請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19959完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘國隆(Kuo-Long Pan) | |
| dc.contributor.author | Heng-Wei Kuo | en |
| dc.contributor.author | 郭恆暐 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:38:08Z | - |
| dc.date.copyright | 2018-07-26 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-25 | |
| dc.identifier.citation | 1. G. P. Sutton and O. Biblarz, Rocket Propulsion Elements, 7th Edition, Wiley (2001).
2. J. F. Engelberger, Space propulsion system, US patent 3, 504, 868. US Cl. 244-1 (1970). 3. Y. Tsuda, O. Mori, R. Funase, H. Sawada, T. Yamamoto, T. Saiki, T. Endo, K. Yonekura, H. Hoshino, and J. Kawaguchi, Achievement of IKAROS — Japanese deep space solar sail demonstration mission, Acta Astronautica, Vol. 82, p. 183-188 (2013). 4. V. V. Zhurin, H. R. Kaufman, and R. S. Robinson, Physics of closed drift thrusters, Plasma Sources Sciences and Technology, Vol. 8, No. 1 (1999). 5. E. Ahedo and P. Martı´nez-Cerezo, One-dimensional model of the plasma flow in a Hall thruster, Physics of Plasmas, Vol. 8, No. 6 (2001). 6. S. J. Hall, B. A. Jorns, and A. D. Gallimore, High-Power Performance of a 100-kW Class Nested Hall Thruster, The 35th International Electric Propulsion Conference (2017). 7. C. T. Liu, T. Kumakura, K. Ishikawa, H. Hashizume, K. Takeda, M. Ito, Masaru Hori, and J. S. Wu, Effects of assisted magnetic field to an atmospheric-pressure plasma jet on radical generation at the plasma-surface interface and bactericidal function, Plasma Sources Sciences and Technology, 25: 065005 (2016). 8. E. Y. Choueiri, New dawn for electric rocket, Scientific American, February (2009). 9. M. H. Shen, H. K. Fang, Y. C. Chao, S. W. Y. Tam, and Y. H. Li, Development of a micro ECR ion thruster for space propulsion, The 35th International Electric Propulsion Conference, Georgia Institute of Technology (2017). 10. W. V. R. Malkus, Precessional torques as the cause of geomagnetism, Journal of Geophysical Research, Vol. 68, No. 10 (1963). 11. V. Pulatov, Magnetic propulsion systems, Progress in Aerospace Sciences, 37(3), p. 245-261 (2001). 12. A. Dadhich, Electromagnetic propulsion system for spacecrafts using geomagnetic fields and superconductors, 54th AIAA Aerospace Sciences Meeting (2016). 13. C. Buzea, T. Yamashita, Review of the superconducting properties of MgB2, Superconductor Science and Technology, Vol. 14, No. 11, p. R115 (2001). 14. M. Tinkham, Introduction to Superconductivity, 2nd Edition, Dover (1973). 15. H. W. Lee , K. C. Kim , and J. Lee, Review of Maglev Train Technologies, IEEE Transactions on Magnetics, Vol. 42, No. 7 (2006). 16. J. R. Schieffer, Theory of Superconductivity, 1st Edition, Benjamin-Cummings (1999). 17. 曾祥一. 不同退火環境對氧化鋅摻鈷奈米線的鐵磁影響. 國立交通大學物理研究所碩士論文. (2009). 18. E. Hall, On a New Action of the Magnet on Electric Currents, American Journal of Mathematics, Vol. 2 (1879). 19. M. Guan, X. Wang, L. Ma, Y. Zhou, and C. Xin, Magneto-mechanical coupling analysis of a superconducting solenoid magnet in self-magnetic field, IEEE Transaction on Applied Superconductivity, Vol. 24, No. 3 (2014). 20. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2nd Edition, Wiley (2008). 21. H. Uetake, N. Hirota, J. Nakagawa, and Y. Ikezoe, K. Kitazawa, Thermal convection control by gradient magnetic field, Journal Of Applied Physics, Vol. 87, No. 9 (2000). 22. A. Piragino, A. Leporini, V. Giannetti, D. Pedrini, A. Rossodivita, T. Andreussi, and M. Andrenucci, Characterization of a 20 kW-class Hall Effect Thruster, The 35th International Electric Propulsion Conference (2017). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19959 | - |
| dc.description.abstract | 本研究建構於基礎電磁學理論,利用多重物理量有限元素法軟體模擬Comsol-Multiphysics分析線圈於磁場中的受力,並且搭配實驗量測驗證。經由分析,利用磁矩梯度項可以有效增加線圈於磁場中的受力,用此概念設計之以地磁驅動之超導線圈推進器,具有免攜帶推進燃料與低耗能的優勢。
首先,藉由計算與實驗量測漸變式截面積之鋁芯線圈於非均勻磁場中的受力,可以確認線圈於磁場中受力時,磁矩梯度項的存在。為了增強線圈於磁場中的受力,選用鐵芯作為線圈中心,將漸變式截面積之鐵芯線圈放置於地磁場中,計算量測不同線圈截面積改變梯度以及電流大小對應的受力,發現線圈受力與截面積改變梯度以及電流大小成正比關係,與理論相符。藉由低溫環境的實驗與模擬,將可以模擬超導線圈推進器於太空的受力情形,由數值分析可知,超導線圈推進器的受力與在室溫預期的受力關係相符,因此所分析的受力關係可作為未來設計者一可靠的參考。此概念所設計之以地磁驅動的超導線圈推進器具有免攜帶燃料與低耗能的優勢,具有太空探索的發展潛力。 | zh_TW |
| dc.description.abstract | This study is built on fundamental electromagnetism. We utilized commercial software Comsol-Multiphysics to calculate the force exerted on a solenoid in a magnetic field, and compared the measurement results with the numerical results to verify the analyzing results which showed that the magnetic moment gradient term will greatly enhance the exerted force on a solenoid in a magnetic field. Designing by the concept above, a superconducting solenoid thruster driven by geomagnetic field has advantages of low energy consumption and propellant-free.
At first, we calculated and measured the force exerted on several gradient cross-section area aluminum core solenoids in a non-uniform magnetic field, and confirmed that the magnetic moment gradient term do exist. To enhance the force exerted on the solenoid, we replaced the aluminum core with the iron core. Then we placed the gradient cross-section area iron core solenoid in geomagnetic field and measured the forces corresponding to different cross-section area change gradients and different electric current magnitudes. The results showed that the force exerted on the solenoid is proportional to cross-section area change gradient and electric current magnitude, as theory predicted. By measuring and calculating the force exerted on a superconducting solenoid in low temperature, we can simulate the condition when the superconducting solenoid thruster is in space. The numerical results showed that the force exerted on a superconducting solenoid in low temperature matched with the predicted force relation of cross-section area change gradient and electric current magnitude in room temperature. Therefore, the predicted force relation can be a reliable reference to future designers. Designing by the concept above, a superconducting solenoid thruster driven by geomagnetic field has advantages of low energy consumption and propellant-free and has the potential of space exploration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:38:08Z (GMT). No. of bitstreams: 1 ntu-107-R05522101-1.pdf: 6011276 bytes, checksum: 48d55feef940882c020a8622a66d36af (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 3 第三章 研究方法 7 3.1 電磁學理論推導與超導特性 7 3.1.1 馬克士威方程式 7 3.1.2 磁場與磁偶極之交互作用力 9 3.1.3 超導體之超導特性 12 3.2 實驗設備與方法 16 3.2.1 超導量子干涉磁量儀 16 3.2.2 微型電容力感測器 18 3.2.3 非均勻磁場微小力量測台之構造 20 3.2.4 地磁水平分量之量測設備 22 3.2.5 地磁場微小力量測台之構造 25 3.3 數值模擬分析設定 27 3.3.1 線圈幾何設定 27 3.3.2 磁場與邊界條件設定 32 3.3.3 線圈條件設定 34 3.3.4 線圈受力計算方法 35 3.3.5 網格收斂性測試 36 第四章 結果與討論 38 4.1 鐵芯相對磁導率 之量測結果 38 4.2 漸變式截面積線圈於非均勻磁場中受力的模擬與實驗 40 4.2.1 比較有無改變截面積之線圈受力 40 4.2.2 電流與線圈受力之關係 43 4.3 漸變式截面積鐵芯線圈於地磁中受力之模擬與實驗 47 4.3.1 比較不同截面積變化梯度之線圈受力 47 4.3.2 電流與線圈受力之關係 53 4.3.3 測試關係圖範圍外受力之預測準確度 55 4.4 低溫環境中鐵芯超導線圈於地磁中受力之模擬與實驗架設 57 4.5 線圈推進器與現行推進器做比較 62 4.6 線圈推進器之控制 64 第五章 結論與未來展望 67 5.1 結論 67 5.2 未來展望 68 參考文獻 69 | |
| dc.language.iso | zh-TW | |
| dc.title | 以地磁驅動之低耗能無推進燃料超導線圈推進器之研究與開發 | zh_TW |
| dc.title | Research and development of a low energy consumption propellant-free superconducting solenoid thruster driven by geomagnetic field | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張顏暉(Yuan-Huei Chang),陳瑞琳(Ruey-Lin Chern),趙怡欽(Yei-Chin Chao),李偉立(Wei-Li Lee) | |
| dc.subject.keyword | 超導線圈,低耗能,地磁,免攜帶推進燃料,太空探索, | zh_TW |
| dc.subject.keyword | Superconducting solenoid,Low energy consumption,Geomagnetic field,Propellant-free,Space exploration, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU201801934 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 5.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
