Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20055
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張國鎮zh_TW
dc.contributor.advisorKuo-Chun Changen
dc.contributor.author蔡詠安zh_TW
dc.contributor.authorYung-An Tsaien
dc.date.accessioned2021-06-08T02:39:22Z-
dc.date.available2023-11-10-
dc.date.copyright2018-06-29-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] FEMA P58 - Seismic Performance Assessment of Buildings- Methodology 2012.
[2] Miranda, S.T.E., Response Assessment of Nonstructural Building Elements. 2003.
[3] International Building Code IBC. 2009.
[4] Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10). 2013.
[5] NFPA13 - Installation of Sprinkler Systems, 2010.
[6] American National Standards Institute ANSI.
[7] Pipe Threads, General Purpose ASME B1.20.1. 2013.
[8] 黃振綱, 醫院消防撒水系統接頭耐震行為之研究. 2013.
[9] 鐘明峯, 消防撒水系統之耐震行為研究. 2015.
[10] FEMA P695 - Quantification of Building Seismic Performance Factors. 2009.
[11] Baker, J.W., Fitting Fragility Functions to Structural Analysis Data Using Maximum Likelihood Estimation. 2011.
[12] Tian, Y., Experimental Seismic Study of Pressurized Fire Sprinkler Piping Subsystems. 2012.
[13] Ju, B.S., Seismic Fragility of Piping System. 2011.
[14] 胡佩文, 醫院消防撒水系統耐震易損性分析研究. 2015.
[15] FEMA P356 - Prestandard and Commentary for the Seismic Rehabilitation of Buildings. 2000.
[16] 林凡茹、王鑑翔、黃振綱, 林.柴.張., 醫院常用消防管線系統之耐震行為實驗研究. 中華民國第十二屆結構工程研討會暨第二屆地震工程研討會, 2014.
[17] Recommended Lateral Force Requirements and Commentary (SEAOC). 1999.
[18] NEHRP Guidlines For The Seismic Rehabilitation of Buildings FEMA 273. 1997.
[19] Performance Based Seismic Design of Buildings FEMA P283. 1996.
[20] Seismic Rehabilitation of Existing Buildings ASCE/SEI 41-06 2006.
[21] NEHRP Recommended Provisions For Seismic Regulations For New Buildings And Other Structures FEMA 450 2003.
[22] 柴駿甫、黃震興, 醫院耐震評估補強準則之研擬. 2013.
[23] L. Eads, E.M.H.K., Improved Estimation of Collapse Risk for Structures in Seismic Regions 2012.
[24] Development of Seismic Fragilities for MEP Distribution Systems for the ATC-58 Project FEMA P-58/BD-3.9.11. 2012.
[25]Acceptance Criteria For Seismic Certification By Shake-Table Testing of Nonstructural Components AC156. 2010.
[26] Building Services Piping ASME Code for Pressure Piping, B31.9. 2011.
[27] Akour, S.N., Parametric Study of Nonlinear Beam Vibration Resting on Linear Elastic Foundation. Mechanical Engineering and Automation, 2012.
[28] Graff, K.F., Wave motion in elastic solids 1985, Ohio State university.
[29] 葉昶辰, 醫院消防撒水系統耐震評估與易損性簡化分析方法研究.2016
[30] 陳亭宇, 醫院消防撒水系統之耐震補強行為研究.2017
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20055-
dc.description.abstract建築物的耐震性能一直視為耐震研究中十分重要的一環,而建物的耐震性能不斷提升,可有效減低地震對於房屋結構的傷害。然而從過去許多地震經驗中,於醫院中造成人命傷亡或財產損失的往往不是建築物破壞,而是非結構物的損壞。
若發生中小型地震,於醫院某處發生漏水或天花板經撒水頭碰撞發生粉塵掉落、擴孔等災情;抑或發生大地震,醫院撒水系統支撐處失去抗震能力,可能造成醫院中斷正常醫療機能,且無法阻止淹水、火災等二次災害。因此,消防撒水系統需要以性能設計法進行耐震評估,若耐震容量不足則必須進行補強。
為了評估國內醫院建築之消防撒水系統是否具備足夠耐震能力,抑或需補強,本研究修正葉昶辰[29]提出之消防撒水系統耐震詳細評估(方法A)以及適合工程師應用之簡化評估流程(方法C),並參考NFPA13[5]補強之建議,提出四種補強方案。以案例醫院為例,針對消防管線系統耐震性能表現建立易損性曲線,探討不同地震歷時之結果與適用性,並比較管線系統補強前與補強後之差異。研究內容簡述如下:
1. 非結構性能評估方法架構建議:根據葉昶辰酌修FEMA P58性能設計概念,考量案例醫院結構在沒有發生倒塌,且可修復的前提下,進而探討結構物附屬之非結構系統易損性,即消防管線等設備物之易損性分析。
2. 近遠域地震及規範AC156之管線受震需求分析與影響性探討:本研究輸入之地表歷時依據FEMA P695規定之自然地震歷時,將輸入波分為兩類,一為遠域地震歷時,二為近域地震歷時,其後將地表輸入波輸入至既有案例醫院結構數值模型,其建置於數值軟體MIDAS,而得非線性結構樓板反應。此外,本研究另依據AC156建立與需求反應譜相容之樓板加速度歷時,探討管線易損性分析使用之輸入波特性影響以及地震強度增量規劃。
3. 消防撒水管線系統損壞狀態定義:延續胡佩文[14]與葉昶辰[29]定義管線系統中較常受損之元件,分別為天花板粉塵掉落、螺紋接頭斷管漏水以及吊桿崩落等三性能點,以此為判段損壞依據,並酌修吊桿破壞之判定,建立管線元件易損性曲線。
4. 案例醫院消防管線系統詳細分析(方法A):利用數值軟體SAP2000V19修正既有醫院受損病房所在樓層之管線模型,建立更多符合實際行為之非線性元件,進行增量非線性動力分析並統計分析結果,以評估消防管線之耐震性能。
5. 案例醫院消防管線系統之補強設計:以既有醫院受損病房所在樓層之管線模型,並分別建立加入四種補強方案之模型,進行增量非線性動力分析並統計分析結果,並比較原始模型與四種補強方案之結果,期望可提供管線最佳補強方案,使管線性能點不超出容許值且符合經濟效益。
6. 案例醫院消防管線系統簡化評估(方法C):本研究延續葉昶辰[29]提出之簡化評估表(方法C),其依據方法A中原始模型與補強模型之大量分析結果,求得消防管線動力行為與輸入波反應譜之對應關係,推估放大係數值並應用於方法C。修正適合工程師應用之未補強前初步評估表格,並進一步提出補強後可用之初步評估表格,據以估算消防管線之耐震能力,使工程師可快速得到補強後管線之耐震能力。
zh_TW
dc.description.abstractRecently, the seismic capacity of critical building structures (such as hospitals and high-tech factories) has improved due to the vigorous development of performance design concepts. As a result, major damage and economic losses caused by earthquakes has changed from predominantly structural to non-structural systems such as piping systems.
The common failures to fire protection sprinkler systems resulting from seismic events include impact damage to ceiling boards, leaks to the one-inch threaded joints, and breakage of the hangers. In order to better understand the seismic vulnerability of the components mentioned above, this research revised the detailed numerical analysis method (Method A) developed by Yeh (2016) [29]. Referring to NFPA13[5], this study proposes four strengthened cases of piping system. It take NTU Hospital Yunlin branch as an example to conduct the fragility analysis of the component in fire protection sprinkler system. The research contents are briefly described as follows:
1. Performance design method for piping systems: Referring to FEMA P58[1], an assessment of the sprinkler piping systems will only be meaningful when the buildings structures are judged as reparable. In this study, seismic performance of the sprinkler piping will only be evaluated when the structure is deemed as reparable.
2. The seismic demand analysis and influence discussion of near-fault and far feild earthquakes and specified in AC156: This research selects two methods of obtaining the floor response time history. One is by inputting an original far-field earthquake and a near-fault earthquake into a nonlinear numerical model of the RC structure of the example hospital building. This is established using MIDAS software. The other is referring to AC156[25], employing a Required Response Spectrum (RRS) to determine a compatible floor response time history.
3. Definition of damage status of fire sprinkler pipeline system: Hu (2015) [14] and Yeh (2016)[29] define the most commonly damaged components in pipeline system. the common seismic failures resulted from fire protection sprinkler systems are impact damages of ceiling boards, leakages of 1inch threaded joints and breaks of hangers. In this thesis, revise the criteria of the hanger, and establish the fragility curve of the piping system.
4. Detailed numerical model of the horizontal sprinkler piping system (Method A): It was established more nonlinear components which conform to the actual behavior using ‎SAP2000 software to simulate nonlinear behaviors of hangers and the nonlinear relationship between piping and ceiling systems or partition walls. The fragility parameters of three seismic performance of piping system were than obtained through incremental dynamic analyses.
5. Strengthened cases of fire sprinkler pipeline system : This study proposed four strengthening schemes of piping systems based on the NFPA 13. The effectiveness of seismic strengthening works was determined by comparing the fragility curves of original and strengthened configurations of the sample piping system. The fragility curves were obtained according to detailed analysis results.
6. Simplified assessment method (Method C) : This study proposed a simplified assessment method of original and strengthened systems according to the dynamic characteristics of the sprinkler piping system. It provided engineers with an alternative method that enables rapid and approximate judgment in the seismic performance of sprinkler piping systems based on in situ observations and a generic floor response spectrum, such as AC156[25].
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:39:22Z (GMT). No. of bitstreams: 1
ntu-107-R05521224-1.pdf: 14162640 bytes, checksum: d26241e808179c530dd573969cc5e239 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 iii
ABSTRACT v
目錄 vii
圖目錄 xi
表目錄 xix
1 第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與方法 1
1.3 論文結構 3
第二章 文獻回顧 5
2.1 消防灑水系統之基本架構與規範 5
2.1.1 自動灑水系統簡介 5
2.1.2 NFPA 13自動灑水系統安裝標準 7
2.2 嘉南地區某醫院管線元件參數試驗 8
2.2.1 撒水系統接頭試驗 9
2.2.2 天花板材勁度試驗 9
2.2.3 隔間板材勁度試驗 10
2.2.4 醫院消防管線系統振動台試驗 11
2.3 地震歷時處理介紹 11
2.3.1 FEMA P695 地震歷時處理 12
2.3.2 AC156人造歷時處理 13
2.4 醫院消防管線系統易損性曲線 14
2.4.1 易損性曲線 14
2.4.2 曲線擬合方法 15
2.4.3 醫院消防管線系統易損性曲線 16
2.5 臺灣嘉南地區某醫院管線系統易損性分析 17
第三章 既有管線系統易損性分析 40
3.1 原始地震歷時處理 40
3.2 消防管線易損性分析輸入波 41
3.2.1 易損性曲線增量動力分析強度分組 42
3.2.2 案例醫院不可修復易損性曲線與樓板反應 43
3.2.3 AC156人造地震歷時 44
3.3 消防管線數值模型 45
3.4 性能點之介紹 47
3.4.1 天花板與撒水頭之間 47
3.4.2 撒水螺紋接頭 47
3.4.3 吊桿與膨脹錨栓 48
3.5 管線易損性分析結果 49
3.5.1 遠域與近域原始歷時結果探討比較 49
3.5.2 遠域原始歷時與AC156樓板歷時結果探討比較 50
3.6 小結 52
第四章 消防管線系統之補強設計易損性分析 132
4.1 NFPA13補強設計介紹 132
4.1.1 耐震斜撐安裝與設計 132
4.1.2 支管束制構件安裝與設計 133
4.2 補強設計方案與數值模型 134
4.2.1 方案一:主管加裝耐震斜撐 134
4.2.2 方案二:主管及支管加裝耐震斜撐與吊架 135
4.2.3 方案三:主管、支管加裝耐震斜撐及撒水頭加裝鋼線 135
4.2.4 方案四:主管及撒水頭加裝鋼線 135
4.2.5 各補強方案可行性評估 136
4.3 消防管線系統補強後之易損性分析結果比較 136
4.4 小結 138
第五章 消防管線易損性分析之簡化評估(Method C) 157
5.1 簡化評估方法介紹 157
5.2 管線系統簡化評估方法 157
5.2.1 由樓板反應譜推估消防管線主管之動力反應 157
5.2.2 由消防管線主管推估管線元件之動力反應 161
5.3 AC156之簡化評估結果 163
5.4 小結 164
第六章 結論與建議 177
6.1 結論 177
6.2 建議 178
附錄A 簡化評估方法之實際應用評估表 179
參考文獻 181
-
dc.language.isozh_TW-
dc.subject近域地震zh_TW
dc.subject簡化評估zh_TW
dc.subject詳細分析zh_TW
dc.subject易損性曲線zh_TW
dc.subject吊桿zh_TW
dc.subject螺紋接頭zh_TW
dc.subject天花板zh_TW
dc.subject補強配置zh_TW
dc.subject消防撒水系統zh_TW
dc.subjectpartial detailed analysisen
dc.subjecthangeren
dc.subjectfragility curveen
dc.subjectdetailed analysisen
dc.subjectsimplified assessmenten
dc.subjectstrengtheneden
dc.subjectfire protection sprinkler systemen
dc.subjectNear-fault earthquakeen
dc.subjectceilingen
dc.subjectthreaded jointen
dc.title醫院消防撒水系統耐震性能補強評估方法研究zh_TW
dc.titleSeismic Performance Assessment of Strengthened Fire Protection Sprinkler Piping Systems in Hospitalsen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃尹男;柴駿甫zh_TW
dc.contributor.oralexamcommitteeYin-Nan Huang;en
dc.subject.keyword近域地震,消防撒水系統,補強配置,天花板,螺紋接頭,吊桿,易損性曲線,詳細分析,簡化評估,zh_TW
dc.subject.keywordNear-fault earthquake,fire protection sprinkler system,strengthened,ceiling,threaded joint,hanger,fragility curve,detailed analysis,partial detailed analysis,simplified assessment,en
dc.relation.page182-
dc.identifier.doi10.6342/NTU201801141-
dc.rights.note未授權-
dc.date.accepted2018-06-28-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  未授權公開取用
14.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved