請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20034
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王暉 | |
dc.contributor.author | Feifei Chen | en |
dc.contributor.author | 陳飛飛 | zh_TW |
dc.date.accessioned | 2021-06-08T02:39:04Z | - |
dc.date.copyright | 2018-07-18 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-06 | |
dc.identifier.citation | [1] X. Guan, H. Hashemi, and A. Hajimiri, 'A fully integrated 24-GHz eight-element phased-array receiver in silicon,' IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2311-2320, Dec. 2004.
[2] A. Natarajan, A. Komijani, and A. Hajimiri, 'A fully integrated 24-GHz phased-array transmitter in CMOS,' IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2502-2514, Dec. 2005. [3] A. Natarajan, A. Komijani, X. Guan, A. Babakhani, and A. Hajimiri, 'A 77-GHz phased-array transceiver with on-chip antennas in silicon: Transmitter and local LO-path phase shifting,' IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2807-2819, Dec. 2006. [4] W. L. Chan and J. R. Long, 'A 60-GHz band 2 X 2 phased-array transmitter in 65-nm CMOS,' IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2682-2695, Dec. 2010. [5] A. Valdes-Garcia et al., 'A fully integrated 16-element phased-array transmitter in SiGe BiCMOS for 60-GHz communications,' IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2757-2773, Dec. 2010. [6] R. Tseng, H. Li, D. H. Kwon, Y. Chiu, and A. S. Y. Poon, 'A four-channel beamforming down-converter in 90-nm CMOS utilizing phase-oversampling,' IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2262-2272, Nov. 2010. [7] D. Zhao, S. Kulkarni, and P. Reynaert, 'A 60-GHz outphasing transmitter in 40-nm CMOS,' IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 3172-3183, Dec. 2012. [8] J. Chen et al., 'A digitally modulated mm-Wave cartesian beamforming transmitter with quadrature spatial combining,' in IEEE Int. Solid-State Circuits Conf., 2013, pp. 232-233. [9] K. Khalaf, V. Vidojkovic, J. R. Long, and P. Wambacq, 'A 6x-oversampling 10GS/s 60GHz polar transmitter with 15.3% average PA efficiency in 40nm CMOS,' in Proc. IEEE ESSCIRC, Sep. 2015, pp. 348-351. [10] Y. Pei, Y. Chen, D. M. W. Leenaerts, and A. H. M. v. Roermund, 'A 30/35 GHz dual-band transmitter for phased arrays in communication/radar applications,' IEEE J. Solid-State Circuits, vol. 50, no. 7, pp. 1629-1644, July 2015. [11] D. Zhao and P. Reynaert, 'A 40 nm CMOS E-band transmitter with compact and symmetrical layout floor-plans,' IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2560-2571, Nov. 2015. [12] K. Khalaf et al., 'Digitally modulated CMOS polar transmitters for highly-efficient mm-wave wireless communication,' IEEE J. Solid-State Circuits, vol. 51, no. 7, pp. 1579-1592, July 2016. [13] N. Ebrahimi, P. Y. Wu, M. Bagheri, and J. F. Buckwalter, 'A 71-86-GHz phased-array transceiver using wideband injection-locked oscillator phase shifters,' IEEE Trans. Microw. Theory Techn., vol. 65, no. 2, pp. 346-361, Feb. 2017. [14] R. Wu et al., '64-QAM 60-GHz CMOS transceivers for IEEE 802.11ad/ay,' IEEE J. Solid-State Circuits, vol. 52, no. 11, pp. 2871-2891, Nov. 2017. [15] R. Hezar, L. Ding, A. Banerjee, J. Hur, and B. Haroun, 'A PWM based fully integrated digital transmitter/PA for WLAN and LTE applications,' IEEE J. Solid-State Circuits, vol. 50, no. 5, pp. 1117-1125, May 2015. [16] Y. H. Chen, H. H. Hsieh, and L. H. Lu, 'A 24-GHz receiver frontend with an LO signal generator in 0.18-μm CMOS,' IEEE Trans. Microw. Theory Techn., vol. 56, no. 5, pp. 1043-1051, May 2008. [17] S. Kalia, S. A. Patnaik, B. Sadhu, M. Sturm, M. Elbadry, and R. Harjani, 'Multi-beam spatio-spectral beamforming receiver for wideband phased arrays,' IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 60, no. 8, pp. 2018-2029, Aug. 2013. [18] A. Natarajan et al., 'A Fully-integrated 16-element phased-array receiver in SiGe BiCMOS for 60-GHz communications,' IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1059-1075, May 2011. [19] T. Yu and G. M. Rebeiz, 'A 4-channel 24-27 GHz CMOS differential phased-array receiver,' in Proc. IEEE Radio Freq. Integr. Circuits Sym., 2009, pp. 455-458. [20] T. Yu and G. M. Rebeiz, 'A 22-24 GHz 4-element CMOS phased array with on-chip coupling characterization,' IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 2134-2143, Sep. 2008. [21] T. W. Kim, B. Kim, and K. Lee, 'Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors,' IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 223-229, Jan. 2004. [22] V. Aparin and L. E. Larson, 'Modified derivative superposition method for linearizing FET low-noise amplifiers,' IEEE Trans. Microw. Theory Techn., vol. 53, no. 2, pp. 571-581, Feb. 2005. [23] S. Ganesan, E. Sanchez-Sinencio, and J. Silva-Martinez, 'A highly linear low-noise amplifier,' IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4079-4085, Dec. 2006. [24] H. Zhang and E. Sanchez-Sinencio, 'Linearization techniques for CMOS low noise amplifiers: a tutorial,' IEEE Trans. Circuits Syst. I: Regular Papers, vol. 58, no. 1, pp. 22-36, Aug. 2011. [25] W. T. Li et al., 'Parasitic-insensitive linearization methods for 60-GHz 90-nm CMOS LNAs,' IEEE Trans. Microw. Theory Techn., vol. 60, no. 8, pp. 2512-2523, Aug. 2012. [26] H. H. Lin, Y. H. Lin, and H. Wang, 'A high linearity 24-GHz down-conversion mixer using distributed derivative superposition technique in 0.18-μm CMOS process,' IEEE Microw. Wireless Compon. Lett., vol. 28, no. 1, pp. 49-51, Jan. 2018. [27] M. Hashemi, L. Zhou, Y. Shen, M. Mehrpoo, and L. d. Vreede, 'Highly efficient and linear class-E CMOS digital power amplifier using a compensated Marchand balun and circuit-level linearization achieving 67% peak DE and -40dBc ACLR without DPD,' in IEEE MTT-S Int. Microw. Symp. Dig., 2017. [28] H. Kanaya, '5 GHz-band CMOS class-E power amplifier module considering wire bonding,' in IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2015, pp. 157-159. [29] C. Zhai and K. K. M. Cheng, 'Fully-integrated CMOS differential class-E power amplifier with combined waveform-shaping network and transformer-based balun,' in Asia-Pacific Microwave Conference, 2014, pp. 738-740. [30] H. S. Son, W. Y. Kim, J. Y. Jang, I. Y. Oh, and C. S. Park, 'A triple-band CMOS class-E power amplifier for WCDMA/LTE applications,' in Asia-Pacific Microwave Conference, 2013, pp. 441-443. [31] W. Y. Kim, H. S. Son, J. H. Kim, J. Y. Jang, I. Y. Oh, and C. S. Park, 'A fully integrated triple-band CMOS Class-E power amplifier with a power cell resizing technique and a multi-tap transformer,' IEEE Microw. Wireless Compon. Lett., vol. 23, no. 12, pp. 659-661, Oct. 2013. [32] Y. Yamashita, D. Kanemoto, H. Kanaya, R. K. Pokharel, and K. Yoshida, 'A 5-GHz fully integrated CMOS class-E power amplifier using self-biasing technique with cascaded class-D drivers,' in IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2012, pp. 237-239. [33] J. H. Kim and C. S. Park, 'A feedback technique to compensate for AM-PM distortion in linear CMOS Class-F power amplifier,' IEEE Microw. Wireless Compon. Lett., vol. 24, no. 10, pp. 725-727, Jul. 2014. [34] S. N. Ali, P. Agarwal, S. Mirabbasi, and D. Heo, 'A 42-46.4% PAE continuous class-F power amplifier with Cgd neutralization at 26-34 GHz in 65 nm CMOS for 5G applications,' in Proc. IEEE Radio Freq. Integr. Circuits Sym. , 2017, pp. 212-215. [35] H. Y. Liao, J. H. Chen, H. K. Chiou, and S. M. Wang, 'Harmonic control network for 2.6 GHz CMOS class-F power amplifier,' in IEEE Int. Sym. Circuits Syst., 2009, pp. 1321-1324. [36] M. D. Tsai et al., 'A fully integrated multimode front-end module for GSM/EDGE/TD-SCDMA/TD-LTE applications using a Class-F CMOS power amplifier,' in IEEE Int. Solid-State Circuits Conf. , 2017, pp. 216-217. [37] J. Ko et al., 'A high-efficiency multiband Class-F power amplifier in 0.153 μm bulk CMOS for WCDMA/LTE applications,' in IEEE Int. Solid-State Circuits Conf. , 2017, pp. 40-41. [38] S. Iguchi, A. Saito, K. Watanabe, T. Sakurai, and M. Takamiya, 'Design method of Class-F power amplifier with output power of -20 dBm and efficient dual supply voltage transmitter,' IEEE Trans. Circuits Syst. I: Regular Papers, vol. 61, no. 10, pp. 2978-2986, Jun. 2014. [39] K. K. Sessou and N. M. Neihart, 'An integrated 700-1200-MHz Class-F PA with tunable harmonic terminations in 0.13-μm CMOS,' IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1315-1323, Feb. 2015. [40] J. K. Nai, Y. H. Hsiao, Y. Wang, F. Chen, and H. Wang, '5-GHz transformer combined class-F-1 power amplifier,' in IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Aug. 2016. [41] F. Chen, Y. Wang, Y. H. Hsiao, J. L. Lin, Y. C. Chen, and H. Wang, 'A 4.6-GHz Class-F-1 high power CMOS power amplifier,' in IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2017, pp. 183-185. [42] C. Dong, Z. Chenxi, S. K. Man, X. Quan, and K. Kang, 'A V-band inverse class F power amplifier with 16.3% PAE in 65nm CMOS,' in IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2016, vol. 1, pp. 55-57. [43] S. D. Kee, I. Aoki, A. Hajimiri, and D. Rutledge, 'The class-E/F family of ZVS switching amplifiers,' IEEE Trans. Microw. Theory Techn., vol. 51, no. 6, pp. 1677-1690, Jun. 2003. [44] E. McCune, 'Fundamentals of switching RF power amplifiers,' IEEE Microw. Wireless Compon. Lett., vol. 25, no. 12, pp. 838-840, 2015. [45] V. Aparin, G. Brown, and L. E. Larson, 'Linearization of CMOS LNA's via optimum gate biasing,' in IEEE Int. Sym. Circuits Syst., 2004, vol. 4, pp. IV-748-51 Vol.4. [46] M. M. Mohsenpour and C. E. Saavedra, 'Method to Improve the linearity of active commutating mixers using dynamic current injection,' IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4624-4631, May 2016. [47] C. l. Wu, Y. H. Yun, C. Yu, and O. K. K, 'High linearity 23-33 GHz SOI CMOS downconversion double balanced mixer,' Electronics Letters, vol. 47, no. 23, pp. 1283-1284, Nov. 2011. [48] K. G. Kjelgård and T. S. Lande, 'A K-band UWB receiver front-end with passive mixer in 90 nm CMOS,' in IEEE International Conference on Ultra-Wideband (ICUWB), 2013, pp. 180-183. [49] F. Zhu et al., 'A broadband low-power millimeter-wave CMOS downconversion mixer with improved linearity,' IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 3, pp. 138-142, Mar. 2014. [50] H. Tsai-Pi, A. G. Metzger, P. J. Zampardi, M. Iwamoto, and P. M. Asbeck, 'Design of high-efficiency current-mode class-D amplifiers for wireless handsets,' IEEE Trans. Microw. Theory Techn., vol. 53, no. 1, pp. 144-151, Jan. 2005. [51] W. Y. Kim, J. Rode, A. Scuderi, H. S. Son, C. S. Park, and P. M. Asbeck, 'An efficient voltage-mode class-D power amplifier for digital transmitters with delta-sigma modulation,' in IEEE MTT-S International Microwave Symposium, 2011. [52] S. Y. Mortazavi and K. J. Koh, 'Integrated inverse Class-F silicon power amplifiers for high power efficiency at microwave and mm-wave,' IEEE J. Solid-State Circuits, vol. 51, no. 10, pp. 2420-2434, Aug. 2016. [53] Y. Yamashita, D. Kanemoto, H. Kanaya, R. K. Pokharel, and K. Yoshida, 'A CMOS class-E power amplifier of 40-% PAE at 5 GHz for constant envelope modulation system,' in IEEE 13th Silicon Monolithic Integr. Circuits RF Syst. Top. Meeting, 2013, pp. 66-68. [54] M. Fathi, D. K. Su, and B. A. Wooley, 'A 30.3 dBm 1.9 GHz-bandwidth 2 X 4-array stacked 5.3 GHz CMOS power amplifier,' in IEEE Int. Solid-State Circuits Conf., 2013, pp. 88-89. [55] E. Abou-Allam, J. J. Nisbet, and M. C. Maliepaard, 'Low-voltage 1.9-GHz front-end receiver in 0.5-μm CMOS technology,' IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1434-1443, Oct. 2001. [56] K. L. Fong and R. G. Meyer, 'High-frequency nonlinearity analysis of common-emitter and differential-pair transconductance stages,' IEEE J. Solid-State Circuits, vol. 33, no. 4, pp. 548-555, Apr. 1998. [57] S. Tanaka, F. Behbahani, and A. Abidi, 'A linearization technique for CMOS RF power amplifiers,' in Symp. VLSI Circuits Dig. Tech. Paper, 1997, pp. 93-94. [58] Q. Huang, F. Piazza, P. Orsatti, and T. Ohguro, 'The impact of scaling down to deep submicron on CMOS RF circuits,' IEEE J. Solid-State Circuits, vol. 33, no. 7, pp. 1023-1036, Jul. 1998. [59] D. M. Binkley, Tradeoffs and Optimization in Analog CMOS Design. England: John Wiley & Sons, Ltd, 2008. [60] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 2003. [61] M. T. Terrovitis and R. G. Meyer, 'Intermodulation distortion in current-commutating CMOS mixers,' IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1461-1473, Oct. 2000. [62] M. T. Terrovitis and R. G. Meyer, 'Noise in current-commutating CMOS mixers,' IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 772-783, 1999. [63] H.-H. Lin, 'Research of mixer for 5G communications in 65 nm CMOS and high linearity distributed derivative superposition mixer in 0.18 μm CMOS,' Master dissertation, National Taiwan University, 2017. [64] www.designers-guide.org/analysis/intercept-point.pdf. [65] J. H. Tsai, P. S. Wu, C. S. Lin, T. W. Huang, J. G. J. Chern, and W. C. Huang, 'A 25-75 GHz broadband Gilbert-cell mixer using 90-nm CMOS technology,' IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 247-249, Apr. 2007. [66] J. Y. C. Liu, R. Berenguer, and M. C. F. Chang, 'Millimeter-wave self-healing power amplifier with adaptive amplitude and phase linearization in 65-nm CMOS,' IEEE Trans. Microw. Theory Techn., vol. 60, no. 5, pp. 1342-1352, Apr. 2012. [67] B. Park et al., 'Highly linear mm-mave CMOS power amplifier,' IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4535-4544, Nov. 2016. [68] K. Jongchan et al., 'A highly linear and efficient differential CMOS power amplifier with harmonic control,' IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1314-1322, May 2006. [69] B. Park et al., 'A 31.5 %, 26 dBm LTE CMOS power amplifier with harmonic control,' in Proc. Eur. Microwave Integrated Circuits Conf., 2012, pp. 341-344. [70] P. Reynaert and A. M. Niknejad, 'Power combining techniques for RF and mm-wave CMOS power amplifiers,' in Proc. Eur. Solid-State Circuits Conf., 2007, pp. 272-275. [71] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, 'Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,' IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 371-383, 2002. [72] C. F. Chou, C. W. Wu, Y. H. Hsiao, Y. C. Wu, Y. H. Lin, and H. Wang, 'A 60-GHz 20.6-dBm symmetric radial-combining wideband power amplifier with 20.3% peak PAE and 20-dB gain in 90-nm CMOS,' in IEEE MTT-S Int. Microw. Symp. Dig., 2016. [73] S. Shakib, H. C. Park, J. Dunworth, V. Aparin, and K. Entesari, 'A Highly Efficient and Linear Power Amplifier for 28-GHz 5G Phased Array Radios in 28-nm CMOS,' IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 3020-3036, 2016. [74] Y. Zhang and P. Reynaert, 'A high-efficiency linear power amplifier for 28GHz mobile communications in 40nm CMOS,' in Proc. IEEE Radio Freq. Integr. Circuits Symp., 2017, pp. 33-36. [75] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, 'Distributed active transformer-a new power-combining and impedance-transformation technique,' IEEE Trans. Microw. Theory Techn., vol. 50, no. 1, pp. 316-331, 2002. [76] J. R. Long, 'Monolithic transformers for silicon RF IC design,' IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, 2000. [77] I. Tseng, 'Research of watt-level transformer combined CMOS power amplifier for wireless communication applications,' Master dissertation, National Taiwan University, 2014. [78] C.-F. Chou, 'Research of micorwave low-noise amplifiers and millimeter-wave power amplifier using wideband transformer-based symmetric-radial power combining technique,' Master dissertation, National Taiwan University, 2016. [79] N. Ji-Kang, H. Yuan-Hung, W. Yun-Shan, L. Yu-Hsuan, and W. Huei, 'A 2.8-6 GHz high-efficiency CMOS power amplifier with high-order harmonic matching network,' in IEEE MTT-S Int. Microw. Symp. Dig., 2016. [80] M. L. Edwards and J. H. Sinsky, 'A new criterion for linear 2-port stability using a single geometrically derived parameter,' IEEE Trans. Microw. Theory Techn., vol. 40, no. 12, pp. 2303-2311, 1992. [81] B. Razavi, Design of Analog CMOS Integrated Circuits. Boston, MA : McGraw-Hill, 2001. [82] S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed. Boston, MA, USA: Artech House, 2006. [83] T. P. Wang, J. H. Ke, and C. Y. Chiang, 'A high-Psat high-PAE fully-integrated 5.8-GHz power amplifier in 0.18-μm CMOS,' in IEEE International Conference of Electron Devices and Solid-State Circuits, 2011. [84] K. C. Lin, H. K. Chiou, P. C. Wu, C. L. Ko, H. H. Tsai, and Y. Z. Juang, 'A 28 dBm Pout 5-GHz CMOS power amplifier using integrated passive device power combining transformer,' in Asia-Pacific Microwave Conference, 2013, pp. 766-768. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20034 | - |
dc.description.abstract | 此篇論文將介紹一個基於90 奈米互補式金屬場氧半導體製程的24 GHz 高線性度降頻混頻器和一個基於0.18 微米互補式金屬場氧半導體製程的4.6 GHz 高輸出功率功率放大器。第一個24 GHz的線性化混頻器,可應用於K頻段衛星通訊應用。第二個4.6 GHz的高輸出功率功率放大器,可應用於Wi-Fi系統。
首先使用90奈米金屬場氧半導體製程設計了24 GHz的高線性度降頻混頻器。為了在較低低功耗條件下達到較高的線性度,設計中採用了分佈式衍生疊加技術,折疊式架構,LC諧振技術。其中分佈式衍生疊加技術消耗的功耗較小,折疊式架構可以降低電源電壓,LC諧振技術能減少兩倍的LO諧波,該諧波會降低混頻器的線性度。由於採用了該技術,即使在線性器關閉的條件下,混頻器的IIP3也達到了16 dBm。當線性器打開時,IIP3為21 dBm。該混頻器的增益為-3 dB,功耗為10 mW。 而後使用0.18 微米製程,設計一個工作在4.6 GHz的基於變壓器結合的工作在class B的高輸出功率功率放大器。該設計中用變壓器並聯電容的方式代替傳統的電容電感共振電路,使得電路的佈局更加的緊密。變壓器由M4,M5,M6 三層金屬組成。該電路的小信號增益到達了11.6 dB,飽和輸出功率為27.8 dBm,最大功率附加效率為32%。 關鍵詞:線性化混頻器,金屬場氧半導體,功率放大器。 | zh_TW |
dc.description.abstract | This thesis presents a 24-GHz down-conversion 90-nm CMOS high linearity mixer and a 4.6-GHz high output power 0.18-μm CMOS power amplifiers (PA). The mixer is designed with linearizer, which can be applied for satellite communication. And the PA is designed with high output power, which can be used for Wi-Fi communication system.
Firstly, a 24-GHz 90-nm CMOS high linearity down-conversion mixer is presented. The mixer utilizes distributed derivative superposition (DS) linearization technique, folded architecture, LC tank to achieve high linearity with relatively low power. The distributed DS linearization technique has little influence on dc power. The folded architecture reduces the power supply voltage. The LC tank reduces the 2fLO component which degrades linearity of the mixer, and thus, the mixer can achieve 16-dBm IIP3 with linearizer off. The IIP3 is 21 dBm with linearizer on. The mixer provides -3-dB conversion gain and the dc consumption is 10 mW. Secondly, a 4.6-GHz transformer-based class B power amplifier with high output power implemented in 0.18-μm CMOS is designed. Instead of using inductors and capacitors, the transformer is used to attain a compact size. The transformers in this design are implemented using layer M4, M5 and M6 in 180-nm CMOS. This work achieves the small signal gain of 11.6 dB and output power of 27.8 dBm with power added efficiency (PAEmax) of 32%. Index Terms —Linearized, CMOS, power amplifier. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:39:04Z (GMT). No. of bitstreams: 1 ntu-107-R04942122-1.pdf: 2769756 bytes, checksum: a2e9960987a5d72afae66efd1f689277 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Survey 3 1.2.1 Linearized Mixer 3 1.2.2 High-efficiency PAs 5 1.3 Contributions 7 1.4 Thesis Organization 8 Chapter 2 A 24-GHz High Linearity Down-conversion Mixer in 90-nm CMOS 10 2.1 Introduction 10 2.2 Circuit Design 11 2.2.1 The MOSFET IP3 11 2.2.2 Distributed Derivative Superposition Technique 14 2.2.3 Circuit Architecture 17 2.2.4 The Switching Pair Design 19 2.2.5 The Transconductance Stage Design 24 2.2.6 The Overall Performance of The Mixer 29 2.2.7 Measurement Results 35 2.3 Summary 41 Chapter 3 A Transformer-based High Power CMOS Power Amplifier 43 3.1 Introduction 43 3.2 The Transformer-based Power Combining Technique 44 3.2.1 Electrical Model 45 3.2.2 Transformer-based Voltage Combining 46 3.2.3 Transformer-based Current Combining 47 3.3 Circuit Design 49 3.4 Experimental Results 63 3.5 Summary 78 Chapter 4 Conclusion 80 Reference 81 | |
dc.language.iso | zh-TW | |
dc.title | 射頻金氧半場效電晶體高線性度混頻器和高輸出功率功率放大器之研究 | zh_TW |
dc.title | Research of CMOS High Linearity Mixer and High Output Power RF Power Amplifier | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡作敏,林坤佑,黃天偉,蔡政翰 | |
dc.subject.keyword | 線性化混頻器,金屬場氧半導體,功率放大器, | zh_TW |
dc.subject.keyword | Linearized,CMOS,power amplifier, | en |
dc.relation.page | 91 | |
dc.identifier.doi | 10.6342/NTU201801325 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-07-06 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 2.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。