Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19971
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江皓森(Hao-Sen Chiang)
dc.contributor.authorCi-Yun Huangen
dc.contributor.author黃頎勻zh_TW
dc.date.accessioned2021-06-08T02:38:14Z-
dc.date.copyright2018-07-26
dc.date.issued2018
dc.date.submitted2018-07-20
dc.identifier.citation1.McNab, F., et al., Type I interferons in infectious disease. Nat Rev Immunol, 2015. 15(2): p. 87-103.
2.Bos, J.L., H. Rehmann, and A. Wittinghofer, GEFs and GAPs: critical elements in the control of small G proteins. Cell, 2007. 129(5): p. 865-77.
3.Isaacs, A. and J. Lindenmann, Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci, 1957. 147(927): p. 258-67.
4.Pestka, S., C.D. Krause, and M.R. Walter, Interferons, interferon-like cytokines, and their receptors. Immunol Rev, 2004. 202: p. 8-32.
5.Schindler, C., et al., Proteins of transcription factor ISGF-3: one gene encodes the 91-and 84-kDa ISGF-3 proteins that are activated by interferon alpha. Proc Natl Acad Sci U S A, 1992. 89(16): p. 7836-9.
6.Verhelst, J., P. Hulpiau, and X. Saelens, Mx Proteins: Antiviral Gatekeepers That Restrain the Uninvited. Microbiol Mol Biol Rev, 2013. 77(4): p. 551-66.
7.Goubau, D., S. Deddouche, and C. Reis e Sousa, Cytosolic Sensing of Viruses. Immunity. 38(5): p. 855-869.
8.Lasfar, A., et al., Characterization of the mouse IFN-lambda ligand-receptor system: IFN-lambdas exhibit antitumor activity against B16 melanoma. Cancer Res, 2006. 66(8): p. 4468-77.
9.Medzhitov, R., P. Preston-Hurlburt, and C.A. Janeway, Jr., A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997. 388(6640): p. 394-7.
10.Choe, J., M.S. Kelker, and I.A. Wilson, Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science, 2005. 309(5734): p. 581-5.
11.Nishiya, T. and A.L. DeFranco, Ligand-regulated chimeric receptor approach reveals distinctive subcellular localization and signaling properties of the Toll-like receptors. J Biol Chem, 2004. 279(18): p. 19008-17.
12.Jurk, M., et al., Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol, 2002. 3(6): p. 499.
13.Zhang, D., et al., A toll-like receptor that prevents infection by uropathogenic bacteria. Science, 2004. 303(5663): p. 1522-6.
14.Yamamoto, M., et al., Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science, 2003. 301(5633): p. 640-3.
15.Hoebe, K., et al., Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature, 2003. 424(6950): p. 743-8.
16.Sarkar, S.N., et al., Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double-stranded RNA signaling. Nat Struct Mol Biol, 2004. 11(11): p. 1060-7.
17.Ning, S., J.S. Pagano, and G.N. Barber, IRF7: activation, regulation, modification and function. Genes Immun, 2011. 12(6): p. 399-414.
18.Franchi, L., et al., Function of Nod-like Receptors in Microbial Recognition and Host Defense. Immunol Rev, 2009. 227(1): p. 106-28.
19.Watanabe, T., et al., NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway. J Clin Invest, 2010. 120(5): p. 1645-62.
20.Moreira, L.O. and D.S. Zamboni, NOD1 and NOD2 Signaling in Infection and Inflammation. Front Immunol, 2012. 3: p. 328.
21.Pichlmair, A., et al., RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science, 2006. 314(5801): p. 997-1001.
22.Kato, H., et al., Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med, 2008. 205(7): p. 1601-10.
23.Palacios-Rodriguez, Y., et al., Polypeptide modulators of caspase recruitment domain (CARD)-CARD-mediated protein-protein interactions. J Biol Chem, 2011. 286(52): p. 44457-66.
24.Paz, S., et al., Ubiquitin-regulated recruitment of IkappaB kinase epsilon to the MAVS interferon signaling adapter. Mol Cell Biol, 2009. 29(12): p. 3401-12.
25.Chen, Q., L. Sun, and Z.J. Chen, Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol, 2016. 17(10): p. 1142-1149.
26.Birkenfeld, J., et al., Cellular functions of GEF-H1, a microtubule-regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis? Trends in Cell Biology, 2008. 18(5): p. 210-219.
27.Chiang, H.S., et al., GEF-H1 controls microtubule-dependent sensing of nucleic acids for antiviral host defenses. Nat Immunol, 2014. 15(1): p. 63-71.
28.Hart, M.J., et al., Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science, 1998. 280(5372): p. 2112-4.
29.Kozasa, T., et al., p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science, 1998. 280(5372): p. 2109-11.
30.Dubash, A.D., et al., A novel role for Lsc/p115 RhoGEF and LARG in regulating RhoA activity downstream of adhesion to fibronectin. Journal of Cell Science, 2007. 120(22): p. 3989-3998.
31.Brown, J.P., et al., Arhgef1 is required by T cells for the development of airway hyperreactivity and inflammation. Am J Respir Crit Care Med, 2007. 176(1): p. 10-9.
32.Guilluy, C., et al., The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure. Nat Med, 2010. 16(2): p. 183-90.
33.Carbone, M.L., et al., Leukocyte RhoA exchange factor Arhgef1 mediates vascular inflammation and atherosclerosis. J Clin Invest, 2017. 127(12): p. 4516-4526.
34.Girkontaite, I., et al., Lsc is required for marginal zone B cells, regulation of lymphocyte motility and immune responses. Nat Immunol, 2001. 2(9): p. 855-62.
35.Muppidi, J.R., et al., Loss of signalling via Galpha13 in germinal centre B-cell-derived lymphoma. Nature, 2014. 516(7530): p. 254-8.
36.Forterre, P., Defining life: the virus viewpoint. Orig Life Evol Biosph, 2010. 40(2): p. 151-60.
37.Knight, B.C., Physiological background to microbial inhibition. Bull World Health Organ, 1952. 6(1-2): p. 229-48.
38.Goodwin, C.M., S. Xu, and J. Munger, Stealing the Keys to the Kitchen: Viral Manipulation of the Host Cell Metabolic Network. Trends Microbiol, 2015. 23(12): p. 789-798.
39.Spencer, C.M., et al., Human cytomegalovirus induces the activity and expression of acetyl-coenzyme A carboxylase, a fatty acid biosynthetic enzyme whose inhibition attenuates viral replication. J Virol, 2011. 85(12): p. 5814-24.
40.Diamond, D.L., et al., Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog, 2010. 6(1): p. e1000719.
41.Chukkapalli, V., N.S. Heaton, and G. Randall, Lipids at the interface of virus-host interactions. Curr Opin Microbiol, 2012. 15(4): p. 512-8.
42.Zhang, Y., et al., Fatty acid-binding protein E-FABP restricts tumor growth by promoting IFN-beta responses in tumor-associated macrophages. Cancer Res, 2014. 74(11): p. 2986-98.
43.Monson, E.A., et al., Lipid droplet density alters the early innate immune response to viral infection. PLoS One, 2018. 13(1): p. e0190597.
44.Dong, N., L. Liu, and F. Shao, A bacterial effector targets host DH-PH domain RhoGEFs and antagonizes macrophage phagocytosis. Embo j, 2010. 29(8): p. 1363-76.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19971-
dc.description.abstract第一型干擾素的免疫反應是哺乳動物細胞防禦病毒感染的主要機制。已知GEF-H1 (Guanine nucleotide exchange factor) 會影響第一型干擾素的生成,因此我們希望了解是否與GEF-H1相似的同源蛋白: ARHGEF1 (Rho guanine nucleotide exchange factor 1) 也可以調控第一型干擾素的生成。
我們利用ARHGEF1表現有缺陷的細胞株Huh-7以及B6小鼠做為實驗模組。
在感染仙台病毒或是使用對RIG-I Like Receptor (RLR)有專一性的配體來刺激野生型與ARHGEF1-/-的Huh-7細胞後,ARHGEF1有缺陷的組別在第一型干擾素基因IFNB1和其下游引發的基因MX1的表現量顯著高於野生型的組別。此外,我們同時使用對RLR具專一性的配體來刺激由Arhgef1+/-小鼠的骨髓所分化的巨噬細胞或直接對Arhgef1+/-小鼠注射對RLR具專一性的配體,也發現有相同的趨勢,Ifnb1基因與Ifn-β表現在Arhgef1有缺陷的組別表現量較野生型組別高。此外,我們也做了ARHGEF1的重建實驗,我們將可以表現ARHGEF1全長蛋白和ARHGEF1不同結構域 (Domain) 的突變型蛋白像是RGS (Regulator G protein signaling)和DH (Dbl homology)以及PH (Pleckstrin homology)的質體轉入ARHGEF1-/- Huh-7細胞中,並且利用對RLR具專一性的配體來刺激細胞,發現全長型或是突變型的ARHGEF1都可以負調控IFNB1的表現量。
有趣的是,我們更發現ARHGEF1-/-Huh-7細胞中油滴 (lipid droplets) 的數量和脂質調控基因SREBP2(sterol regulatory element-binding protein 2) 的表現量比野生型要少,但是經由抗體阻隔第一型干擾素受體的實驗中,發現油滴數量並不受到第一型干擾素影響。
總結我們在細胞和動物體內的實驗中都發現ARHGEF1具有負調控RLR路徑引發的第一型干擾素合成。至於ARHGEF1和脂質代謝的關係目前尚未釐清。
zh_TW
dc.description.abstractMammalian cells express type I interferons (IFNs) that are important for innate immune defense against viral infection. Given that guanine nucleotide exchange factor GEF-H1 is the critical regulator of type I IFN expression, we sought to determine whether rho guanine nucleotide exchange factor 1 (ARHGEF1), a GEF-H1 homolog, is also able to control type I IFN expression and responses by utilizing ARHGEF1-deficient Huh7 cells and Arhgef1+/- mice. The expressions of IFNB1 and interferon-stimulated gene (ISG), MX1 were both significantly increased in RIG-I-Like Receptor (RLR) ligands-incubated or Sendai virus-infected ARHGEF1-/-Huh7 cells compared to wild-type (WT) Huh7 cells. We also observed a similar phenotype that Arhgef1+/- bone marrow-derived macrophages (BMDMs) expressed elevated amounts of Ifnb1 than WT BMDMs in response to high molecular weight (HMW) poly(I:C) stimulation. Furthermore, the production of Ifn-beta was profound enhanced in the serum of Arhgef1+/- mice administrated with HMW poly(I:C) intraperitoneally. Mechanistically, reconstitution of ARHGEF1 and different ARHGEF1 mutants into ARHGEF1-/- Huh7 cells further indicated that the negative regulation of IFNB1 expression in response to RLR stimulus was dependent on the regulator of G protein signaling (RGS), Dbl homology (DH), and Pleckstrin homology (PH) domains of ARHGEF1.
Surprisingly, while IFN-beta is known to alter cellular lipid metabolism, blocking of IFNα/β receptor signaling revealed that the decrease of lipid content and expression of sterol regulatory element-binding-protein 2 (SREBP2), a critical transcriptional factor for cholesterol synthesis, in ARHGEF1-/- Huh7 cells was not due to the elevated IFNβ expression. Taken together, our results suggest that ARHGEF1 negatively regulates RLR-mediated type I IFN expression both in vitro and in vivo and may have an additional role in the regulation of lipid metabolism.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:38:14Z (GMT). No. of bitstreams: 1
ntu-107-R05b21012-1.pdf: 3897631 bytes, checksum: d2a6e7cb4c308237e54836aaddbdddb0 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書........................................I
致謝...................................................II
中文摘要...............................................III
Abstract...............................................V
目錄...................................................VII
Chapter 1 Introduction................................ 1
1.1 Type one interferon (Type I IFN)............... 1
1.1.1 Antivirus response and interferon response...... 1
1.1.2 Type I IFN classification....................... 2
1.1.3 Type I IFN production and signaling............. 3
1.1.4 Type I interferon and GEF-H1................... 7
1.2 ARHGEF1 (Rho Guanine Nucleotide Exchange Factor 1) 8
1.2.1 Function and mechanism of ARHGEF1................8
1.2.2 Disease relative to ARHGEF1......................9
1.3 Lipid metabolism and antiviral response............10
1.3.1 Virus-induced lipid metabolism...................10
1.3.2 Type one interferon and lipid metabolism.........11
1.4 Aims...............................................11
Chapter 2 Materials and Methods........................12
2.1 Cell lines.........................................12
2.2 CRISPR/Cas9 system knock out ARHGEF1...............12
2.3 Mice...............................................13
2.4 Bone marrow derived macrophages (BMDMs) isolation..13
2.5 Virus infection....................................14
2.6 Ligand stimulation.................................14
2.7 qRT-PCR............................................15
2.7 Western blotting...................................16
2.8 RNA sequencing.....................................17
2.9 Luciferase assay...................................17
2.10 Oil red O staining................................17
Chapter 3 Results......................................19
3.1 CRSPR/Cas9 knock out ARHGEF1 in Huh-7 cells........19
3.2 IFNB1 expression is significantly increased in ARHGEF1-/- Huh-7 cells with virus infection.............19
3.3 ARHGEF1 negatively regulates RLR-mediated type I interferon..............................................20
3.4 Reconstitution of ARHGEF1 into ARHGEF1-/- Huh-7 cells suppresses the expression of IFNB1......................21
3.5 Reconstitution of ARHGEF1 critical domain: RGS domain compared with ΔRGS domain into ARHGEF1-/- Huh-7 cells suppresses the expression of IFNB1......................22
3.6 ARHGEF1 overexpression negatively regulates the activation of MAVS-mediated IFNB1 luciferase reporter in HEK293T.................................................22
3.7 ARHGEF1 deficiency leads to the increase of genes involved in antiviral responses.........................23
3.8 Ifnb1 expression is significantly increased in ARHGEF1+/- bone marrow derived macrophage (BMDM) with liposome-encapsulated poly (I:C) stimulation............24
3.9 Ifnb1 expression is significantly increased in ARHGEF1+/- serum with poly (I:C) stimulation............25
3.10 ARHGEF1 deficiency reduces the number of lipid droplets and lipid metabolism in Huh-7..................25
Chapter 4 Summary......................................27
Chapter 5 Discussion...................................28
Chapter 6 Figures......................................32
Chapter 7 Table........................................56
Chapter 8 Appendix.....................................57
Reference...............................................60
dc.language.isoen
dc.title探討ARHGEF1調節RLR所引起的第一型干擾素表現的能力zh_TW
dc.titleDetermining the regulatory role of ARHGEF1 in RIG-I-like receptor (RLR)-mediated type I interferon expression.en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐立中(Li-Chung Hsu),劉旻禕(Helene Minyi Liu)
dc.subject.keyword第一型干擾素,ARHGEF1負調控,RLR調控路徑,防禦病毒的免疫反應,油滴,zh_TW
dc.subject.keywordType I interferon,ARHGEF1,RLR signaling pathway,Anti-viral response,Lipoid droplets,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201801659
dc.rights.note未授權
dc.date.accepted2018-07-23
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved