Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20045
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊全
dc.contributor.authorTing-Yang Hsiaoen
dc.contributor.author蕭定洋zh_TW
dc.date.accessioned2021-06-08T02:39:13Z-
dc.date.copyright2018-07-06
dc.date.issued2018
dc.date.submitted2018-07-02
dc.identifier.citation[1] R. A. Armstrong and R. McGehee, Competitive exclusion, Amer. Natur., 115 (1980), pp. 151–170.
[2] R. S. Cantrell and J. R. Ward, Jr., On competition-mediated coexistence, SIAM J. Appl. Math., 57 (1997), pp. 1311–1327.
[3] C.-C. Chen and L.-C. Hung, A maximum principle for diffusive lotka-volterra systems of two competing species, J. Differential Equations, 261 (2016), pp. 4573–4592.
[4] Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species, Commun. Pure Appl. Anal., 15 (2016),pp. 1451–1469.
[5] C.-C. Chen, L.-C. Hung, and C.-C. Lai, An n-barrier maximum principle for autonomous systems of n species and its application to problems arising from population dynamics, submitted.
[6] C.-C. Chen, L.-C. Hung, M. Mimura, M. Tohma, and D. Ueyama, Semi-exact equilibrium solutions for three-species competition-diffusion systems, Hiroshima Math J., 43 (2013), pp. 176–206.
[7] C.-C. Chen, L.-C. Hung, M. Mimura, and D. Ueyama, Exact travelling wave solutions of threespecies competition-diffusion systems, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), pp. 2653–2669.
[8] P. de Mottoni, Qualitative analysis for some quasilinear parabolic systems, Institute of Math., Polish Academy Sci., zam, 11 (1979), p. 190.
[9] J.-S. Guo and C.-C. Wu, The existence of traveling wave solutions for a bistable three-component lattice dynamical system, J. Differential Equations, 260 (2016), pp. 1445–1455.
[10] J.-S. Guo and C.-H. Wu, Wave propagation for a two-component lattice dynamical system arising in strong competition models, Journal of Differential Equations, 250 (2011), pp. 3504 – 3533.
[11] Traveling wave front for a two-component lattice dynamical system arising in competition models, Journal of Differential Equations, 252 (2012), pp. 4357 – 4391.
[12] S.-B. Hsu and T.-H. Hsu, Competitive exclusion of microbial species for a single nutrient with internal storage, SIAM J. Appl. Math., 68 (2008), pp. 1600–1617.
[13] S. B. Hsu, H. L. Smith, and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc., 348 (1996), pp. 4083–4094.
[14] L.-C. Hung, Exact traveling wave solutions for diffusive Lotka-Volterra systems of two competing species, Jpn. J. Ind. Appl. Math., 29 (2012), pp. 237–251.
[15] S. R.-J. Jang, Competitive exclusion and coexistence in a Leslie-Gower competition model with Allee effects, Appl. Anal., 92 (2013), pp. 1527–1540.
[16] Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), pp. 340–363.
[17] J. Kastendiek, Competitor-mediated coexistence: interactions among three species of benthic macroalgae, Journal of Experimental Marine Biology and Ecology, 62 (1982), pp. 201–210.
[18] R. McGehee and R. A. Armstrong, Some mathematical problems concerning the ecological principle of competitive exclusion, J. Differential Equations, 23 (1977), pp. 30–52.
[19] M. Mimura and M. Tohma, Dynamic coexistence in a three-species competition–diffusion system, Ecological Complexity, 21 (2015), pp. 215–232.
[20] H. L. Smith and P. Waltman, Competition for a single limiting resource in continuous culture: the variable-yield model, SIAM J. Appl. Math., 54 (1994), pp. 1113–1131.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20045-
dc.description.abstract這篇論文主要是探討離散以及非局部的洛特卡-沃泰爾拉競爭模型的物種質量估計。這篇文章中,我們使用N型屏障方法去證明離散以及非局部的洛特卡-沃泰爾拉模型的物種有一個有意思的下界。除此之外,我們利用這個下界,我們能夠證明某些條件下,三個物種的洛特卡-沃泰爾拉模型的解是不存在的。zh_TW
dc.description.abstractIn the present paper, we show that an analogous N-barrier maximum principle (see [3,5,7]) remains true for lattice systems. This extends the results in [3,5,7] from continuous equations to discrete and non-local equations. In order to overcome the difficulty induced by a discrete and non-local version of the classical diffusion in the lattice and non-local systems, we propose a more delicate construction of the N-barrier which is appropriate for the proof of the N-barrier maximum principle for lattice systems. As an application of the discrete N-barrier maximum principle, we study a coexistence problem of three species arising from biology, and show that the three species cannot coexist under certain conditions.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:39:13Z (GMT). No. of bitstreams: 1
ntu-107-R04221011-1.pdf: 916492 bytes, checksum: 650c635efe7e3bf951dfa781913a5e85 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
Introduction and main results 1
Preliminaries 8
Construction of the N-barrier for forward difference operator 29
Proof of the Discrete NBMP 34
Nonexistence of three species 39
Appendix 42
Non-Local Lotka-Volterra System 46
參考資料 47
dc.language.isoen
dc.title離散和非局部競爭型洛特卡-沃爾泰拉系統的行波解之物種數量估計zh_TW
dc.titleEstimates of Population Sizes for Traveling Wave Solutions of Discrete and Non-local Lotka-Volterra Competition Systemsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王振男,林太家
dc.subject.keyword洛特卡-沃泰爾拉競爭模型,N型屏障法,離散洛特卡-沃泰爾拉模型,非局部的洛特卡-沃泰爾拉模型,最大值定理,行波解,總質量估計,zh_TW
dc.subject.keywordLotka-Volterra System,Maximum principle,N-barrier method,Discrete Lotka-Volterra System,Non-Local Lotka-Volterra System,Traveling wave solution,Total mass estimate,en
dc.relation.page46
dc.identifier.doi10.6342/NTU201801249
dc.rights.note未授權
dc.date.accepted2018-07-03
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
895.01 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved