Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19964
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政鴻(Cheng-Hung Wu)
dc.contributor.authorTe-Yu Linen
dc.contributor.author林德煜zh_TW
dc.date.accessioned2021-06-08T02:38:10Z-
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-23
dc.identifier.citationREFERENCE
Al-Najjar, B., & Alsyouf, I. (2003). Selecting the most efficient maintenance approach using fuzzy multiple criteria decision making. International journal of production economics, 84(1), 85-100.
Azizoglu, M., Kondakci, S. K., & Köksalan, M. (1997). Bicriteria scheduling: Minimizing flowtime and maximum earliness on a single machine. In Multicriteria analysis (pp. 279-288): Springer.
Bakker, C., Wang, F., Huisman, J., & den Hollander, M. (2014). Products that go round: exploring product life extension through design. Journal of Cleaner Production, 69, 10-16.
Bayazit, O. (2005). Use of AHP in decision-making for flexible manufacturing systems. Journal of Manufacturing Technology Management, 16(7), 808-819.
Benayoun, R., Roy, B., & Sussman, B. (1966). ELECTRE: Une méthode pour guider le choix en présence de points de vue multiples. Note de travail, 49.
Boran, F. E., Genç, S., Kurt, M., & Akay, D. (2009). A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Systems with Applications, 36(8), 11363-11368.
Bougain, S., Gerhard, D., Nigischer, C., & Uĝurlu, S. (2015). Towards energy management in production planning software based on energy consumption as a planning resource. Procedia CIRP, 26, 139-144.
Brans, J.-P., & Mareschal, B. (2005). PROMETHEE methods. In Multiple criteria decision analysis: state of the art surveys (pp. 163-186): Springer.
Bruno, G., Esposito, E., Genovese, A., & Passaro, R. (2012). AHP-based approaches for supplier evaluation: Problems and perspectives. Journal of Purchasing and Supply Management, 18(3), 159-172.
Cavallaro, F. (2010). A comparative assessment of thin-film photovoltaic production processes using the ELECTRE III method. Energy policy, 38(1), 463-474.
Chan, F. T., & Chan, H. K. (2004). A comprehensive survey and future trend of simulation study on FMS scheduling. Journal of Intelligent Manufacturing, 15(1), 87-102.
Chang, A.-Y., Hu, K.-J., & Hong, Y.-L. (2013). An ISM-ANP approach to identifying key agile factors in launching a new product into mass production. International Journal of Production Research, 51(2), 582-597.
Duckstein, L., & Opricovic, S. (1980). Multiobjective optimization in river basin development. Water Resources Research, 16(1), 14-20.
Erol, Ö., & Kılkış, B. (2012). An energy source policy assessment using analytical hierarchy process. Energy Conversion and management, 63, 245-252.
Espinouse, M.-L., Pawlak, G., & Sterna, M. (2017). Complexity of Scheduling Problem in Single-Machine Flexible Manufacturing System with Cyclic Transportation and Unlimited Buffers. Journal of Optimization Theory and Applications, 173(3), 1042-1054.
Fowler, J. W., Gel, E. S., Köksalan, M. M., Korhonen, P., Marquis, J. L., & Wallenius, J. (2010). Interactive evolutionary multi-objective optimization for quasi-concave preference functions. European Journal of Operational Research, 206(2), 417-425.
Gerhard, D. (2015). Integrating Electric Energy Demand of Machine Tool Processes as Resource for Production Planning Software. In Integrated Systems: Innovations and Applications (pp. 29-38): Springer.
Giret, A., Trentesaux, D., & Prabhu, V. (2015). Sustainability in manufacturing operations scheduling: A state of the art review. Journal of Manufacturing Systems, 37, 126-140.
Greening, L. A., & Bernow, S. (2004). Design of coordinated energy and environmental policies: use of multi-criteria decision-making. Energy policy, 32(6), 721-735.
Gustavsson, S.-O. (1984). Flexibility and productivity in complex production processes. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 22(5), 801-808.
Ho, W. (2008). Integrated analytic hierarchy process and its applications–A literature review. European Journal of Operational Research, 186(1), 211-228.
Hwang, C.-L., & Yoon, K. (1981). Methods for multiple attribute decision making. In Multiple attribute decision making (pp. 58-191): Springer.
Jana, T. K., Bairagi, B., Paul, S., Sarkar, B., & Saha, J. (2013). Dynamic schedule execution in an agent based holonic manufacturing system. Journal of Manufacturing Systems, 32(4), 801-816.
Kahneman, D., & Tversky, A. (2013). Prospect theory: An analysis of decision under risk. In Handbook of the fundamentals of financial decision making: Part I (pp. 99-127): World Scientific.
Kang, H.-Y., & Lee, A. H. (2010). A new supplier performance evaluation model: A case study of integrated circuit (IC) packaging companies. Kybernetes, 39(1), 37-54.
Karsak, E. E. (2002). Distance-based fuzzy MCDM approach for evaluating flexible manufacturing system alternatives. International Journal of Production Research, 40(13), 3167-3181.
Kilian, L. (2008). The economic effects of energy price shocks. Journal of Economic Literature, 46(4), 871-909.
Kim, T., & Kuo, W. (1999). Modeling manufacturing yield and reliability. IEEE transactions on semiconductor manufacturing, 12(4), 485-492.
Kirytopoulos, K., Leopoulos, V., & Voulgaridou, D. (2008). Supplier selection in pharmaceutical industry: an analytic network process approach. Benchmarking: An International Journal, 15(4), 494-516.
Korhonen, P., Wallenius, J., & Zionts, S. (1984). Solving the discrete multiple criteria problem using convex cones. Management Science, 30(11), 1336-1345.
Koste, L. L., & Malhotra, M. K. (1999). A theoretical framework for analyzing the dimensions of manufacturing flexibility. Journal of operations management, 18(1), 75-93.
Kuo, W., & Kim, T. (1999). An overview of manufacturing yield and reliability modeling for semiconductor products. Proceedings of the IEEE, 87(8), 1329-1344.
Lahdelma, R., Salminen, P., & Kuula, M. (2003). Testing the efficiency of two pairwise comparison methods in discrete multiple criteria problems. European Journal of Operational Research, 145(3), 496-508.
Leachman, R. C., & Ding, S. (2011). Excursion yield loss and cycle time reduction in semiconductor manufacturing. IEEE Transactions on Automation science and engineering, 8(1), 112-117.
Lei, D. (2009). Multi-objective production scheduling: a survey. The International Journal of Advanced Manufacturing Technology, 43(9-10), 926.
Mardani, A., Jusoh, A., MD Nor, K., Khalifah, Z., Zakwan, N., & Valipour, A. (2015). Multiple criteria decision-making techniques and their applications–a review of the literature from 2000 to 2014. Economic Research-Ekonomska Istraživanja, 28(1), 516-571.
May, G. S., & Spanos, C. J. (2006). Fundamentals of semiconductor manufacturing and process control: John Wiley & Sons.
Michaloski, J. L., Shao, G., Arinez, J., Lyons, K., Leong, S., & Riddick, F. (2011). Analysis of sustainable manufacturing using simulation for integration of production and building service. Paper presented at the Proceedings of the 2011 Symposium on Simulation for Architecture and Urban Design.
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological review, 63(2), 81.
Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45(18-19), 4247-4271.
Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445-455.
Rajesh, R., & Ravi, V. (2015). Supplier selection in resilient supply chains: a grey relational analysis approach. Journal of Cleaner Production, 86, 343-359.
Reza Hejazi, S., & Saghafian, S. (2005). Flowshop-scheduling problems with makespan criterion: a review. International Journal of Production Research, 43(14), 2895-2929.
Saaty, T. L. (1980). Analytic Heirarchy Process. Wiley StatsRef: Statistics Reference Online.
Salminen, P. (1994). Solving the discrete multiple criteria problem using linear prospect theory. European Journal of Operational Research, 72(1), 146-154.
San Cristóbal, J. (2011). Multi-criteria decision-making in the selection of a renewable energy project in spain: The Vikor method. Renewable Energy, 36(2), 498-502.
Şengül, Ü., Eren, M., Shiraz, S. E., Gezder, V., & Şengül, A. B. (2015). Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renewable Energy, 75, 617-625.
Shyur, H.-J., & Shih, H.-S. (2006). A hybrid MCDM model for strategic vendor selection. Mathematical and Computer Modelling, 44(7-8), 749-761.
Tan, W., & Khoshnevis, B. (2000). Integration of process planning and scheduling—a review. Journal of Intelligent Manufacturing, 11(1), 51-63.
Tirkel, I., & Rabinowitz, G. (2011). Quality performance modeling in a deteriorating production system with partially available inspection. In Operations Research Proceedings 2010 (pp. 397-402): Springer.
Tristo, G., Bissacco, G., Lebar, A., & Valentinčič, J. (2015). Real time power consumption monitoring for energy efficiency analysis in micro EDM milling. The International Journal of Advanced Manufacturing Technology, 78(9-12), 1511-1521.
Tzeng, G.-H., & Huang, C.-Y. (2012). Combined DEMATEL technique with hybrid MCDM methods for creating the aspired intelligent global manufacturing & logistics systems. Annals of Operations Research, 197(1), 159-190.
Wang, G., Huang, S. H., & Dismukes, J. P. (2004). Product-driven supply chain selection using integrated multi-criteria decision-making methodology. International journal of production economics, 91(1), 1-15.
Wang, J.-J., Jing, Y.-Y., Zhang, C.-F., & Zhao, J.-H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263-2278.
Wein, L. M. (1992). On the relationship between yield and cycle time in semiconductor wafer fabrication. IEEE transactions on semiconductor manufacturing, 5(2), 156-158.
Wu, J.-Z., & Liu, W.-J. (2016). Study on Pairwise Comparisons of Analytic Hierarchy Process and Piecewise Linear Prospect Theory Method. Paper presented at the Decision Analysis Symposium, National Tsing Hua University.
Yan, J., & Li, L. (2013). Multi-objective optimization of milling parameters–the trade-offs between energy, production rate and cutting quality. Journal of Cleaner Production, 52, 462-471.
Yang, J.-M. (2017). Coordination of Production Scheduling and Energy Consumption Management. National Taiwan University,
Yugma, C., Blue, J., Dauzère-Pérès, S., & Obeid, A. (2015). Integration of scheduling and advanced process control in semiconductor manufacturing: review and outlook. Journal of Scheduling, 18(2), 195-205.
Zionts, S., & Wallenius, J. (1976). An interactive programming method for solving the multiple criteria problem. Management Science, 22(6), 652-663.
Zionts, S., & Wallenius, J. (1983). An interactive multiple objective linear programming method for a class of underlying nonlinear utility functions. Management Science, 29(5), 519-529.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19964-
dc.description.abstract本研究提出了一種用於具有未知偏好函數的多標準派工決策問題(Multi-Criteria Decision-Making)的互動式重心法(Interactive Centroid Method, ICM)。在製造過程中的各種問題中,派工問題是最需要解決的問題之一,因為產品和機器的不同組合會導致每個指標的性能不同。然而,大多數研究只關注優化總完成時間或總能耗,而不是同時考慮其他製造目標。因此,不僅難以提出有效的協調戰略,而且難以實施研究成果到現實產業界。
在這項研究中,我們建立了一個與決策者交互的互動方法。其目標是在偏好函式未知的情況下,協助決策者實現同時最小化完工時間、最小化總產量損失和最小化總能耗的目標並且讓最終方案能夠使決策者的效用值最大化。而通過決策者的每次選擇,互動式重心法會學習未知的偏好函式並且移除較不偏好的範圍。最後,決策者可以在大約10次比較中獲得近乎最優的方案。另外,我們還通過和逼近理想解排序法(Technique for Order Preference by Similarity to Ideal Solution , TOPSIS)與分段線性觀點理論法(Piecewise Linear Prospect Theory Method, PLP)進行比較,研究也針對線性與二次偏好函式進行驗證,結果顯示互動式重心法不僅能夠處理連續標準問題,而且能夠在合理的交互次數和計算時間內找到近乎最優的解決方案。
zh_TW
dc.description.abstractThis study presents an interactive centroid method (ICM) for multi-criteria decision-making (MCDM) in dispatching problems with unknown preference functions. Among various problems in manufacturing, dispatching problem is one of the most needed issue since different combination of products and machines will lead to different performance in each criterion. However, most of the research only focuses on optimizing total completion time or total power consumption instead of considering in other manufacturing objectives at the same time. Hence, it’s not only hard to come up with an efficient coordinated strategy but also hard to implement the research outcome to the industry.
In this research, we construct an interactive approach to interact with decision makers. The objective is to assist decision makers to reach the goal of minimizing the makespan, total yield loss, and total power consumption at the same time meanwhile optimize the utility value of final solution under the condition of unknown preference function. Through each selection by decision makers, ICM learns the unknown preference function and shrinks down the least preferred criteria space. Afterwards, decision makers can obtain the near-optimal solution in approximately 10 comparisons. We also verify ICM by comparing different performance with Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) as well as Piecewise Linear Prospect Theory (PLP) under linear and quadratic preference functions, and the result shows that ICM is not only capable to deal with the continuous criteria problems but also able to find the near-optimal solution in reasonable number of interactive times and computing time.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:38:10Z (GMT). No. of bitstreams: 1
ntu-107-R05546012-1.pdf: 1212980 bytes, checksum: 5421e7c5b56083df722f7bee5efe737c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsCONTENTS
誌謝 I
中文摘要 II
ABSTRACT III
CONTENTS IV
LIST OF FIGURES VII
LIST OF TABLES IX
Chapter 1 Introduction 1
1.1 Research Background 1
1.1.1 The Development of Industrial Internet of Things (IIoT) 1
1.1.2 Direct Decision from Collected Machine-Related Data 2
1.1.3 MCDM in Flexible Manufacturing System (FMS) 3
1.2 Research Motivation 3
1.2.1 Change in Production Mode 3
1.2.2 The Selection of Manufacturing Criteria 4
1.2.3 MCDM Dispatching Problems 5
1.3 Research Objectives 6
1.4 Significance of the Thesis 7
1.5 Organization of the Thesis 7
Chapter 2 Literature Review 9
2.1 Manufacturing Performance Criteria 9
2.2 MCDM Problems in Industry 11
2.3 MCDM Methods in Literature 13
Chapter 3 Problem Formulation and Methodology 16
3.1 Trade Off between Manufacturing Criteria 16
3.2 Problem Construction 18
3.2.1 Problem Description 18
3.2.2 Problem Assumptions and Restrictions 18
3.2.3 Multi-Objectives Programming Model 19
3.3 Interactive Centroid Method 21
3.3.1 Process Flow Diagram of ICM 21
3.3.2 Linear Programming Model (Initial Solutions) 23
3.3.3 Linea Programming Model (Pareto Front Solutions) 27
3.3.4 Interactive Process 32
Chapter 4 Implement Environment 40
4.1 Interactive Centroid Method 40
4.1.1 Implementing Example 40
4.2 Generating Discrete Solution Set 51
4.3 TOPSIS 54
4.4 PLP 55
Chapter 5 Numerical Study and Verification 59
5.1 Numerical Study Settings 59
5.2 Comparison Benchmark 60
5.3 Parameters of ICM 63
5.4 Comparisons and Result Analysis 67
5.4.1 Converting Coefficients to Weights for TOPSIS 68
5.4.2 Linear Preference Function 69
5.4.3 Quadratic Preference Function 73
5.5 The impact of Indecisive Gap 77
Chapter 6 Conclusion and Future Research 80
6.1 Future Research 81
REFERENCE 82
APPENDIX A: Pseudo Code for ICM 87
APPENDIX B: Linear Preference Function 92
APPENDIX C: Quadratic Preference Function 95
dc.language.isoen
dc.title未知偏好函式下之互動式多目標派工方法zh_TW
dc.titleAn Interactive Approach for Multi-Criteria Dispatching Problems with Unknown Preference Functionsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳文智(Wen-Chih Chen),吳吉政(Jei-Zheng Wu),Jefferson Huang(Jefferson Huang)
dc.subject.keyword多目標決策,派工管理,互動式演算法,未知偏好函式,zh_TW
dc.subject.keywordMulti-criteria Decision-making,Dispatching Management,Interactive Methods,Unknown Preference Functions,en
dc.relation.page97
dc.identifier.doi10.6342/NTU201801850
dc.rights.note未授權
dc.date.accepted2018-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved