Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 腦與心智科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19919
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王培育
dc.contributor.authorYa-Yun Chengen
dc.contributor.author鄭雅云zh_TW
dc.date.accessioned2021-06-08T02:27:06Z-
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citationAnton, S., Leeuwenburgh, C. (2013). Fasting or caloric restriction for healthy aging. Exp Gerontol, 48(10), 1003-1005. doi: 10.1016/j.exger.2013.04.011
Antosh, M., Whitaker, R., Kroll, A., Hosier, S., Chang, C., Bauer, J., . . . Helfand, S. L. (2011). Comparative transcriptional pathway bioinformatic analysis of dietary restriction, Sir2, p53 and resveratrol life span extension in Drosophila. Cell Cycle, 10(6), 904-911.
Arias, N., Mendez, M., Arias, J. (2015). The recognition of a novel-object in a novel context leads to hippocampal and parahippocampal c-Fos involvement. Behav Brain Res, 292, 44-49. doi: 10.1016/j.bbr.2015.06.012
Ayala, V., Naudi, A., Sanz, A., Caro, P., Portero-Otin, M., Barja, G., Pamplona, R. (2007). Dietary protein restriction decreases oxidative protein damage, peroxidizability index, and mitochondrial complex I content in rat liver. J Gerontol A Biol Sci Med Sci, 62(4), 352-360.
Broadbent, N. J., Squire, L. R., Clark, R. E. (2004). Spatial memory, recognition memory, and the hippocampus. Proc Natl Acad Sci U S A, 101(40), 14515-14520. doi: 10.1073/pnas.0406344101
Canto, C., Auwerx, J. (2009). Caloric restriction, SIRT1 and longevity. Trends Endocrinol Metab, 20(7), 325-331. doi: 10.1016/j.tem.2009.03.008
Canto, C., Auwerx, J. (2011). Calorie restriction: is AMPK a key sensor and effector? Physiology (Bethesda), 26(4), 214-224. doi: 10.1152/physiol.00010.2011
Clark, R. E., Zola, S. M., Squire, L. R. (2000). Impaired recognition memory in rats after damage to the hippocampus. J Neurosci, 20(23), 8853-8860.
Cohen, D. E., Supinski, A. M., Bonkowski, M. S., Donmez, G., Guarente, L. P. (2009). Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev, 23(24), 2812-2817. doi: 10.1101/gad.1839209
Coulston, A. M., Boushey, C. (2008). Nutrition in the prevention and treatment of disease (2nd ed.). Amsterdam ; Boston: Academic Press.
Cunningham, K. A., Hua, Z., Srinivasan, S., Liu, J., Lee, B. H., Edwards, R. H., Ashrafi, K. (2012). AMP-activated kinase links serotonergic signaling to glutamate release for regulation of feeding behavior in C. elegans. Cell Metab, 16(1), 113-121. doi: 10.1016/j.cmet.2012.05.014
Cuppari, L., Kamimura, M. A. (2011). Dialysis: Dietary phosphorus restriction: changing the paradigm? Nat Rev Nephrol, 7(5), 252-253. doi: 10.1038/nrneph.2011.42
Dagon, Y., Avraham, Y., Magen, I., Gertler, A., Ben-Hur, T., Berry, E. M. (2005). Nutritional status, cognition, and survival: a new role for leptin and AMP kinase. J Biol Chem, 280(51), 42142-42148. doi: 10.1074/jbc.M507607200
de Cabo, R., Liu, L., Ali, A., Price, N., Zhang, J., Wang, M., . . . Irusta, P. M. (2015). Serum from calorie-restricted animals delays senescence and extends the lifespan of normal human fibroblasts in vitro. Aging (Albany NY), 7(3), 152-166.
Dhahbi, J. M., Mote, P. L., Fahy, G. M., Spindler, S. R. (2005). Identification of potential caloric restriction mimetics by microarray profiling. Physiol Genomics, 23(3), 343-350. doi: 10.1152/physiolgenomics.00069.2005
Dick, K. B., Ross, C. R., Yampolsky, L. Y. (2011). Genetic variation of dietary restriction and the effects of nutrient-free water and amino acid supplements on lifespan and fecundity of Drosophila. Genet Res (Camb), 93(4), 265-273. doi: 10.1017/S001667231100019X
Duan, W., Guo, Z., Mattson, M. P. (2001). Brain-derived neurotrophic factor mediates an excitoprotective effect of dietary restriction in mice. J Neurochem, 76(2), 619-626.
Everitt, A. V., Le Couteur, D. G. (2007). Life extension by calorie restriction in humans. Ann N Y Acad Sci, 1114, 428-433. doi: 10.1196/annals.1396.005
Fontana, L., Weiss, E. P., Villareal, D. T., Klein, S., Holloszy, J. O. (2008). Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell, 7(5), 681-687.
Fusco, S., Maulucci, G., Pani, G. (2012). Sirt1: def-eating senescence? Cell Cycle, 11(22), 4135-4146. doi: 10.4161/cc.22074
Fusco, S., Pani, G. (2013). Brain response to calorie restriction. Cell Mol Life Sci, 70(17), 3157-3170. doi: 10.1007/s00018-012-1223-y
Fusco, S., Ripoli, C., Podda, M. V., Ranieri, S. C., Leone, L., Toietta, G., . . . Pani, G. (2012). A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction. Proc Natl Acad Sci U S A, 109(2), 621-626. doi: 10.1073/pnas.1109237109
Gomez-Pinilla, F., Vaynman, S., Ying, Z. (2008). Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci, 28(11), 2278-2287. doi: 10.1111/j.1460-9568.2008.06524.x
Grandison, R. C., Piper, M. D., Partridge, L. (2009). Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature, 462(7276), 1061-1064. doi: 10.1038/nature08619
Greer, E. L., Brunet, A. (2009). Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell, 8(2), 113-127. doi: 10.1111/j.1474-9726.2009.00459.x
Hoile, S. P., Lillycrop, K. A., Thomas, N. A., Hanson, M. A., Burdge, G. C. (2011). Dietary protein restriction during F0 pregnancy in rats induces transgenerational changes in the hepatic transcriptome in female offspring. PLoS One, 6(7), e21668. doi: 10.1371/journal.pone.0021668
Hursting, S. D., Lavigne, J. A., Berrigan, D., Perkins, S. N., Barrett, J. C. (2003). Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu Rev Med, 54, 131-152. doi: 10.1146/annurev.med.54.101601.152156
Kalhan, S. C., Uppal, S. O., Moorman, J. L., Bennett, C., Gruca, L. L., Parimi, P. S., . . . Hanson, R. W. (2011). Metabolic and genomic response to dietary isocaloric protein restriction in the rat. J Biol Chem, 286(7), 5266-5277. doi: 10.1074/jbc.M110.185991
Kerr, F., Augustin, H., Piper, M. D., Gandy, C., Allen, M. J., Lovestone, S., Partridge, L. (2011). Dietary restriction delays aging, but not neuronal dysfunction, in Drosophila models of Alzheimer's disease. Neurobiol Aging, 32(11), 1977-1989. doi: 10.1016/j.neurobiolaging.2009.10.015
Kim, S. J., Lee, J. H., Chung, H. S., Song, J. H., Ha, J., Bae, H. (2013). Neuroprotective Effects of AMP-Activated Protein Kinase on Scopolamine Induced Memory Impairment. Korean J Physiol Pharmacol, 17(4), 331-338. doi: 10.4196/kjpp.2013.17.4.331
Kobilo, T., Guerrieri, D., Zhang, Y., Collica, S. C., Becker, K. G., van Praag, H. (2014). AMPK agonist AICAR improves cognition and motor coordination in young and aged mice. Learn Mem, 21(2), 119-126. doi: 10.1101/lm.033332.113
Kobilo, T., Yuan, C., van Praag, H. (2011). Endurance factors improve hippocampal neurogenesis and spatial memory in mice. Learn Mem, 18(2), 103-107. doi: 10.1101/lm.2001611
Koulouridis, E., Koulouridis, I. (2011). Is the dietary protein restriction achievable in chronic kidney disease? The impact upon quality of life and the dialysis delay. Hippokratia, 15(Suppl 1), 3-7.
