Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19903
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林依依(I-I Lin)
dc.contributor.authorChun-An Shihen
dc.contributor.author施俊安zh_TW
dc.date.accessioned2021-06-08T02:26:10Z-
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citationBender, M. A., & Ginis, I. (2000). Real-case simulations of hurricane-ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Monthly Weather Review, 128(4), 917-946.
Bister, M., & Emanuel, K. A. (2002). Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. Journal of Geophysical Research: Atmospheres (1984–2012), 107(D24), ACL-26.
Bister, M., & Emanuel, K. A. (2002). Low frequency variability of tropical cyclone potential intensity 2. Climatology for 1982–1995. Journal of Geophysical Research: Atmospheres (1984–2012), 107(D22), ACL-5.
Camargo, S. J. (2013). Global and regional aspects of tropical cyclone activity in the CMIP5 models. Journal of Climate, 26(24), 9880-9902.
Camargo, S. J., Tippett, M. K., Sobel, A. H., Vecchi, G. A., & Zhao, M. (2014). Testing the performance of tropical cyclone genesis indices in future climates using the HIRAM model. Journal of Climate, 27(24), 9171-9196.
Colbert, A. J., Soden, B. J., & Kirtman, B. P. (2015). The Impact of Natural and Anthropogenic Climate Change on Western North Pacific Tropical Cyclone Tracks*. Journal of Climate, 28(5), 1806-1823.
DeMaria, M. (1996). The effect of vertical shear on tropical cyclone intensity change. Journal of the Atmospheric Sciences, 53(14), 2076-2088.
Emanuel, K. A. (1986). An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. Journal of the Atmospheric Sciences, 43(6), 585-605.
Emanuel, K. A. (1999). Thermodynamic control of hurricane intensity. Nature,401(6754), 665-669.
Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436(7051), 686-688.
England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., ... & Santoso, A. (2014). Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4(3), 222-227.
Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the general circulation. Meteorology Over the Tropical Oceans, edited by D.B. Shaw, Ed., Royal Meteorological Society, James Glaisher House, Grenville Place, Bracknell, Berks, RG 12 1BX, 155–218
Held, I. M., & Soden, B. J. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19(21), 5686-5699.
He, C., & Zhou, T. (2015). Responses of the western North Pacific Subtropical High to global warming under RCP4. 5 and RCP8. 5 scenarios projected by 33 CMIP5 models: The dominance of tropical Indian Ocean–tropical western Pacific SST gradient. Journal of Climate, 28(1), 365-380.
Huang, P., Lin, I. I., Chou, C., & Huang, R. H. (2015). Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nature communications, 6.
Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., ... & Sugi, M. (2010). Tropical cyclones and climate change. Nature Geoscience, 3(3), 157-163.
Kim, J. H., Brown, S. J., & McDonald, R. E. (2011). Future changes in tropical cyclone genesis in fully dynamic ocean-and mixed layer ocean-coupled climate models: a low-resolution model study. Climate dynamics, 37(3-4), 737-758.
Kim, H. S., Vecchi, G. A., Knutson, T. R., Anderson, W. G., Delworth, T. L., Rosati, A., ... & Zhao, M. (2014). Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2. 5 high-resolution coupled climate model.Journal of Climate, 27(21), 8034-8054.
Kossin, J. P., Emanuel, K. A., & Vecchi, G. A. (2014). The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509(7500), 349-352.
Lin, I. I., Liu, W. T., Wu, C. C., Chiang, J. C. H., & Sui, C. H. (2003). Satellite observations of modulation of surface winds by typhoon‐induced upper ocean cooling. Geophysical research letters, 30(3).
Lin, I. I., Wu, C. C., Emanuel, K. A., Lee, I. H., Wu, C. R., & Pun, I. F. (2005). The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy.Monthly Weather Review, 133(9), 2635-2649.
Lin, I. I., Wu, C. C., Pun, I. F., & Ko, D. S. (2008). Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons' intensification. Monthly Weather Review,136(9), 3288-3306.
Lin, I. I., Chen, C. H., Pun, I. F., Liu, W. T., & Wu, C. C. (2009). Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophysical Research Letters, 36(3).
Lin, I. I., Pun, I. F., & Wu, C. C. (2009). Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Monthly Weather Review, 137(11), 3744-3757.
Lin, I. I., Chou, M. D., & Wu, C. C. (2011). The impact of a warm ocean eddy on Typhoon Morakot (2009): A preliminary study from satellite observations and numerical modelling. Terrestrial, Atmospheric and Oceanic Sciences,22(6), 661-671.
Lin, I. I., Black, P., Price, J. F., Yang, C. Y., Chen, S. S., Lien, C. C., ... & D'Asaro, E. A. (2013). An ocean coupling potential intensity index for tropical cyclones. Geophysical Research Letters, 40(9), 1878-1882.
Lin, I. I., Pun, I. F., & Lien, C. C. (2014). “Category‐6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming.Geophysical Research Letters, 41(23), 8547-8553.
Lin, I. I., & Chan, J. C. (2015). Recent decrease in typhoon destructive potential and global warming implications. Nature communications, 6.
Li, T., Kwon, M., Zhao, M., Kug, J. S., Luo, J. J., & Yu, W. (2010). Global warming shifts Pacific tropical cyclone location. Geophysical Research Letters,37(21).
Lee T. C. , Knutson, T. R., Kamahori, H., and Ying, M. (2012). Impacts of climate change on tropical cyclones in the western north pacific basin. Part I: Past observations. Tropical Cyclone Research and Review, 1(2), 213–230.
L’Heureux, M. L., Lee, S., & Lyon, B. (2013). Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nature Climate Change, 3(6), 571-576.
Murakami, H., Wang, B., & Kitoh, A. (2011). Future change of western North Pacific typhoons: projections by a 20-km-mesh global atmospheric model*.Journal of Climate, 24(4), 1154-1169.
Murakami, H., Wang, Y., Yoshimura, H., Mizuta, R., Sugi, M., Shindo, E., ... & Kitoh, A. (2012). Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM*. Journal of Climate, 25(9), 3237-3260.
Meng, Q., Latif, M., Park, W., Keenlyside, N. S., Semenov, V. A., & Martin, T. (2012). Twentieth century Walker Circulation change: Data analysis and model experiments. Climate dynamics, 38(9-10), 1757-1773.
Mei, W., Xie, S. P., Zhao, M., & Wang, Y. (2015). Forced and Internal Variability of Tropical Cyclone Track Density in the Western North Pacific*.Journal of Climate, 28(1), 143-167.
Pun, I. F., Lin, I. I., Wu, C. R., Ko, D. S., & Liu, W. T. (2007). Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon-intensity forecast. Geoscience and Remote Sensing, IEEE Transactions on, 45(6), 1616-1630.
Price, J. F. (1981). Upper ocean response to a hurricane. Journal of Physical Oceanography, 11(2), 153-175.
Price, J. F., Sanford, T. B., & Forristall, G. Z. (1994). Forced stage response to a moving hurricane. Journal of Physical Oceanography, 24(2), 233-260.
Power, S. B., & Kociuba, G. (2011). What caused the observed twentieth-century weakening of the Walker circulation?. Journal of Climate, 24(24), 6501-6514.
Peduzzi, P., Chatenoux, B., Dao, H., De Bono, A., Herold, C., Kossin, J., ... & Nordbeck, O. (2012). Global trends in tropical cyclone risk. Nature climate change, 2(4), 289-294.
Shay, L. K., Goni, G. J., & Black, P. G. (2000). Effects of a warm oceanic feature on Hurricane Opal. Monthly Weather Review, 128(5), 1366-1383.
Tokinaga, H., Xie, S. P., Deser, C., Kosaka, Y., & Okumura, Y. M. (2012). Slowdown of the Walker circulation driven by tropical Indo-Pacific warming.Nature, 491(7424), 439-443.
Tokinaga, H., Xie, S. P., Timmermann, A., McGregor, S., Ogata, T., Kubota, H., & Okumura, Y. M. (2012). Regional patterns of tropical Indo-Pacific climate change: evidence of the Walker circulation weakening*. Journal of Climate,25(5), 1689-1710.
Vecchi, G. A., Soden, B. J., Wittenberg, A. T., Held, I. M., Leetmaa, A., & Harrison, M. J. (2006). Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441(7089), 73-76.
Vecchi, G. A., & Soden, B. J. (2007). Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450(7172), 1066-1070.
Vecchi, G. A., & Soden, B. J. (2007). Global warming and the weakening of the tropical circulation. Journal of Climate, 20(17), 4316-4340.
Vecchi, G. A., Fueglistaler, S., Held, I. M., Knutson, T. R., & Zhao, M. (2013). Impacts of atmospheric temperature trends on tropical cyclone activity. Journal of Climate, 26(11), 3877-3891.
Wu, L., & Wang, B. (2004). Assessing Impacts of Global Warming on Tropical Cyclone Tracks*. Journal of climate, 17(8), 1686-1698.
Wu, L., Chou, C., Chen, C. T., Huang, R., Knutson, T. R., Sirutis, J. J., ... & Feng, Y. C. (2014). Simulations of the present and late-twenty-first-century western North Pacific tropical cyclone activity using a regional model. Journal of Climate, 27(9), 3405-3424.
Xiang, B., Wang, B., Li, J., Zhao, M., & Lee, J. Y. (2014). Understanding the Anthropogenically Forced Change of Equatorial Pacific Trade Winds in Coupled Climate Models*. Journal of Climate, 27(22), 8510-8526.
Yokoi, S., & Takayabu, Y. N. (2009). Multi-model projection of global warming impact on tropical cyclone genesis frequency over the western North Pacific. Journal of the Meteorological Society of Japan, 87(3), 525-538.
Ying, M., Knutson, T. R., Kamahori, H., Lee, T. C. (2012) Impacts of Climate Change on Tropical Cyclones in the Western North Pacific Basin. Part II: Late Twenty-First Century Projections. Tropical Cyclone Research and Review, 1(2), 231-241.
Zhao, M., Held, I. M., Lin, S. J., & Vecchi, G. A. (2009). Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. Journal of Climate, 22(24), 6653-6678.
Zhao, M., & Held, I. M. (2012). TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late-twenty-first century. Journal of Climate, 25(8), 2995-3009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19903-
dc.description.abstract颱風是自然界中重要的系統之一,而海洋在颱風生成期以及發展期扮演著關鍵能量供給的角色,因此了解颱風及海洋的交互作用顯得相當重要。根據Emanuel, K.A.,(1999), Bender and Ginis(2000), Lin et al.(2005);(2009a,b);(2013),可得知颱風不僅與表層海水,亦和整個次表層海水有交互作用。當交互作用產生時,海洋表層海水會和次表層較冷的海水混合,產生降溫作用(Ocean cooling effect),因而減少海洋供給颱風的能量,更進一步地抑制颱風強度,此為相當重要的颱風海洋負回饋機制。
本研究將探討在全球暖化下,颱風所引起的海洋降溫作用之變化。此降溫作用受到四個因子所控制,包含海洋的初始場、颱風移動速度、颱風大小以及颱風風速。本研究將針對海洋的初始場和颱風移動速度在暖化之下的變化情形,進一步地討論其對颱風引起的海洋降溫作用所造成的變化。
本研究利用第五期耦合模式比對計畫(CMIP5)在暖化情境RCP8.5下,探討西北太平洋颱風經過區域,海洋次表層垂直熱力結構變化及颱風移度速度變化,使用Camargo(2013)及Zhao et al.(2009)的颱風資訊作分析。研究中使用十四個CMIP5模式討論二十一世紀末(2091-2100)與二十一世紀初(2006-2015)颱風經過區,海洋垂直熱力結構變化。發現颱風經過區海洋表層暖化程度較次表層多,此暖化差異與Huang et al. (2015)之結果相同,但海洋次表層溫度梯度更大,代表考慮颱風經過區域,海洋次表層垂直溫度梯度將變得更大。本研究亦發現西北太平洋颱風路徑有向北偏移的趨勢,此偏移趨勢與HiRAM結果一致。向北偏移原因可能和颱風駛流場、生成位置改變有關,北移的主因需做更多變量分析才能下定論。
  本研究分析十四個CMIP5模式及高解析度模式HiRAM的颱風移動速度變化,發現在二十一世紀間,西北太平洋颱風移動速度沒有明顯的趨勢存在,同時印證Kim,H.-S. et al.(2014)使用單一模式之結果。本研究利用環境風場、地區性信風及副熱帶高壓變化情形,佐證本研究颱風移動速度無趨勢的結果。綜合本研究兩個颱風所引起的海洋降溫作用之控制因素變化,在暖化下颱風所引起的海洋降溫作用可能會增強,此推測的可信度需要做更多的模式分析才能下結論。
zh_TW
dc.description.abstractTropical cyclones(TC) are common in many regions of the world and affect nearly all tropical areas. When TC passing by ocean, TC will not only interact with surface ocean but interact with subsurface ocean.(Emanuel, K.A., 1999, Bender and Ginis, 2000, Lin et al., 2005; 2009a; 2009b; 2013 etc.)Cooling of the upper ocean by TC-induced mixing which is so-called ocean cooling effect is an important negative feedback that impacts TC intensity. It is very important to understand the interaction between TC and ocean.
This research objective of this study is to investigate the change of the ocean cooling effect in the Western North Pacific Ocean under global warming. The ocean cooling effect is controlled by four factors, including the initial vertical temperature profile of the ocean, TC translation speed, TC size and TC wind speed. This study focus on the climate change of first two control factors of the ocean cooling effect, using TC track data from fourteen models output of the Coupled Model Intercomparison Project Phase 5 (CMIP5)(Camargo, 2013) and HiRAM model (Zhao et al., 2009).
CMIP5 models used in this research shows that the initial vertical temperature profile of the subsurface ocean can be sharpened along TC track for the Western North Pacific Ocean .This study shows the same results as Huang et al. (2015), but have bigger gradient of the initial vertical temperature profile of the subsurface ocean. The CMIP5 models and HiRAM model show that TC track poleward shift in the Western North Pacific Ocean under global warming. This may be related to the change of steering flow or TC genesis position, this part need more parameters analysis in the future work.
This study shows that TC translation speed have no significant trends in both CMIP5 models and HiRAM model in the Western North Pacific Ocean. Just like Kim, H.-S. et al. (2014) using GFDL CM2.5 model shows that TC translation speed have no significant trend under RCP8.5 scenario in the Western North Pacific Ocean. The trend of TC translation speed is related to the change of the steering flow, the equatorial Pacific trade winds and the Western North Pacific subtropical high. Consider two of the ocean cooling effect controlling factors, the ocean cooling effect can be enhanced in the Western North Pacific Ocean under global warming, it need more models analysis in the future work.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:26:10Z (GMT). No. of bitstreams: 1
ntu-104-R02229010-1.pdf: 26865914 bytes, checksum: e459e4af38c40a46154af55980fd97f4 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vi
表目錄 ix
第一章 前言 1
1.1 研究背景 1
1.2 研究目的及動機 7
第二章 研究工具及研究方法 8
2.1 資料簡介 8
2.1.1 大氣及海洋環境場資料 8
2.1.2 颱風資料 8
2.2 方法簡介 9
2.2.1 上層海洋熱力結構計算 9
2.2.2 颱風移動速度計算 10
2.2.3 三維海洋混合層模式(Three-dimensional Price-Weller-Pinkel Model,3DPWP) 11
2.2.4 颱風路徑、颱風生成位置和颱風生命期計算 12
2.2.5 線性回歸檢定方法(Linear Regression T-Test) 12
第三章 研究結果 14
3.1 全球暖化下颱風變化 14
3.1.1 颱風路徑變化 14
3.1.2 颱風生成位置變化 16
3.1.3 颱風生命期變化 18
3.2 西北太平洋海洋次表層變化 18
3.3 颱風移動速度變化 21
3.4 颱風引起之海表冷卻負回饋機制變化 24
3.5 綜觀環境條件探討 25
3.5.1. 颱風路徑探討 26
3.5.2. 颱風移動速度探討 30
第四章 總結及後續研究方向 33
參考文獻 36
附圖 43
附表 77
附錄 89
dc.language.isozh-TW
dc.title全球暖化下西北太平洋颱風負回饋機制變化之探討zh_TW
dc.titleChange in the Western North Pacific Ocean Condition under Global Warming and Implications on Typhoon Activityen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.coadvisor黃彥婷(Yen-Ting Hwang)
dc.contributor.oralexamcommittee江俊宏(John Chiang),杜佳穎(Chia-Ying Tu)
dc.subject.keyword西北太平洋,颱風引起海洋表面降溫作用,颱風強度,颱風移動速度,海氣交互作用,zh_TW
dc.subject.keywordWestern North Pacific Ocean,cooling of the upper ocaen by Tropical cyclone-induced mixing,Tropical cyclone intensity,Tropical cyclone translation speed,air-sea interaction,en
dc.relation.page105
dc.rights.note未授權
dc.date.accepted2015-08-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
26.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved