請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19929完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾賢忠(Shiang-Jong Tzeng) | |
| dc.contributor.author | Wan-Yu Li | en |
| dc.contributor.author | 李宛諭 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:27:44Z | - |
| dc.date.copyright | 2015-09-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-17 | |
| dc.identifier.citation | Aman, M. J., Walk, S. F., March, M. E., Su, H. P., Carver, D. J., and Ravichandran, K. S. (2000). Essential role for the C-terminal noncatalytic region of SHIP in FcgRIIB1-mediated inhibitory signaling. Molecular and Cellular Biology 20, 3576-3589. Amezcua Vesely, M. C., Schwartz, M., Bermejo, D. A., Montes, C. L., Cautivo, K. M., Kalergis, A. M., Rawlings, D. J., Acosta-Rodriguez, E. V., and Gruppi, A. (2012). FcgRIIb and BAFF differentially regulate peritoneal B1 cell survival. Journal of Immunology (Baltimore, Md : 1950) 188, 4792-4800. Backesjo, C. M., Vargas, L., Superti-Furga, G., and Smith, C. I. (2002). Phosphorylation of Bruton's tyrosine kinase by c-Abl. Biochemical and Biophysical Research Communications 299, 510-515. Baur, J. A., and Sinclair, D. A. (2006). Therapeutic potential of resveratrol: the in vivo evidence. Nature Reviews Drug Discovery 5, 493-506. Beno, I., Rosenthal, K., Levitine, M., Shaulov, L., and Haran, T. E. (2011). Sequence-dependent cooperative binding of p53 to DNA targets and its relationship to the structural properties of the DNA targets. Nucleic Acids Research 39, 1919-1932. Bewarder, N., Weinrich, V., Budde, P., Hartmann, D., Flaswinkel, H., Reth, M., and Frey, J. (1996). In vivo and in vitro specificity of protein tyrosine kinases for immunoglobulin G receptor (FcgRII) phosphorylation. Molecular and Cellular Biology 16, 4735-4743. Boruchov, A. M., Heller, G., Veri, M. C., Bonvini, E., Ravetch, J. V., and Young, J. W. (2005). Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. The Journal of Clinical Investigation 115, 2914-2923. Brauweiler, A., Tamir, I., Dal Porto, J., Benschop, R. J., Helgason, C. D., Humphries, R. K., Freed, J. H., and Cambier, J. C. (2000). Differential regulation of B cell development, activation, and death by the src homology 2 domain-containing 5' inositol phosphatase (SHIP). The Journal of Experimental Medicine 191, 1545-1554. Budde, P., Bewarder, N., Weinrich, V., Schulzeck, O., and Frey, J. (1994). Tyrosine-containing sequence motifs of the human immunoglobulin G receptors FcRIIb1 and FcRIIb2 essential for endocytosis and regulation of calcium flux in B cells. The Journal of Biological Chemistry 269, 30636-30644. Carter, N. A., and Harnett, M. M. (2004). Dissection of the signalling mechanisms underlying FcgRIIB-mediated apoptosis of mature B-cells. Biochemical Society Transactions 32, 973-975. Chen, T., Zimmermann, W., Parker, J., Chen, I., Maeda, A., and Bolland, S. (2001). Biliary glycoprotein (BGPa, CD66a, CEACAM1) mediates inhibitory signals. Journal of Leukocyte Biology 70, 335-340. Clatworthy, M. R., and Smith, K. G. (2004). FcgRIIb balances efficient pathogen clearance and the cytokine-mediated consequences of sepsis. The Journal of Experimental Medicine 199, 717-723. Clatworthy, M. R., Willcocks, L., Urban, B., Langhorne, J., Williams, T. N., Peshu, N., Watkins, N. A., Floto, R. A., and Smith, K. G. (2007). Systemic lupus erythematosus-associated defects in the inhibitory receptor FcgRIIb reduce susceptibility to malaria. Proceedings of the National Academy of Sciences of the United States of America 104, 7169-7174. Clynes, R., Maizes, J. S., Guinamard, R., Ono, M., Takai, T., and Ravetch, J. V. (1999). Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. The Journal of Experimental Medicine 189, 179-185. Crowley, J. E., Stadanlick, J. E., Cambier, J. C., and Cancro, M. P. (2009). FcgRIIB signals inhibit BLyS signaling and BCR-mediated BLyS receptor up-regulation. Blood 113, 1464-1473. Deng, Z., Cao, P., Wan, M. M., and Sui, G. (2010). Yin Yang 1: a multifaceted protein beyond a transcription factor. Transcription 1, 81-84. Espeli, M., Clatworthy, M. R., Bokers, S., Lawlor, K. E., Cutler, A. J., Kontgen, F., Lyons, P. A., and Smith, K. G. (2012). Analysis of a wild mouse promoter variant reveals a novel role for FcgRIIb in the control of the germinal center and autoimmunity. The Journal of Experimental Medicine 209, 2307-2319. Fang, H., Pengal, R. A., Cao, X., Ganesan, L. P., Wewers, M. D., Marsh, C. B., and Tridandapani, S. (2004). Lipopolysaccharide-induced macrophage inflammatory response is regulated by SHIP. Journal of Immunology (Baltimore, Md : 1950) 173, 360-366. Fearon, D. T., Manders, P., and Wagner, S. D. (2001). Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science (New York, NY) 293, 248-250. Floto, R. A., Clatworthy, M. R., Heilbronn, K. R., Rosner, D. R., MacAry, P. A., Rankin, A., Lehner, P. J., Ouwehand, W. H., Allen, J. M., Watkins, N. A., and Smith, K. G. (2005). Loss of function of a lupus-associated FcgRIIb polymorphism through exclusion from lipid rafts. Nature Medicine 11, 1056-1058. Fusaki, N., Tomita, S., Wu, Y., Okamoto, N., Goitsuka, R., Kitamura, D., and Hozumi, N. (2000). BLNK is associated with the CD72/SHP-1/Grb2 complex in the WEHI231 cell line after membrane IgM cross-linking. European Journal of Immunology 30, 1326-1330. Ganesan, L. P., Kim, J., Wu, Y., Mohanty, S., Phillips, G. S., Birmingham, D. J., Robinson, J. M., and Anderson, C. L. (2012). FcgRIIb on liver sinusoidal endothelium clears small immune complexes. Journal of Immunology (Baltimore, Md : 1950) 189, 4981-4988. Gillis, C., Gouel-Cheron, A., Jonsson, F., and Bruhns, P. (2014). Contribution of human FcgRs to disease with evidence from human polymorphisms and transgenic animal studies. Frontiers in Immunology 5, 254. Hess, J., Angel, P., and Schorpp-Kistner, M. (2004). AP-1 subunits: quarrel and harmony among siblings. Journal of Cell Science 117, 5965-5973. Hu, X. Z., Wright, T. T., Jones, N. R., Ramos, T. N., Skibinski, G. A., McCrory, M. A., Barnum, S. R., and Szalai, A. J. (2011). Inhibition of experimental autoimmune encephalomyelitis in human C-reactive protein transgenic mice is FcgRIIB dependent. Autoimmune Diseases 2011, 484936. Hu, Y. F., Luscher, B., Admon, A., Mermod, N., and Tjian, R. (1990). Transcription factor AP-4 contains multiple dimerization domains that regulate dimer specificity. Genes Development 4, 1741-1752. Huang, B., Yang, X. D., Lamb, A., and Chen, L. F. (2010). Posttranslational modifications of NF-kB: another layer of regulation for NF-kB signaling pathway. Cellular Signalling 22, 1282-1290. Imai, K., and Okamoto, T. (2006). Transcriptional repression of human immunodeficiency virus type 1 by AP-4. The Journal of Biological Chemistry 281, 12495-12505. Jiang, Y., Hirose, S., Sanokawa-Akakura, R., Abe, M., Mi, X., Li, N., Miura, Y., Shirai, J., Zhang, D., Hamano, Y., and Shirai, T. (1999). Genetically determined aberrant down-regulation of FcgRIIB1 in germinal center B cells associated with hyper-IgG and IgG autoantibodies in murine systemic lupus erythematosus. International Immunology 11, 1685-1691. Kalergis, A. M., and Ravetch, J. V. (2002). Inducing tumor immunity through the selective engagement of activating Fcg receptors on dendritic cells. The Journal of Experimental Medicine 195, 1653-1659. Kaminska, B., Pyrzynska, B., Ciechomska, I., and Wisniewska, M. (2000). Modulation of the composition of AP-1 complex and its impact on transcriptional activity. Acta Neurobiologiae Eyxperimentalis 60, 395-402. Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-kB activity. Annual Review of Immunology 18, 621-663. Karsten, C. M., and Kohl, J. (2012). The immunoglobulin, IgG Fc receptor and complement triangle in autoimmune diseases. Immunobiology 217, 1067-1079. Kim, J., and Kim, J. (2009). YY1's longer DNA-binding motifs. Genomics 93, 152-158. Komarova, E. A., Krivokrysenko, V., Wang, K., Neznanov, N., Chernov, M. V., Komarov, P. G., Brennan, M. L., Golovkina, T. V., Rokhlin, O. W., Kuprash, D. V., et al. (2005). p53 is a suppressor of inflammatory response in mice. FASEB Journal : Official Pblication of the Federation of American Societies for Experimental Biology 19, 1030-1032. Kono, H., Kyogoku, C., Suzuki, T., Tsuchiya, N., Honda, H., Yamamoto, K., Tokunaga, K., and Honda, Z. (2005). FcgRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Human Molecular Genetics 14, 2881-2892. Ku, W. C., Chiu, S. K., Chen, Y. J., Huang, H. H., Wu, W. G., and Chen, Y. J. (2009). Complementary quantitative proteomics reveals that transcription factor AP-4 mediates E-box-dependent complex formation for transcriptional repression of HDM2. Molecular Cellular Proteomics : MCP 8, 2034-2050. Kyogoku, C., Dijstelbloem, H. M., Tsuchiya, N., Hatta, Y., Kato, H., Yamaguchi, A., Fukazawa, T., Jansen, M. D., Hashimoto, H., van de Winkel, J. G., et al. (2002). Fcg receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis and Rheumatism 46, 1242-1254. Li, F., and Ravetch, J. V. (2013). Antitumor activities of agonistic anti-TNFR antibodies require differential FcgRIIB coengagement in vivo. Proceedings of the National Academy of Sciences of the United States of America 110, 19501-19506. Lovdal, T., and Berg, T. (2001). Transcription of Fcg receptors in different rat liver cells. Cell Biology International 25, 821-824. Malbec, O., Fong, D. C., Turner, M., Tybulewicz, V. L., Cambier, J. C., Fridman, W. H., and Daeron, M. (1998). Fce receptor I-associated lyn-dependent phosphorylation of Fcg receptor IIB during negative regulation of mast cell activation. Journal of Immunology (Baltimore, Md : 1950) 160, 1647-1658. McEwan, W. A., Tam, J. C., Watkinson, R. E., Bidgood, S. R., Mallery, D. L., and James, L. C. (2013). Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nature Immunology 14, 327-336. Mellert, H. S., Stanek, T. J., Sykes, S. M., Rauscher, F. J., 3rd, Schultz, D. C., and McMahon, S. B. (2011). Deacetylation of the DNA-binding domain regulates p53-mediated apoptosis. The Journal of Biological Chemistry 286, 4264-4270. Menendez, D., Shatz, M., and Resnick, M. A. (2013). Interactions between the tumor suppressor p53 and immune responses. Current Opinion in Oncology 25, 85-92. Merika, M., and Orkin, S. H. (1993). DNA-binding specificity of GATA family transcription factors. Molecular and Cellular Biology 13, 3999-4010. Moir, S., and Fauci, A. S. (2014). B-cell exhaustion in HIV infection: the role of immune activation. Current Opinion in HIV and AIDS 9, 472-477. Mold, C., Rodriguez, W., Rodic-Polic, B., and Du Clos, T. W. (2002). C-reactive protein mediates protection from lipopolysaccharide through interactions with FcgR. Journal of Immunology (Baltimore, Md : 1950) 169, 7019-7025. Nimmerjahn, F., and Ravetch, J. V. (2006). Fcgreceptors: old friends and new family members. Immunity 24, 19-28. Nimmerjahn, F., and Ravetch, J. V. (2008). Fcg receptors as regulators of immune responses. Nature Reviews Immunology 8, 34-47. O'Neill, S. K., Getahun, A., Gauld, S. B., Merrell, K. T., Tamir, I., Smith, M. J., Dal Porto, J. M., Li, Q. Z., and Cambier, J. C. (2011). Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity 35, 746-756. Oda, T., Kujovich, J., Reis, M., Newman, B., and Druker, B. J. (1997). Identification and characterization of two novel SH2 domain-containing proteins from a yeast two hybrid screen with the ABL tyrosine kinase. Oncogene 15, 1255-1262. Okazaki, T., Maeda, A., Nishimura, H., Kurosaki, T., and Honjo, T. (2001). PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proceedings of the National Academy of Sciences of the United States of America 98, 13866-13871. Olferiev, M., Masuda, E., Tanaka, S., Blank, M. C., and Pricop, L. (2007). The role of activating protein 1 in the transcriptional regulation of the human FCGR2B promoter mediated by the -343 G -> C polymorphism associated with systemic lupus erythematosus. The Journal of Biological Chemistry 282, 1738-1746. Ono, M., Bolland, S., Tempst, P., and Ravetch, J. V. (1996). Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor FcgRIIB. Nature 383, 263-266. Park, S. J., Ahmad, F., Philp, A., Baar, K., Williams, T., Luo, H., Ke, H., Rehmann, H., Taussig, R., Brown, A. L., et al. (2012). Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421-433. Pearse, R. N., Kawabe, T., Bolland, S., Guinamard, R., Kurosaki, T., and Ravetch, J. V. (1999). SHIP recruitment attenuates FcgRIIB-induced B cell apoptosis. Immunity 10, 753-760. Porakishvili, N., Vispute, K., Steele, A. J., Rajakaruna, N., Kulikova, N., Tsertsvadze, T., Nathwani, A., Damle, R. N., Clark, E. A., Rai, K. R., et al. (2015). Rewiring of sIgM-mediated intracellular signaling through the CD180 Toll-like receptor. Molecular Medicine (Cambridge, Mass). Pritchard, N. R., Cutler, A. J., Uribe, S., Chadban, S. J., Morley, B. J., and Smith, K. G. (2000). Autoimmune-prone mice share a promoter haplotype associated with reduced expression and function of the Fc receptor FcgRII. Current Biology 10, 227-230. Rahman, Z. S., and Manser, T. (2005). Failed up-regulation of the inhibitory IgG Fc receptor FcgRIIB on germinal center B cells in autoimmune-prone mice is not associated with deletion polymorphisms in the promoter region of the FcgRIIB gene. Journal of Immunology (Baltimore, Md : 1950) 175, 1440-1449. Rahman, Z. S., Niu, H., Perry, D., Wakeland, E., Manser, T., and Morel, L. (2007). Expression of the autoimmune Fcgr2b NZW allele fails to be upregulated in germinal center B cells and is associated with increased IgG production. Genes and Immunity 8, 604-612. Ravetch, J. V., and Lanier, L. L. (2000). Immune inhibitory receptors. Science (New York, NY) 290, 84-89. Rodriguez, W., Mold, C., Kataranovski, M., Hutt, J., Marnell, L. L., and Du Clos, T. W. (2005). Reversal of ongoing proteinuria in autoimmune mice by treatment with C-reactive protein. Arthritis and Rheumatism 52, 642-650. Sato, K., and Ochi, A. (1998). Superclustering of B cell receptor and FcgRIIB1 activates Src homology 2-containing protein tyrosine phosphatase-1. Journal of Immunology (Baltimore, Md : 1950) 161, 2716-2722. Siriboonrit, U., Tsuchiya, N., Sirikong, M., Kyogoku, C., Bejrachandra, S., Suthipinittharm, P., Luangtrakool, K., Srinak, D., Thongpradit, R., Fujiwara, K., et al. (2003). Association of Fcg receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens 61, 374-383. Smith, K. G., and Clatworthy, M. R. (2010). FcgRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nature reviews Immunology 10, 328-343. Solomon, J. M., Pasupuleti, R., Xu, L., McDonagh, T., Curtis, R., DiStefano, P. S., and Huber, L. J. (2006). Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Molecular and Cellular Biology 26, 28-38. Su, K., Li, X., Edberg, J. C., Wu, J., Ferguson, P., and Kimberly, R. P. (2004a). A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgRIIb alters receptor expression and associates with autoimmunity. II. Differential binding of GATA4 and Yin-Yang1 transcription factors and correlated receptor expression and function. Journal of Immunology (Baltimore, Md : 1950) 172, 7192-7199. Su, K., Wu, J., Edberg, J. C., Li, X., Ferguson, P., Cooper, G. S., Langefeld, C. D., and Kimberly, R. P. (2004b). A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgRIIb alters receptor expression and associates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus. Journal of Immunology (Baltimore, Md : 1950) 172, 7186-7191. Su, K., Yang, H., Li, X., Li, X., Gibson, A. W., Cafardi, J. M., Zhou, T., Edberg, J. C., and Kimberly, R. P. (2007). Expression profile of FcgRIIb on leukocytes and its dysregulation in systemic lupus erythematosus. Journal of Immunology (Baltimore, Md : 1950) 178, 3272-3280. Svajger, U., and Jeras, M. (2012). Anti-inflammatory effects of resveratrol and its potential use in therapy of immune-mediated diseases. International Reviews of Immunology 31, 202-222. Tibaldi, E., Brunati, A. M., Zonta, F., Frezzato, F., Gattazzo, C., Zambello, R., Gringeri, E., Semenzato, G., Pagano, M. A., and Trentin, L. (2011). Lyn-mediated SHP-1 recruitment to CD5 contributes to resistance to apoptosis of B-cell chronic lymphocytic leukemia cells. Leukemia 25, 1768-1781. Tzeng, S. J., Bolland, S., Inabe, K., Kurosaki, T., and Pierce, S. K. (2005). The B cell inhibitory Fc receptor triggers apoptosis by a novel c-Abl family kinase-dependent pathway. The Journal of Biological Chemistry 280, 35247-35254. Vaughan, A. T., Iriyama, C., Beers, S. A., Chan, C. H., Lim, S. H., Williams, E. L., Shah, V., Roghanian, A., Frendeus, B., Glennie, M. J., and Cragg, M. S. (2014). Inhibitory FcgRIIb (CD32b) becomes activated by therapeutic mAb in both cis and trans and drives internalization according to antibody specificity. Blood 123, 669-677. Vries, R. G., Prudenziati, M., Zwartjes, C., Verlaan, M., Kalkhoven, E., and Zantema, A. (2001). A specific lysine in c-Jun is required for transcriptional repression by E1A and is acetylated by p300. The EMBO Journal 20, 6095-6103. Wan, F., and Lenardo, M. J. (2009). Specification of DNA binding activity of NF-kB proteins. Cold Spring Harbor Perspectives in Biology 1, a000067. Wenink, M. H., Santegoets, K. C., Roelofs, M. F., Huijbens, R., Koenen, H. J., van Beek, R., Joosten, I., Meyer-Wentrup, F., Mathsson, L., Ronnelid, J., et al. (2009). The inhibitory FcgIIb receptor dampens TLR4-mediated immune responses and is selectively up-regulated on dendritic cells from rheumatoid arthritis patients with quiescent disease. Journal of Immunology (Baltimore, Md : 1950) 183, 4509-4520. Willcocks, L. C., Carr, E. J., Niederer, H. A., Rayner, T. F., Williams, T. N., Yang, W., Scott, J. A., Urban, B. C., Peshu, N., Vyse, T. J., et al. (2010). A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematosus. Proceedings of the National Academy of Sciences of the United States of America 107, 7881-7885. Xiang, Z., Cutler, A. J., Brownlie, R. J., Fairfax, K., Lawlor, K. E., Severinson, E., Walker, E. U., Manz, R. A., Tarlinton, D. M., and Smith, K. G. (2007). FcgRIIb controls bone marrow plasma cell persistence and apoptosis. Nature Immunology 8, 419-429. Xiu, Y., Nakamura, K., Abe, M., Li, N., Wen, X. S., Jiang, Y., Zhang, D., Tsurui, H., Matsuoka, S., Hamano, Y., et al. (2002). Transcriptional regulation of Fcgr2b gene by polymorphic promoter region and its contribution to humoral immune responses. Journal of Immunology (Baltimore, Md : 1950) 169, 4340-4346. Yamanashi, Y., Tamura, T., Kanamori, T., Yamane, H., Nariuchi, H., Yamamoto, T., and Baltimore, D. (2000). Role of the rasGAP-associated docking protein p62(dok) in negative regulation of B cell receptor-mediated signaling. Genes Development 14, 11-16. Yant, S. R., Zhu, W., Millinoff, D., Slightom, J. L., Goodman, M., and Gumucio, D. L. (1995). High affinity YY1 binding motifs: identification of two core types (ACAT and CCAT) and distribution of potential binding sites within the human beta globin cluster. Nucleic Acids Research 23, 4353-4362. Yao, Y. L., Yang, W. M., and Seto, E. (2001). Regulation of transcription factor YY1 by acetylation and deacetylation. Molecular and Cellular Biology 21, 5979-5991. Zhang, Y., Liu, S., Liu, J., Zhang, T., Shen, Q., Yu, Y., and Cao, X. (2009). Immune complex/Ig negatively regulate TLR4-triggered inflammatory response in macrophages through FcgRIIb-dependent PGE2 production. Journal of Immunology (Baltimore, Md : 1950) 182, 554-562. Zhou, H., Zarubin, T., Ji, Z., Min, Z., Zhu, W., Downey, J. S., Lin, S., and Han, J. (2005). Frequency and distribution of AP-1 sites in the human genome. DNA Research 12, 139-150. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19929 | - |
| dc.description.abstract | FcγRIIB (又名CD32B)是抑制性的Fc受體,是IgG的受體之一。在B細胞,FcγRIIB的主要作用是經由免疫複合體 (immune complex)去抑制與抗原結合的B細胞抗原受體 (B-cell antigen receptor, BCR),藉以阻斷B細胞的活化和增殖。另一方面,FcγRIIB也可以自體聚集 (homo-aggregation)促使B細胞凋亡,與B細胞的體內平衡 (homeostasis)有關。不過,其抑制性訊息傳遞較不清楚。我們從人類周邊血分離B細胞來探討其機制。人類周邊血B細胞可依CD27和CD38表面標記分成初始B細胞 (na iuml;ve B cells,CD27-CD38-)、記憶B細胞 (memory B cells,CD27+CD38-)和漿細胞 (plasma cells,CD27+CD38+)。當給予非抗原專一性免疫複合體去活化FcγRIIB時,三群B細胞均呈現凋亡,尤以漿細胞最顯著,這與漿細胞最高表達FcγRIIB吻合。此外,三種B細胞凋亡均可被BTK和p38激酶抑制劑 (kinase inhibitor)阻斷。有趣的是,只有初始B細胞和漿細胞凋亡亦可被c-Abl激酶抑制劑逆轉。初步結果顯示c-Abl應是BTK下游訊息分子,但需在三種細胞進一步確認。由於FcγRIIB是抑制B細胞功能最重要的受體,而FcγRIIB基因剔除鼠呈現B細胞異常增生、過度活化以及製造過量自體免疫抗體,最終導致紅斑性狼瘡。在人類紅斑性狼瘡患者,周邊血記憶B細胞和漿細胞的FcγRIIB表達均較正常個體低。我們先前的研究發現白藜蘆醇可促進FcγRIIB基因轉錄,進而緩解紅斑性狼瘡鼠病徵。因此,我們接著研究白藜蘆醇調節FcγRIIB基因轉錄的機制。首先採用克隆的3.3 kb 和其5’端基因刪除片段FcγRIIB基因啟動子(promoter)輔以冷螢光酶報導系統,在人類BJAB B細胞株分析關鍵片段區域。結果發現基因啟動子-600到-471 bp和-372到-331 bp這兩個片段是重要區域。NF-κB在-600到-471 bp的片段區域最重要,並受白藜蘆醇乙醯化作用調控。而在-372到-331 bp的片段區域中,則是轉錄因子YY-1和AP-4較具調節潛力。由於2 kb PD-1 (programmed cell death 1,又名CD279)基因啟動子亦受白藜蘆醇類似調節,我們也做了初步分析。綜合上述,我們認為透過研究增強FcγRIIB抑制性訊息傳遞和提升FcγRIIB轉錄的分子機制,應可找出最合適的分子作為藥物標靶來應用於治療自體免疫疾病。 | zh_TW |
| dc.description.abstract | FcγRIIB (a.k.a. CD32B) is a sole inhibitory Fc receptor. When it is co-ligated with B-cell antigen receptor (BCR), it blocks BCR signaling for activation and proliferation of B cells. In contrast, cross-linking FcγRIIB without coengagement of BCR triggers an apoptotic response. The inhibitory signaling, however, through FcγRIIB homo-aggregation remains largely unknown. To investigate apoptotic signals transduced through FcγRIIB in human B cells, we purified na iuml;ve B cells (CD27-CD38-), memory B cells (CD27+CD38-) and plasma cells (PCs, CD27+CD38+) from peripheral blood and observed apoptosis induced by non-cognate immune complexes (ICs) in all three subsets. The apoptotic response was most significant in PCs, consistent with its highest surface level of FcγRIIB. Moreover, FcγRIIB mediated apoptosis in all three subsets of B cells through BTK- and p38-dependent pathways as judged by specific kinase inhibitors. Interestingly, c-Abl was also involved in apoptosis by FcγRIIB activation in na iuml;ve B cells and PCs but not memory B cells. Preliminary data showed that c-Abl was likely downstream of BTK. The importance of the inhibitory role of FcγRIIB is most evident from FcγRIIB deficient mice, which manifest uncontrolled B-cell expansion and massive autoantibody production, leading to lupus-like disease. In contrast, overexpression of FcγRIIB on B cells confers protection in lupus-prone mice. Similarly, patients with SLE exhibit a decrease of FcγRIIB’s expression on memory B cells and PCs. We previously showed that resveratrol could upregulate the gene transcription of FcγRIIB on B cells and ameliorate lupus symptoms of lupus prone mice. To investigate the underlying mechanism, we analyzed the 5’-deletion of 3.3 kb FCGR2B promoter constructs by luciferase reporter gene assay and found that the region of between 600 to 471 bp and between 372 to 331 bp upstream to FCGR2B start codon were critical for the effect of resveratrol. At the -600 to -471 bp region, reduced binding of acetylated NF-κB to the promoter appeared to confer increased transcription of FcγRIIB. Moreover, binding of YY-1 and AP-4 at -372 to -331 bp region was likely critical to the resveratrol-mediated up-regulation of FcγRIIB. Based on these findings, the identification of the key intermediaries of pro-apoptosis signaling by FcγRIIB or the key transcriptional regulator of FcγRIIB gene to enhance or to restore inhibitory function of FcγRIIB may be able to select a druggable target to eliminate over-expanded and hyperactive B cells in patients with autoimmune diseases. Thus, pharmacological augmentation of inhibitory function of FcγRIIB may become a new strategy for the treatment of SLE. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:27:44Z (GMT). No. of bitstreams: 1 ntu-104-R02443006-1.pdf: 3052255 bytes, checksum: 9cb9902bb894cb33cf0d70ffde65bd16 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………………………i 中文摘要………………………………………………………………………………...ii Abstract………………………………………………………………………………….iv Contents…………………………………………………………………………………vi List of Figures……………………………………………………………………...ix List of Tables………………………………………………………………………...x List of Abbreviations……………………………………………………...xi Chapter 1 Introduction…………………………………………………...1 1.1 Immune inhibitory receptors……………………………………………………...2 1.1.1 Mechanisms of immune inhibitory receptors on human B cells……………..2 1.1.2 Fcγ receptors………………………………………………………………….3 1.2 FcγRIIB receptor………………………………………………………………….6 1.2.1 FcγRIIB receptor……………………………………………………………..6 1.2.2 Signaling pathways of FcγRIIB in B cells…………………………………...9 1.2.3 The funciton of FcγRIIB in dendritic cells, macrophages, mast cells and neutrophils…………………………………………12 1.2.4 The role of FcγRIIB in modulation of the effects of therapeutic antibodies..13 1.2.5 Ligands of FcγRIIB…………………………………………………………15 1.3 FCGR2B…………………………………………………………………………16 1.3.1 FcγRIIB gene polymorphisms………………………………………………16 1.3.2 Transcription factors that regulate FcγRIIB expression ……………………18 1.4 NF-κB……………………………………………………………………………20 1.4.1 The role of NF-κB in inflammation…………………………………………20 1.4.2 Posttranslational modifications of NF-κB…………………………………..20 1.5 p53……………………………………………………………………………….22 1.5.1 p53…………………………………………………………………………..22 1.5.2 Posttranslational modifications of p53……………………………………...22 1.6 YY-1……………………………………………………………………………...23 1.7 AP-1……………………………………………………………………………...24 1.8 AP-4……………………………………………………………………………...24 1.9 Resveratrol……………………………………………………………………….25 1.9.1 Resveratrol…………………………………………………………………..25 1.9.2 Multiple effects of resveratrol………………………………………………26 1.10 Motivation……………………………………………………………………...27 Chapter 2 Materials and Methods……………………………………...29 2.1 Reagents and antibodies…………………………………………………………30 2.2 Cell line………………………………………………………………………......31 2.3 Human peripheral blood mononuclear cells (PBMC)…………………………...31 2.4 Plasmids………………………………………………………………………….32 2.5 Cell transfection and dual-luciferase reporter gene assay……………………….32 2.6 Chromatin immunoprecipitation………………………………………………....33 2.7 Cell apoptosis assay……………………………………………………………...34 2.8 Cell proliferation assay…………………………………………………………..35 2.9 Flow cytometry analysis…………………………………………………………35 2.10 Immunofluorescence staining...………………………………………………...36 2.11 Statistical analysis………………………………………………………………37 Chapter 3 Results………………………………………………………..38 3.1 Human primary plasma cells were most sensitive to induction of apoptosis after treatment with immune complexes...……………………………………………39 3.2 BTK and c-Abl were responsible for apoptotic signaling through FcγRIIB in human B cells……………………………………………………………………40 3.3 P38 was required for FcγRIIB-induced apoptosis in B cells……………………41 3.4 FcγRIIB-mediated inhibition inhibited BCR-induced proliferation of human na iuml;ve B cells..…………………………………………………………………………..42 3.5 Regions between -600 bp to -471 bp and between -372 bp to -331 bp on promoter of FcγRIIB gene were important for resveratrol-mediated FcγRIIB transcriptional activity…………………………………………………………………………...43 3.6 NF-κB was an important transcriptional factor regulated by resveratrol to achieve upregulation FcγRIIB.…………………………………………………………...44 3.7 Region from -926 bp to -356 bp on PD-1 promoter was important for resveratrol-induced PD-1 transcription activity…………………………………46 Chapter 4 Discussion…………………………………………………….47 4.1 FcγRIIB homo-aggregation induced apoptosis and inhibited cell proliferation in human B cells…………………………………………………………………....48 4.2 The underlying mechanisms of apoptosis induced by FcγRIIB homo-aggregation. …………………………………………………………………………………...50 4.3 The critical promoter sequences on FcγRIIB and PD-1 promoters in response to resveratrol-induced upregulation of transcription……………………………….52 4.4 Potential transcription factors critical for upregulation of FcγRIIB and PD-1 gene expression in response to resveratrol……………………………………………53 4.5 Potential transcription factors that regulate basal transcriptional activities of FcγRIIB and PD-1 genes………………………………………………………...56 Figures……………………………………………………………………59 Appendix……………...………………………………………………….95 References……………………………………………………………….110 | |
| dc.language.iso | en | |
| dc.title | FcγRIIB和PD-1在B細胞之基因表達及抑制性功能之研究 | zh_TW |
| dc.title | Studies on the gene expression and inhibitory function of FcγRIIB and PD-1 in B cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林琬琬,符文美 | |
| dc.subject.keyword | 免疫抑制性受體,B細胞, | zh_TW |
| dc.subject.keyword | immune inhibitory receptor,B cell, | en |
| dc.relation.page | 119 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