Ksiazek, A., Konarzewski, M. (2012). Effect of dietary restriction on immune response of laboratory mice divergently selected for basal metabolic rate. Physiol Biochem Zool, 85(1), 51-61. doi: 10.1086/663696
Levine, M. E., Suarez, J. A., Brandhorst, S., Balasubramanian, P., Cheng, C. W., Madia, F., . . . Longo, V. D. (2014). Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab, 19(3), 407-417. doi: 10.1016/j.cmet.2014.02.006
Lin, W. S., Chen, J. Y., Wang, J. C., Chen, L. Y., Lin, C. H., Hsieh, T. R., . . . Wang, P. Y. (2014). The anti-aging effects of Ludwigia octovalvis on Drosophila melanogaster and SAMP8 mice. Age (Dordr), 36(2), 689-703. doi: 10.1007/s11357-013-9606-z
Mangravite, L. M., Chiu, S., Wojnoonski, K., Rawlings, R. S., Bergeron, N., Krauss, R. M. (2011). Changes in atherogenic dyslipidemia induced by carbohydrate restriction in men are dependent on dietary protein source. J Nutr, 141(12), 2180-2185. doi: 10.3945/jn.111.139477
Mayers, J. R., Iliff, B. W., Swoap, S. J. (2009). Resveratrol treatment in mice does not elicit the bradycardia and hypothermia associated with calorie restriction. FASEB J, 23(4), 1032-1040. doi: 10.1096/fj.08-115923
Ortiz-Bautista, R. J., Aguilar-Salinas, C. A., Monroy-Guzman, A. (2013). [Caloric restriction: about its positive metabolic effects and cellular impact]. Cir Cir, 81(5), 459-464.
Parrella, E., Maxim, T., Maialetti, F., Zhang, L., Wan, J., Wei, M., . . . Longo, V. D. (2013). Protein restriction cycles reduce IGF-1 and phosphorylated Tau, and improve behavioral performance in an Alzheimer's disease mouse model. Aging Cell, 12(2), 257-268. doi: 10.1111/acel.12049
Petersen, K. F., Befroy, D., Dufour, S., Dziura, J., Ariyan, C., Rothman, D. L., . . . Shulman, G. I. (2003). Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science, 300(5622), 1140-1142. doi: 10.1126/science.1082889
Piper, M. D., Partridge, L., Raubenheimer, D., Simpson, S. J. (2011). Dietary restriction and aging: a unifying perspective. Cell Metab, 14(2), 154-160. doi: 10.1016/j.cmet.2011.06.013
Price, N. L., Gomes, A. P., Ling, A. J., Duarte, F. V., Martin-Montalvo, A., North, B. J., . . . Sinclair, D. A. (2012). SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab, 15(5), 675-690. doi: 10.1016/j.cmet.2012.04.003
Ramamurthy, S., Chang, E., Cao, Y., Zhu, J., Ronnett, G. V. (2014). AMPK activation regulates neuronal structure in developing hippocampal neurons. Neuroscience, 259, 13-24. doi: 10.1016/j.neuroscience.2013.11.048
Rich, N. J., Van Landingham, J. W., Figueiroa, S., Seth, R., Corniola, R. S., Levenson, C. W. (2010). Chronic caloric restriction reduces tissue damage and improves spatial memory in a rat model of traumatic brain injury. J Neurosci Res, 88(13), 2933-2939. doi: 10.1002/jnr.22443
Solon-Biet, S. M., McMahon, A. C., Ballard, J. W., Ruohonen, K., Wu, L. E., Cogger, V. C., . . . Simpson, S. J. (2014). The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab, 19(3), 418-430. doi: 10.1016/j.cmet.2014.02.009
Stansley, B. J., Yamamoto, B. K. (2015). Behavioral impairments and serotonin reductions in rats after chronic L-dopa. Psychopharmacology (Berl). doi: 10.1007/s00213-015-3980-4
Trepanowski, J. F., Canale, R. E., Marshall, K. E., Kabir, M. M., Bloomer, R. J. (2011). Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings. Nutr J, 10, 107. doi: 10.1186/1475-2891-10-107
Tucci, P. (2012). Caloric restriction: is mammalian life extension linked to p53? Aging (Albany NY), 4(8), 525-534.
Vann, S. D., Albasser, M. M. (2011). Hippocampus and neocortex: recognition and spatial memory. Curr Opin Neurobiol, 21(3), 440-445. doi: 10.1016/j.conb.2011.02.002
Venesky, M. D., Wilcoxen, T. E., Rensel, M. A., Rollins-Smith, L., Kerby, J. L., Parris, M. J. (2012). Dietary protein restriction impairs growth, immunity, and disease resistance in southern leopard frog tadpoles. Oecologia, 169(1), 23-31. doi: 10.1007/s00442-011-2171-1
Viollet, B., Horman, S., Leclerc, J., Lantier, L., Foretz, M., Billaud, M., . . . Andreelli, F. (2010). AMPK inhibition in health and disease. Crit Rev Biochem Mol Biol, 45(4), 276-295. doi: 10.3109/10409238.2010.488215
Wang, J., Gallagher, D., DeVito, L. M., Cancino, G. I., Tsui, D., He, L., . . . Miller, F. D. (2012). Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell, 11(1), 23-35. doi: 10.1016/j.stem.2012.03.016
Wang, P. Y., Neretti, N., Whitaker, R., Hosier, S., Chang, C., Lu, D., . . . Helfand, S. L. (2009). Long-lived Indy and calorie restriction interact to extend life span. Proc Natl Acad Sci U S A, 106(23), 9262-9267. doi: 10.1073/pnas.0904115106
Wei, S., Shi, W., Li, M., Gao, Q. (2014). Calorie restriction down-regulates expression of the iron regulatory hormone hepcidin in normal and D-galactose-induced aging mouse brain. Rejuvenation Res, 17(1), 19-26. doi: 10.1089/rej.2013.1450
Winters, B. D., Forwood, S. E., Cowell, R. A., Saksida, L. M., Bussey, T. J. (2004). Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. J Neurosci, 24(26), 5901-5908. doi: 10.1523/JNEUROSCI.1346-04.2004
Witte, A. V., Fobker, M., Gellner, R., Knecht, S., Floel, A. (2009). Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U S A, 106(4), 1255-1260. doi: 10.1073/pnas.0808587106
Yamazaki, D., Horiuchi, J., Nakagami, Y., Nagano, S., Tamura, T., Saitoe, M. (2007). The Drosophila DCO mutation suppresses age-related memory impairment without affecting lifespan. Nat Neurosci, 10(4), 478-484. doi: 10.1038/nn1863
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19919-
dc.description.abstract卡路里節制(Calorie Restriction, CR)在許多不同物種上已被發現能有效降低與老化相關疾病發生的風險,以及增進認知功能的效果。然而,飲食成分中,哪一種營養成分扮演了主要的角色,藉由卡路里的節制調控了認知功能的可塑性。在本篇論文中,在不同營養成分下,本實驗利用物體辨認測驗(Novel Object Recognition, NOR)評估小鼠的記憶功能以及利用廣場測驗(Open Field Test)檢視小鼠自發性活動能力。發現飲食成分中的蛋白質(Protein),其中的必需胺基酸-色胺酸(Tryptophan) 在卡路里節制的情況下扮演了主要的角色促使記憶的增強。本研究結果更進一步顯示: 卡路里節制能調控認知記憶功能,且需要藉由海馬迴(Hippocampus)裡的腺苷單磷酸活化蛋白激酶(AMP-activated protein kinase, AMPK)活化的參與。另外,實驗結果發現AMPK的促進劑,Metformin,可以有效地增強小鼠的記憶表現;然而,AMPK的抑制劑,Compound C(CC),能有效地反轉因卡路里節制而增強記憶的好處。綜合以上所有結果顯示: 本篇論文鑑定出小鼠在卡路里節制的情況下,飲食成分中的色胺酸,為最主要能調控並促進記憶增強的營養成分,且其過程必須透過海馬迴內AMPK的活化。該研究結果強烈顯示,其結果在臨床治療與老化相關的腦功能障礙上具有重要意義。zh_TW
dc.description.abstractCalorie restriction (CR) has been shown to reduce the incidence of age-related diseases and improve cognitive functions in a variety of species. However, it remains unknown as to whether specific nutrient primarily works to mediate CR-induced cognitive plasticity. In this study, I evaluated the memory functions of mice under different dietary conditions by novel object recognition (NOR) tasks and the spontaneous motor activity by open field test. I found that protein derived essential amino acid-tryptophan played a major role in CR-induced memory enhancement. My results further revealed that hippocampal AMPK activation is essential for CR-mediated cognitive memory regulation since AMPK activation. I found that metformin, an AMPK activator, could significantly enhance the memory performance of mice, while CR-induced memory enhancement was attenuated by Compound C (CC), an AMPK inhibitor. Taken together, this study identified tryptophan as a critical nutrient that could mediate improved recognition memory essentially through AMPK activation under CR condition in mice. This study may have a critical implication in treating age-related brain dysfunctions in a clinical setting.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:27:06Z (GMT). No. of bitstreams: 1
ntu-104-R02454013-1.pdf: 3028140 bytes, checksum: 4a6e521ab3d1847bf08a2063b42a3e17 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsAcknowledgement……………………………………………………………………i
中文摘要………………………………………………………………………………ii
Abstract……………………………………………………………..……………...…iii
Chapter 1 Introduction…………………………………..…...………………1
1-1 Caloric restriction……………………………………………...……..……………1
1-2 Nutrient restriction…………………………………………...……..……………..2
1-3 Metabolisms…………………………………………...……..……………………3
Chapter 2 Materials and Methods…………...……...……..………………5
2-1. Animals………………...……..……………………………..……..……………5
2-2. Diets………………...……..……………………………..…..……..……………5
2-2-1. Caloric restriction diet……………………………..…..……..………...…5
2-2-2. nutritional manipulation……………………………..…..……..…………6
2-2-3. metformin diet…………………………...…………..…..……..…………6
2-3. Drug treatments………………..……………...…………..…..……..…………6
2-4. Behavioral Tests………………..……………...……...…..…...……..…………6
2-4-1. Open Field Test………………..………...……….....…...……..…………7
2-4-2. Novel Object Recognition Test………...……….....…...…………………7
2-5. Western Blot………...……….....…...…………………………………………..9
2-6. Statistical analysis………...……….....…...………………...…………………10
Chapter 3 Results…...……….....…...………………………………...………11
3-1. CR improves recognition memory in mice……………………..………………11
3-2. The duration of CR effects on the memory performance of mice……………...14
3-3. Protein mediates CR-induced memory enhancement………………..…….…...15
3-4. Tryptophan mediates CR-induced memory enhancement…………..……..…...16
3-5. HTR6 KO mice do not respond to tryptophan supplementation……..……..….17
3-6. AMPK mediates CR-induced memory enhancement……..…………….…..….18
Chapter 4 Discussion……..………………………………….…...….…..…...20
List of Figures……..………………………………….………………….…..…...25
Fig.1 Chronic CR improves memory but not affects motor activity in mice. …..…...25
Fig. 2 Appetite may not affect the memory performance of mice. …..…...................27
Fig. 3 The duration of CR effects on the memory performance of mice. ...................29
Fig. 4 Protein mediates CR-induced memory enhancement. ......................................30
Fig. 5 Tryptophan mediates CR-induced memory enhancement. ...............................32
Fig. 6 HTR6 KO mice do not respond to tryptophan supplementation. .....................34
Fig. 7 Nutritional manipulation induces AMPK activation in mouse hippocampus. .36
Fig8. Hippocampal AMPK activation enhances memory performance in mice. .......37
Fig9. AMPK activation is required for CR-induced memory enhancement in mice. .39
Reference……..……………………………………………….….…….….....…....41
dc.language.isoen
dc.title飲食操弄對於小鼠記憶的影響zh_TW
dc.titleEffects of nutritional manipulations on memory in miceen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡亭芬,梁庚辰,廖瑞銘
dc.subject.keyword卡路里節制,再認記憶,蛋白質,色胺酸,AMPK,物體辨認測驗,zh_TW
dc.subject.keywordcalorie restriction,protein,tryptophan,AMPK,memory,NOR,en
dc.relation.page46
dc.rights.note未授權
dc.date.accepted2015-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept腦與心智科學研究所zh_TW
顯示於系所單位:腦與心智科學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved