請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20046完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張煥宗(Huan-Tsung Chang) | |
| dc.contributor.author | Yu-Wen Chen | en |
| dc.contributor.author | 陳郁文 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:39:14Z | - |
| dc.date.copyright | 2018-07-06 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-02 | |
| dc.identifier.citation | [1] Chen, P.-C.; Roy, P.; Chen, L.-Y.; Ravindranath, R.; Chang, H.-T., Part. Part. Syst. Char. 2014, 31, 917-942.
[2] Ferreira, D. C. M.; Giordano, G. F.; Soares, C. C. d. S. P.; de Oliveira, J. F. A.; Mendes, R. K.; Piazzetta, M. H.; Gobbi, A. L.; Cardoso, M. B., Talanta 2015, 141, 188-194. [3] Ding, L.; Shan, X.; Zhao, X.; Zha, H.; Chen, X.; Wang, J.; Cai, C.; Wang, X.; Li, G.; Hao, J.; Yu, G., Carbohydr. Polym. 2017, 157, 1538-1547. [4] Choi, G. H.; Rhee, D. K.; Park, A. R.; Oh, M. J.; Hong, S.; Richardson, J. J.; Guo, J.; Caruso, F.; Yoo, P. J., ACS Appl. Mater. Interfaces 2016, 8, 3250-3257. [5] Raza, A. M.; Kanwal, Z.; Rauf, A.; Sabri, N. A.; Riaz, S.; Naseem, S., Nanomaterials 2016, 6. [6] Bai, W.; Nie, F.; Zheng, J.; Sheng, Q., ACS Appl. Mater. Interfaces 2014, 6, 5439-5449. [7] Rueda, N.; dos Santos, J.; Ortiz, C.; Torres, R.; Barbosa, O.; Rodrigues, R. C.; Berenguer‐Murcia, Á.; Fernandez‐Lafuente, R., The Chemical Record 2016, 16, 1436-1455. [8] Hu, Y.; Cheng, H.; Zhao, X.; Wu, J.; Muhammad, F.; Lin, S.; He, J.; Zhou, L.; Zhang, C.; Deng, Y.; Wang, P.; Zhou, Z.; Nie, S.; Wei, H., ACS Nano 2017, 11, 5558-5566. [9] Li, J.; Li, Y.; Shahzad, S. A.; Chen, J.; Chen, Y.; Wang, Y.; Yang, M.; Yu, C., Chem. Commun. 2015, 51, 6354-6356. [10] Yan, X.; Yang, J.; Ma, L.; Tong, X.; Wang, Y.; Jin, G.; Guo, X.-Y., J. Solid State Electrochem. 2015, 19, 3195-3199. [11] Guo, Y.; Wang, H.; Ma, X.; Jin, J.; Ji, W.; Wang, X.; Song, W.; Zhao, B.; He, C., ACS Appl. Mater. Interfaces 2017, 9, 19074-19081. [12] Shiang, Y.-C.; Huang, C.-C.; Chang, H.-T., Chem. Commun. 2009, 3437-3439. [13] Chen, C.; Xie, Q.; Yang, D.; Xiao, H.; Fu, Y.; Tan, Y.; Yao, S., RSC Adv. 2013, 3, 4473-4491. [14] Chen, Z.; Zhang, C.; Wu, Q.; Li, K.; Tan, L., Sens. Actuator B-Chem. 2015, 220, 314-317. [15] Hsieh, H.-H.; Ho, L.-C.; Chang, H.-T., Anal. Bioanal. Chem. 2016, 408, 6557-6565. [16] Jian, T.-R.; Periasamy, A. P.; Hsu, N.-Y.; Wu, W.-P.; Harroun, S. G.; Chang, H.-T., Sens. Actuator B-Chem. 2017, 253, 1063-1070. [17] Li, M.; Shi, L.; Xie, T.; Jing, C.; Xiu, G.; Long, Y.-T., ACS Sensors 2017, 2, 263-267. [18] Wang, S.; Sun, J.; Jia, Y.; Yang, L.; Wang, N.; Xianyu, Y.; Chen, W.; Li, X.; Cha, R.; Jiang, X., Biomacromolecules 2016, 17, 2472-2478. [19] Forssk, I.; Popoff, T.; Theander, O., Carbohydr. Res. 1976, 48, 13-21. [20] Dror-Ehre, A.; Mamane, H.; Belenkova, T.; Markovich, G.; Adin, A., J. Colloid Interface Sci. 2009, 339, 521-526. [21] Bell, R. A.; Kramer, J. R., Environ. Toxicol. Chem. 1999, 18, 9-22. [22] Dryden, C. L.; Gordon, A. S.; Donat, J. R., Mar. Chem. 2007, 103, 276-288. [23] Prieto, P.; Nistor, V.; Nouneh, K.; Oyama, M.; Abd-Lefdil, M.; Díaz, R., Appl. Surf. Sci. 2012, 258, 8807-8813. [24] Wu, S.-C.; Tan, C.-S.; Huang, M. H., Adv. Funct. Mater. 2017, 27. [25] Yang, Y.; Xu, D.; Wu, Q.; Diao, P., Sci. Rep. 2016, 6, 35158. [26] Ghosh, S.; Anand, U.; Mukherjee, S., Anal. Chem. 2014, 86, 3188-3194. [27] Volentini, S. I.; Farías, R. N.; Rodríguez-Montelongo, L.; Rapisarda, V. A., BioMetals 2011, 24, 827-835. [28] Su, Y.-T.; Lan, G.-Y.; Chen, W.-Y.; Chang, H.-T., Anal. Chem. 2010, 82, 8566-8572. [29] Peters, T.; Blumenstock, F. A., J. Biol. Chem. 1967, 242, 1574-1578. [30] Masuoka, J.; Hegenauer, J.; Van Dyke, B.; Saltman, P., J. Biol. Chem. 1993, 268, 21533-21537. [31] Zhao, X.; Liu, R.; Teng, Y.; Liu, X., Sci. Total Environ. 2011, 409, 892-897. [32] Gentry, S. T.; Kendra, S. F.; Bezpalko, M. W., J. Phys. Chem. C 2011, 115, 12736-12741. [33] Zhang, W.; Ma, D.; Du, J., Talanta 2014, 120, 362-367. [34] Song, Y.; Qu, K.; Zhao, C.; Ren, J.; Qu, X., Adv. Mater. 2010, 22, 2206-2210. [35] Su, L.; Feng, J.; Zhou, X.; Ren, C.; Li, H.; Chen, X., Anal. Chem. 2012, 84, 5753-5758. [36] Wei, H.; Wang, E., Anal. Chem. 2008, 80, 2250-2254. [37] Dutta, A. K.; Das, S.; Samanta, S.; Samanta, P. K.; Adhikary, B.; Biswas, P., Talanta 2013, 107, 361-367. [38] Dong, Y.-l.; Zhang, H.-g.; Rahman, Z. U.; Su, L.; Chen, X.-j.; Hu, J.; Chen, X.-g., Nanoscale 2012, 4, 3969-3976. [39] Fei, K.; Xiangshu, H.; Kun, X., Nanotechnology 2015, 26, 405707. [40] Pandya, A.; Sutariya, P. G.; Menon, S. K., Analyst 2013, 138, 2483-2490. [41] Xianyu, Y.; Sun, J.; Li, Y.; Tian, Y.; Wang, Z.; Jiang, X., Nanoscale 2013, 5, 6303-6306. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20046 | - |
| dc.description.abstract | 對於有效控制糖尿病人的病情,血糖偵測扮演重要的角色。現今許多開發出的血中葡萄糖偵測方法都需要分為合成材料與樣品偵測兩個步驟,為了有效降低製備材料與葡萄糖偵測時間,我們提出了一個透過葡萄糖本身的還原性質,能夠同時形成奈米材料與定量葡萄糖之單一步驟合成氧化亞銅/銀奈米粒子法。在牛血清蛋白與3-硫醇丙酸的存在下,葡萄糖可於鹼性條件下作為主要還原劑來還原銅離子與銀離子,合成氧化亞銅/銀奈米粒子。此外,我們也發現銀離子與銅離子之莫耳比例、3-硫醇丙酸與金屬離子之比例、反應時間與溫度是控制合成氧化亞銅/銀奈米粒子與偵測葡萄糖靈敏度的重要因素。在牛血清蛋白存在下,血液不需要經過前處理即可直接偵測血糖,同時降低偵測極限與減少所需樣品體積至1 µL。在檢測葡萄糖方法上,此氧化亞銅/銀奈米粒子所發展出的比色檢測法,具有良好的靈敏度與專一性,線性範圍為15至300 µM,其偵測極限為9.2 µM。氧化亞銅/銀奈米粒子在兩個生物血液樣品中,皆能夠不受許多常見干擾物的影響,成功地偵測葡萄糖濃度,且亦能搭配智慧型手機等簡易型攜帶式裝置進行測量與數據分析,顯示其具有發展為定點照護檢驗方法的潛力。 | zh_TW |
| dc.description.abstract | The monitoring of glucose levels in the blood is extremely important for the effective control of diabetes. The approaches reported for the quantitation of glucose require two steps for material preparations and glucose measurements. Herein, we report single-step preparation and quantitation of glucose through the manipulation of the growth of in-situ formed Cu2O/Ag NPs which successfully minimize the preparation and glucose analysis times. The analyte, glucose itself, was used as a reducing agent to reduce the Cu2+ and Ag+ ions that were stabilized with 3-mercaptopropionic acid (3-MPA) and bovine serum albumin (BSA) under alkaline conditions to form Cu2O/Ag NPs. Several factors, including molar ratios of metal ions, 3-MPA to metal ions ratios, reaction time and temperature were studied to control preparation of the Cu2O/Ag NPs and thus their sensitivity toward glucose. Introducing BSA into the system is the key point to quantitate glucose in the blood without pretreatments, improve the limit of detection (LOD) of the probe and reduces the sample volumes to 1 µL. The as-developed colorimetric assay based on Cu2O/Ag NPs exhibit excellent sensitivity and specificity toward glucose, providing linearity against glucose concentrations ranging from 15 µM to 300 µM, with a LOD of 9.2 µM. Cu2O/Ag NPs probe successfully detects glucose in two representative blood samples by neglecting interferences from various common species and is able to quantitate glucose with a smartphone-controlled portable device, showing potential use in point-of-care healthcare analysis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:39:14Z (GMT). No. of bitstreams: 1 ntu-107-R05223131-1.pdf: 12637677 bytes, checksum: b61b601f010d580a19bd4d2962424006 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 iii 中文摘要 v Abstract vii CONTENTS ix LIST OF FIGURES xii LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Noble Metal Nanoparticles 2 1.2 Synthesis of Ag Nanoparticles 2 1.3 Synthesis of Cu2O/Ag Hybrid Nanoparticles 4 1.4 Glucose Monitoring 5 1.5 Research Motives 8 1.6 References 9 1.7 Tables 14 1.8 Figures 17 Chapter 2 Quantitation of Glucose through its Manipulation of the Growth of Cu2O/Ag Nanoparticles 20 2.1 Introduction 21 2.2 Experimental Section 22 2.3 Results and discussion 26 2.4 Conclusions 35 2.5 References 37 2.6 Tables 40 2.7 Figures 41 Chapter 3 Using a portable device to quantitate glucose with Cu2O/Ag NPs probe 58 3.1 Introduction 59 3.2 Introduction of all the components 59 3.3 Methods 62 3.4 Results and conclusions 64 3.5 References 66 3.6 Tables 67 3.7 Figures 70 3.8 Appendix. Code for controlling laser and TSL2561 on Arduino board 77 | |
| dc.language.iso | en | |
| dc.title | 利用氧化亞銅/銀奈米粒子探針結合智慧型手機操控之攜帶式裝置檢測葡萄糖 | zh_TW |
| dc.title | Quantitation of Glucose Using Cu2O/Ag Nanoparticles Probe with a Smartphone-controlled Portable Device | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡焯淳(Cho-Chun Hu),陳建甫(Chien-Fu Chen) | |
| dc.subject.keyword | 葡萄糖,銀,氧化亞銅,奈米粒子,比色檢測法,智慧型手機操控之攜帶式裝置, | zh_TW |
| dc.subject.keyword | glucose,silver,cuprous oxide,nanoparticles,colorimetric assay,smartphone-controlled portable device, | en |
| dc.relation.page | 78 | |
| dc.identifier.doi | 10.6342/NTU201801235 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-07-03 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 12.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
