請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20030完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敏聰(Minn-Tsong Lin) | |
| dc.contributor.author | Li-Hong Wang | en |
| dc.contributor.author | 王力弘 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:39:00Z | - |
| dc.date.copyright | 2018-07-19 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-06 | |
| dc.identifier.citation | [1] Youngki Yoon, Kartik Ganapathi, and Sayeef Salahuddin. How Good Can Monolayer MoS2 Transistors Be? Nano Letters, 11(9):3768–3773, September 2011.
[2] Di Xiao, Gui-Bin Liu, Wanxiang Feng, Xiaodong Xu, and Wang Yao. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters, 108(19):196802, May 2012. [3] J. Terso↵ and D. R. Hamann. Theory of the scanning tunneling microscope. Physical Review B, 31(2):805–813, January 1985. [4] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of graphene. Reviews of Modern Physics, 81(1):109–162, January 2009. [5] Alexander A. Balandin, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao, and Chun Ning Lau. Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8(3):902–907, March 2008. [6] A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Letters, 11(6):2396–2399, June 2011. arXiv: 1103.4510. [7] Yanqing Wu, Keith A. Jenkins, Alberto Valdes-Garcia, Damon B. Farmer, Yu Zhu, Ageeth A. Bol, Christos Dimitrakopoulos, Wenjuan Zhu, Fengnian Xia, Phaedon Avouris, and Yu-Ming Lin. State-of-the-Art Graphene HighFrequency Electronics. Nano Letters, 12(6):3062–3067, June 2012. [8] Yanqing Wu, Yu-ming Lin, Ageeth A. Bol, Keith A. Jenkins, Fengnian Xia, Damon B. Farmer, Yu Zhu, and Phaedon Avouris. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 472(7341):74–78, April 2011. [9] Yu-Ming Lin, Alberto Valdes-Garcia, Shu-Jen Han, Damon B. Farmer, Inanc Meric, Yanning Sun, Yanqing Wu, Christos Dimitrakopoulos, Alfred Grill, Phaedon Avouris, and Keith A. Jenkins. Wafer-Scale Graphene Integrated Circuit. Science, 332(6035):1294–1297, June 2011. [10] Frank Schwierz. Graphene transistors. Nature Nanotechnology, 5(7):487–496, July 2010. [11] J.A. Wilson and A.D. Yo↵e. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 18(73):193–335, May 1969. [12] Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman, and Michael S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7(11):699–712, 2012. [13] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Singlelayer MoS2 transistors. Nature Nanotechnology, 6(3):147–150, March 2011. [14] Wencan Jin, Po-Chun Yeh, Nader Zaki, Datong Zhang, Jerzy T. Sadowski, Abdullah Al-Mahboob, Arend M. van der Zande, Daniel A. Chenet, Jerry I. Dadap, Irving P. Herman, Peter Sutter, James Hone, and Richard M. Osgood. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Physical Review Letters, 111(10):106801, September 2013. [15] Yi Zhang, Tay-Rong Chang, Bo Zhou, Yong-Tao Cui, Hao Yan, Zhongkai Liu, Felix Schmitt, James Lee, Rob Moore, Yulin Chen, Hsin Lin, Horng-Tay Jeng, Sung-Kwan Mo, Zahid Hussain, Arun Bansil, and Zhi-Xun Shen. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nature Nanotechnology, 9(2):111–115, February 2014. [16] Yi Ding, Yanli Wang, Jun Ni, Lin Shi, Siqi Shi, and Weihua Tang. First principles study of structural, vibrational and electronic properties of graphenelike MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B: Condensed Matter, 406(11):2254–2260, May 2011. [17] L. Liu, S. B. Kumar, Y. Ouyang, and J. Guo. Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors. IEEE Transactions on Electron Devices, 58(9):3042–3047, September 2011. [18] L. H. Brixner. Preparation and properties of the single crystalline AB2-type selenides and tellurides of niobium, tantalum, molybdenum and tungsten. Journal of Inorganic and Nuclear Chemistry, 24(3):257–263, March 1962. [19] G. K. T. Conn and H. N. Daglish. Cold cathode ionisation gauges for the measurement of low pressures. Vacuum, 3(1):24–34, January 1953. [20] Jin-Shown Shie, Bruce C. S. Chou, and Yeong-Maw Chen. High performance Pirani vacuum gauge. Journal of Vacuum Science & Technology A, 13(6):2972– 2979, November 1995. [21] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel. Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters, 49(1):57–61, July 1982. [22] G. Binnig, H. Rohrer, Ch Gerber, and E. Weibel. Tunneling through a controllable vacuum gap. Applied Physics Letters, 40(2):178–180, January 1982. [23] J. Bardeen. Tunnelling from a Many-Particle Point of View. Physical Review Letters, 6(2):57–59, January 1961. [24] Charles Kittel. Introduction to Solid State Physics. 1996. [25] Michael T. Heideman, Don H. Johnson, and C. Sidney Burrus. Gauss and the history of the fast Fourier transform, 1984. [26] James W. Cooley and John W. Tukey. An Algorithm for the Machine Calculation of Complex Fourier Series. Mathematics of Computation, 19(90):297, April 1965. [27] Chunming Huang, Sanfeng Wu, Ana M. Sanchez, Jonathan J. P. Peters, Richard Beanland, Jason S. Ross, Pasqual Rivera, Wang Yao, David H. Cobden, and Xiaodong Xu. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nature Materials, 13(12):1096–1101, December 2014. [28] Jun Kang, Jingbo Li, Shu-Shen Li, Jian-Bai Xia, and Lin-Wang Wang. Electronic Structural Moir´e Pattern E↵ects on MoS2/MoSe2 2d Heterostructures. Nano Letters, 13(11):5485–5490, November 2013. [29] Fr´ed´eric Joucken, Fernande Frising, and Robert Sporken. Fourier transform analysis of STM images of multilayer graphene moir´e patterns. Carbon, 83:48–52, March 2015. [30] Chendong Zhang, Yuxuan Chen, Amber Johnson, Ming-Yang Li, Lain-Jong Li, Patrick C. Mende, Randall M. Feenstra, and Chih-Kang Shih. Probing critical point energies of transition metal dichalcogenides: surprising indirect gap of single layer SL-WSe2. Nano Letters, 15(10):6494–6500, October 2015. [31] Jun Kang, Sefaattin Tongay, Jian Zhou, Jingbo Li, and Junqiao Wu. Band o↵- sets and heterostructures of two-dimensional semiconductors. Applied Physics Letters, 102(1):012111, January 2013. [32] Shoji Yoshida, Yu Kobayashi, Ryuji Sakurada, Shohei Mori, Yasumitsu Miyata, Hiroyuki Mogi, Tomoki Koyama, Osamu Takeuchi, and Hidemi Shigekawa. Microscopic basis for the band engineering of Mo1xWxS2-based heterojunction. Scientific Reports, 5, October 2015. [33] W. G. Oldham and A. G. Milnes. n-n Semiconductor heterojunctions. SolidState Electronics, 6(2):121–132, March 1963. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20030 | - |
| dc.description.abstract | 當⼆維石墨烯被發現後,由於高載子移動率、優秀的熱導率、可撓性、不錯的轉移移電導……等有趣的性質,吸引了科學界不少的注意。但能帶隙的缺乏以及為了打開能帶隙而提升的製程難度,不利於場效電晶體的發展。此時,⼆維過渡⾦屬⼆硫族化物的發現,無疑開啟了另⼀道大門,特別是部分的⼆維過渡⾦屬⼆硫族化物擁有適當的能帶隙和電流開關比。
本論⽂中,使⽤掃描式穿隧電⼦顯微鏡研究單層⼆硒化鎢-⼆硒化鉬平⾯異質結在高配向性熱分解⽯墨基板的介⾯幾何性質和電性。藉由莫列波紋分析出⼆硒化鎢-⼆硒化鉬平⾯異質結與高配向性熱分解⽯墨之間的⾓度約為七度。透過⼆硒化鎢-⼆硒化鉬平面異質結的能帶對齊,可以得知⼆硒化鎢和⼆硒化鉬的能隙分別為 2.04 eV 和 2.16 eV;導帶和價帶偏移約為 0.26 eV和 0.37 eV;⼆硒化鎢和⼆硒化鉬的過渡帶約為 3.58 nm;於過渡帶的內建電場約為 7.7x10^7V/m。這些性質替光電⼦和電⼦裝置開啟了進⼀步研究的⼤⾨。 | zh_TW |
| dc.description.abstract | Graphene has catched a lot of attention since it was proved to be two-dimensional material. It has plenty of intresting properties such as high carrier mobility, superier thermal conductivity, fexibility, transconductances, and so on. The lack of bandgap and complex preparation to open the bandgap of graphene make it less attractive when the two-dimensional transition metal dichalcogenides (2-d TMDCs) was discovered. Some of the TMDCs are semiconductor and has suitable bandgap which would influence the on-o↵ ratio in field effect transistor (FET). We would reveal the band alignment of single layer WSe2-MoSe2 lateral heterojunction on highly oriented pyrolytic graphite (HOPG), and the band width in the WSe2-MoSe2 boundary by scanning tunneling microscopy. The moir´e pattern of TMDCs denotes that there is an angle around 7 between layers. The band offset and the built-in electric field are calculated. The bandgaps of WSe2 and MoSe2 are 2.04 eV and 2.16 eV. The band o↵set of conduction band and valence band are 0.26 eV and 0.37 eV. At the heterojunction boundary, we observed a transition width up to 3.58 nm with a built-in electric field of about 7.7x107 V/m. These properties expand the field of photonic and electrical devices. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:39:00Z (GMT). No. of bitstreams: 1 ntu-107-R03245014-1.pdf: 8188653 bytes, checksum: ddd816e4d8605969785d8e6773de98da (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Abstract iii
Declaration v Acknowledgements vi 1 Introduction 1 2 Experiment Apparatus and Techniques 5 2.1 Ultra-high Vacuum Systems . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Low-temperature Scanning Tunneling Microscopy . . . . . . . 6 2.1.3 Room-temperature Scanning Tunneling Microscopy . . . . . . 7 2.2 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Theory: STM and FFT 9 3.1 Scanning Tunneling Microscopy . . . . . . . . . . . . . . . . . . . . . 9 3.1.1 The Quantum Tunneling E↵ect . . . . . . . . . . . . . . . . . 9 3.1.2 Theory of Scanning Tunneling Microscopy . . . . . . . . . . . 10 3.1.3 Scanning Tunneling Spectroscopy . . . . . . . . . . . . . . . . 12 3.2 Fast Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 Topography of the Single Layer TMDCs on HOPG 18 4.1 XPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 Moir´e pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Moir´e pattern of TMDCs on HOPG . . . . . . . . . . . . . . . . . . . 20 5 Band Alignment of WSe2-MoSe2 Lateral Heterojunction 25 5.1 Data Fitting by Python . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.1.1 Band Alignment Fitting . . . . . . . . . . . . . . . . . . . . . 25 5.1.2 Electric Field in Conduction Band Fitting . . . . . . . . . . . 28 5.2 Data Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6 Conclusion 32 Bibliography 34 | |
| dc.language.iso | en | |
| dc.title | ⼆硒化鎢-⼆硒化鉬平⾯異質結於掃描式穿隧電⼦顯微鏡之能帶對齊研究 | zh_TW |
| dc.title | Observation of Band Alignment at WSe2-MoSe2 Lateral Heterojunction by Scanning Tunneling Microscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊天明(Tien-Ming Chuang),林文欽(Wen-Chin Lin),張文豪(Wen-Hao Chang) | |
| dc.subject.keyword | 二硒化鎢,二硒化鉬,二維材料,半導體,掃描式穿隧電子顯微鏡,掃描式穿隧電子能譜,莫列波紋,平面異質結, | zh_TW |
| dc.subject.keyword | WSe2,MoSe2,2D Material,Semiconductor,Scanning Tunneling Microscopy,Scanning Tunneling Spectroscopy,Moir’e Pattern,Lateral Heterostructure, | en |
| dc.relation.page | 37 | |
| dc.identifier.doi | 10.6342/NTU201602139 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-07-06 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
