Yang, H. (2018). Characteristics and sources of the fine carbonaceous aerosols in Haikou, China. Atmospheric Research, 199, 103-112. Liu, W., Wang, Y., Russell, A., Edgerton, E. S. (2006). Enhanced source identification of southeast aerosols using temperature-resolved carbon fractions and gas phase components. Atmospheric Environment, 40, 445-466. Malm, W. C., Hand, J. L. (2007). An examination of the physical and optical properties of aerosols collected in the IMPROVE program. Atmospheric Environment, 41(16), 3407-3427. doi:10.1016/j.atmosenv.2006.12.012 Moreno, T., Karanasiou, A., Amato, F., Lucarelli, F., Nava, S., Calzolai, G., . . . Lumbreras, J. (2013). Daily and hourly sourcing of metallic and mineral dust in urban air contaminated by traffic and coal-burning emissions. Atmospheric Environment, 68, 33-44. Norris, G. (2008). Epa positive matrix factorization (pmf) 3.0 fundamentals user guide, us. environmental protection agency. http://www. epa. gov/heasd/products/pmf/pmf. html. Norris, G., Duvall, R., Brown, S., Bai, S. (2014). EPA Positive M atrix Factorization (PMF) 5.0 Fundamentals and User Guide, 136. In. Owoade, K. O., Hopke, P. K., Olise, F. S., Ogundele, L. T., Fawole, O. G., Olaniyi, B. H., . . . Bashiru, M. I. (2015). Chemical compositions and source identification of particulate matter (PM2. 5 and PM2. 5–10) from a scrap iron and steel smelting industry along the Ife–Ibadan highway, Nigeria. Atmospheric Pollution Research, 6(1), 107-119. Paatero, P. (1997). A weighted non-negative least squares algorithm for three-way ‘PARAFAC’factor analysis. Chemometrics and intelligent laboratory systems, 38(2), 223-242. Paatero, P., Hopke, P. K. (2003). Discarding or downweighting high-noise variables in factor analytic models. Analytica Chimica Acta, 490(1), 277-289. doi:https://doi.org/10.1016/S0003-2670(02)01643-4 Paatero, P., Tapper, U. (1994). Positive matrix factorization: A non‐negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2), 111-126. Peng, C., Zhai, C., Wang, H., Tian, M., Li, H., Liu, Y., . . . Yang, F. (2015). Characteristics of organic carbon and elemental carbon in PM2. 5 in the urban Wanzhou area in summer and winter. Polissar, A. V., Hopke, P. K., Paatero, P. (1998). Atmospheric aerosol over Alaska - 2. Elemental composition and sources. Journal of Geophysical Research-Atmospheres, 103(D15), 19045-19057. doi:10.1029/98jd01212 Polissar, A. V., Hopke, P. K., Poirot, R. L. (2001). Atmospheric aerosol over Vermont: chemical composition and sources. Environmental Science Technology, 35(23), 4604-4621. Rai, P., Furger, M., Slowik, J. G., Canonaco, F., Fröhlich, R., Hüglin, C., . . . Prévôt, A. S. (2020). Source apportionment of highly time-resolved elements during a firework episode from a rural freeway site in Switzerland. Ramadan, Z., Song, X.-H., Hopke, P. K. (2000). Identification of sources of Phoenix aerosol by positive matrix factorization. Journal of the Air Waste Management Association, 50(8), 1308-1320. Reff, A., Eberly, S. I., Bhave, P. V. (2007). Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. Journal of the Air Waste Management Association, 57(2), 146-154. doi:10.1080/10473289.2007.10465319 Rosen, H., Hansen, A., Gundel, L., Novakov, T. (1978). Identification of the optically absorbing component in urban aerosols. Applied optics, 17(24), 3859-3861. Scire, J. S., Robe, F. R., Fernau, M. E., Yamartino, R. J. (2000). A user’s guide for the CALMET Meteorological Model. Earth Tech, USA, 37. Shah, J. J., Watson Jr, J. G., Cooper, J. A., Huntzicker, J. J. (1984). Aerosol chemical composition and light scattering in Portland, Oregon: The role of carbon. Atmospheric Environment (1967), 18(1), 235-240. Simoneit, B. R., Schauer, J. J., Nolte, C., Oros, D. R., Elias, V. O., Fraser, M., . . . Cass, G. R. (1999). Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmospheric Environment, 33(2), 173-182. Song, X.-H., Polissar, A. V., Hopke, P. K. (2001). Sources of fine particle composition in the northeastern US. Atmospheric Environment, 35(31), 5277-5286. Sug Park, E., Henry, R. C., Spiegelman, C. H. (2000). Estimating the number of factors to include in a high-dimensional multivariate bilinear model. Communications in Statistics-Simulation and Computation, 29(3), 723-746. Szkarlat, A. C., Japar, S. M. (1981). Light absorption by airborne aerosols: comparison of integrating plate and spectrophone techniques. Applied optics, 20(7), 1151-1155. Tonnesen, G., Wang, B., Wang, Y. (2004). CMAQ Tagged Species Source Apportionment (TSSA). Turpin, B. J., Lim, H. J. (2001). Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Science and Technology, 35(1), 602-610. doi:10.1080/02786820119445 Wang, Y., Hopke, P. K., Xia, X., Rattigan, O. V., Chalupa, D. C., Utell, M. J. (2012). Source apportionment of airborne particulate matter using inorganic and organic species as tracers. Atmospheric Environment, 55, 525-532. Watson, J. G., Chow, J. C., Chen, L.-W. A. (2005). Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol and Air Quality Research, 5(1), 65-102. Watson, J. G., Chow, J. C., Lowenthal, D. H., Pritchett, L. C., Frazier, C. A., Neuroth, G. R., Robbins, R. (1994). Differences in the carbon composition of source profiles for diesel-and gasoline-powered vehicles. Atmospheric Environment, 28(15), 2493-2505. Watson, J. G., Zhu, T., Chow, J. C., Engelbrecht, J., Fujita, E. M., Wilson, W. E. (2002). Receptor modeling application framework for particle source apportionment. Chemosphere, 49(9), 1093-1136. doi:10.1016/s0045-6535(02)00243-6 Zhang, Y., Sheesley, R. J., Schauer, J. J., Lewandowski, M., Jaoui, M., Offenberg, J. H., . . . Edney, E. O. (2009). Source apportionment of primary and secondary organic aerosols using positive matrix factorization (PMF) of molecular markers. Atmospheric Environment, 43(34), 5567-5574. Zhou, S., Davy, P. K., Huang, M., Duan, J., Wang, X., Fan, Q., . . . Xie, S. (2018). High-resolution sampling and analysis of ambient particulate matter in the Pearl River Delta region of southern China: source apportionment and health risk implications. Atmospheric Chemistry and Physics, 18(3), 2049-2064. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20077 | - |
dc.description.abstract | 本研究使用受體模式正矩陣因子法(Positive matrix factorization, PMF)來分析採樣點周遭之污染源對於PM2.5之貢獻量,同時還探討粒狀物之碳成分在源解析中可扮演之角色,試了解粒狀物之碳成分對於PMF來源解析的影響為何。本研究先針對台灣南部一鋼鐵工業區進行PMF分析,總共解析出5個因子,其類別為重油燃料、海洋性氣膠與交通源、地殼土壤揚塵、煤炭燃燒、金屬工業源。其中重油燃料和金屬工業源佔總PM2.5貢獻量之比例最高,分別為29.1 %和27.2 %。同時利用此實驗數據,另增加了粒狀物之碳成分數據後,再進行一次PMF分析,結果僅再次佐證各因子的類別。 本研究還運用了台中市區之每小時大氣連續監測資料來進行PMF源解析,且使用了三種不同分析或是計算碳成分的數據,並與沒有使用碳成分之分析結果進行比較。例如數據中粒狀物碳成分的分析方法,其中一種是使用Sunset OC/EC的碳成分數據,另外兩種是以Aethalometer吸光係數換算。而在不使用碳成分之情況下,仍然可以得到一交通源因子,但無法進一步找到其他碳排放源。其中兩種增加碳成分的PMF解析結果可得到六個因子,因子類別為土壤地殼揚塵、二次氣膠源、兩種工業源、汽油生物質燃燒排放以及柴油排放源,其中二次氣膠源對PM2.5的貢獻量在所有結果中都是最高的。相較於利用Sunset OC/EC碳成分的PMF來源解析,以Aethalometer吸光數據換算之碳成分的結果具有較清晰之排放因子,且該模式之誤差評估結果也比較完善。 | zh_TW |
dc.description.abstract | In recent years, fine suspended particles PM2.5 (particles with aerodynamic diameter less than or equal to 2.5 μm) has been one of the most popular study categories in air pollution. This research intends to use the positive matrix factorization (PMF) method to analyze the PM2.5 contribution of the pollution sources around the sampling area, and to discuss the role carbonaceous component of the particulate matter plays in the source apportionment. In the PMF analysis of a steel industry zone in southern Taiwan, five factors were chosen. The categories are heavy oil fuel, marine aerosol and transportation sources, crustal soil dust, coal combustion, and metal industry source, of which heavy oil fuel and metal industry source’s contributions were the highest, account for 29.1% and 27.2% of the total PM2.5 contribution, respectively. In this study, the carbonaceous composition was added to perform another PMF analysis. And its concentration distribution also confirmed the above result. Since there are some limitations in the data of the steel industry zone, this study also used a hourly atmospheric monitoring data from Taichung City to perform PMF analysis. Four types of results were resolved from this data set. Two of which have 6 factors and the other two have 5 factors. The categories of the factors are soil crustal dust, secondary aerosol source, two industrial sources, gasoline combustion and diesel combustion sources, of which the secondary aerosol source has the highest contribution in all four results. The difference among the four results are mainly about their carbonaceous composition data. The first result utilized carbon aerosol measured by the Sunset OC/EC analyzer, the other two used Aethalometer data, and the last one did not contain carbon data. The carbonaceous aerosol measured by different analytical instruments had different effects on the PMF results. By using PM2.5 carbon fraction analyzed with Sunset OC/EC as input data, PMF could divide the traffic source into different categories. The first type of Aethalometer result could not further divide the carbon source, while the second type could divide it into gasoline and diesel factor. According to the error estimates of the PMF results, the second types of the Aethalometer results is more robust. Without carbonaceous aerosol, the traffic source cannot be separated. From the results of this analysis, the carbonaceous aerosol can help the PMF model to have a more in-depth analysis of the carbon source. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:39:43Z (GMT). No. of bitstreams: 1 U0001-1910202021594100.pdf: 4433780 bytes, checksum: 5a146ab5544cbf41e4ded053d47402b9 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 目錄 口試委員審定書 i 中文摘要 ii 英文摘要 iii 圖目錄 viii 表目錄 x 第1章. 研究背景 1 第2章. 文獻回顧 4 2.1. 污染來源分析方法 4 2.2. 受體模式 6 2.2.1. 化學質量平衡法 (Chemical Mass Balance, CMB) 7 2.2.2. Unmix Model 8 2.2.3. 正矩陣因子法 (Positive Matrix Factorization, PMF) 9 2.3. 污染源代表物種 13 2.4. PM2.5碳成分分析儀 15 2.4.1. DRI Model 2015 Thermal/Optical Carbon Analyzer 16 2.4.2. Sunset OC/EC aerosol analyzer 19 2.4.3. Aethalometer 19 2.5. PMF與碳成分的結合 21 第3章. 研究方法 24 3.1. 研究架構 24 3.2. 採樣實驗 26 3.2.1. ARA N-FRM採樣器操作流程 27 3.2.2. TE-6000系列採樣器操作流程 27 3.3. 初步數據分析 28 3.4. 計算不確定性數據 31 3.5. PMF基本操作方法 33 3.6. PMF錯誤評估方法 35 第4章. 結果與討論 36 4.1. 鋼鐵工業區PMF結果 36 4.1.1. 鋼鐵工業區採樣數據結果 36 4.1.2. 數據前處理 43 4.1.3. 鋼鐵工業區因子指紋譜 43 4.1.4. PMF錯誤評估 47 4.1.5. PMF結果之殘差值 48 4.1.6. 碳成分之比較 51 4.2. 台中市區PMF結果–Sunset OC/EC 53 4.2.1. 台中市區PMF運行數據 53 4.2.2. Sunset碳成分因子指紋譜 53 4.2.3. Sunset碳成分模式模擬評估 58 4.3. 台中市區PMF結果–Aethalometer 61 4.3.1. Aethalometer碳成分因子指紋譜(1) 61 4.3.2. Aethalometer碳成分因子指紋譜(2) 64 4.3.3. 因子指紋譜之比較 68 4.4. 台中市區PMF結果–無碳成分 71 4.4.1. 無碳成分因子指紋譜 71 4.4.2. 無碳成分模式模擬評估 74 4.5. PMF模式結果比較 75 4.5.1. PMF模式結果 75 4.5.2. 不同碳成分 77 4.5.3. 有無碳成分 78 第5章. 結論與建議 79 5.1. 結論 79 5.2. 建議 81 參考文獻 82 附錄A 89 附錄B 95 口試委員意見回覆 100 | |
dc.language.iso | zh-TW | |
dc.title | 受體模式PMF結合PM2.5碳成分之探討 | zh_TW |
dc.title | Discussion on PMF Receptor Model with Additional Carbonaceous Fingerprint | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳志傑(Chih-Chieh Chen),林正芳(Cheng-Fang Lin),紀凱獻(Kai-Hsien Chi),吳致呈(Chih-Chen Wu) | |
dc.subject.keyword | PM2.5,源解析,PMF,碳成分, | zh_TW |
dc.subject.keyword | PM2.5,source apportionment,PMF,carbonaceous component, | en |
dc.relation.page | 103 | |
dc.identifier.doi | 10.6342/NTU202004292 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-10-23 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1910202021594100.pdf 目前未授權公開取用 | 4.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。