請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19881
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊燿州 | |
dc.contributor.author | Fan-Chi Lin | en |
dc.contributor.author | 林梵琦 | zh_TW |
dc.date.accessioned | 2021-06-08T02:24:51Z | - |
dc.date.copyright | 2015-08-31 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-18 | |
dc.identifier.citation | [1] I. H. Hwang, Y. S. Shim and J. H. Lee, “Modeling and experimental characterization of the chevron-type bi-stable microactuator,” J. Micromech. Microeng., vol. 13, no. 6, PP.948-954, 2003.
[2] J. Qiu, J. H. Lang and A. H. Slocum, “A Curved-beam Bistable Mechanism,” J. Microelectromech. Syst., vol. 13, no. 2, pp. 137-146, 2004. [3] M. P. Brenner, J. H. Lang, J. Li, J. Qiu and Alexander. H. Slocum, “Optimal design of bistable switch,” PNAS, vol. 100, no. 17, 2003. [4] D. L. Wilcox and L. L. Howell, “Fully Compliant Tensural Bistable Micromechanisms (FTBM),” J. Microelectromech. Syst., vol. 14, no. 16, pp. 1223-1235, 2005. [5] B. A. Goessling, T. M. Lucas, E. V. Moiseeva, J. W. Aebersold and C. K. Harnett, “Bistable out-of-plane stress-mismatched thermally actuated bilayer devices with large deflection,” J. Micromech. Microeng., vol. 21, 2011. [6] M. T. A. Saif, “On a Tunable Bistable MEMS-Theory and Experiment,” J. Microelectromech. Syst., vol. 9, no. 2, pp. 157-170, 2000. [7] M. Sulfridge, T. Saif, N. Miller and M. Meinhart, “Nonlinear Dynamic Study of a Bistable MEMS: Model and Experiment,” J. Microelectromech. Syst., vol. 13, no. 5, pp. 725-731, 2004. [8] Y. Gerson, S. Krylov and B. Ilic, “Electrothermal bistability tuning in a large displacement micro actuator,” J. Micromech. Microeng., vol. 20, no. 11, 2010. [9] J. Zhao, Y. Yang, H. Wang and J. Jia, “A Novel Magnetic Actuated Bistable Acceleration Switch With Low Contact Resistance,” IEEE Sens. J., vol. 10, no. 4, pp. 869-876, 2010. [10] L. Que, K. Udechi, J. Park and Y. B. Gianchandani, “A Bi-Stable Electro-Thermal Rf Switch For High Power Applications,” in Proc IEEE MEMS 2004 Conference, Maastricht, THE NETHERLANDS, pp. 797-800. [11] J. Qiu, J. H. Lang, A. H. Slocum, A. C. Weber, “ A Bulk-Micromachined Bistable Relay With U-Shaped Thermal Actuators,” J. Microelectromech. Syst., vol. 4, no. 5, pp. 1099-1109, 2005. [12] H. H. Yang, D. H. Choi, J. O. Lee and J. B. Yoon, “Modeling, fabrication and demonstration of an electrostatic actuator with a coplanar pre-charged electrode,” J. Micromech. Microeng., vol. 21, no. 8, , 2011. [13] R. A. M. Receveur, C. R. Marxer, R. W. Woering, V. C. M. H. Larik and N. F. Rooij, “Laterally Moving Bistable MEMS DC Switch for Biomedical Applications,” J. Microelectromech. Syst., vol. 14, no. 5, pp. 1089-1098, 2005. [14] J. C. Terre, A. F. Marques and A. M. Shkel, “Snap-Action Bistable Micromechanisms Actuated by Nonlinear Resonance,” J. Microelectromech. Syst., vol. 17, no. 5, pp. 1082-1093, 2008. [15] B. Charlot, W. Sun, K Yamashita, H. Fujita and H. Toshiyoshi, “Bistable nanowire for micromechanical memory,” J. Micromech. Microeng., vol. 18, no. 4, 2008. [16] R. Luharuka and P. J. Hesketh, “A bistable electromagnetically actuated rotary gate microvalve,” J. Micromech. Microeng., vol. 18, no. 3, 2008. [17] D. A. Wang, H. T. Pham and Y. H. Hsieh, “Dynamical switching of an electromagnetically driven compliant bistable mechanism,” Sensors and Actuators A:Physical, vol. 149, pp.143-151 ,2009. [18] Y. H. Zhang, G. F. Ding, S. Fu and B. C. Cai, “A fast switching bistable electromagnetic microactuator fabricated by UV-LIGA technology,” Mechatronics, vol. 17, pp. 165-171, 2007. [19] J. Barth, C. Megnin and M. Kohl, “A Bistable Shape Memory Alloy Microvalve With Magnetostatic Latches,” J. Microelectromech. Syst., vol. 21, no. 1, pp. 76-84, 2012. [20] A. Michael, C. Y. Kwok, K. Yu and M. R. Mackenzie, “A Novel Bistable Two-Way Actuated Out-of-Plane Electrothermal Microbridge,” J. Microelectromech. Syst., vol. 17, no. 1, pp. 58-69, 2008. [21] Y. B. Wu, G. F. Ding, C. C. Zhang, J. Wang, S. P. Mao and H. Wang, “Magnetostatic bistable MEMS switch with electrothermal actuators,” Electronics Lett, vol. 46, no. 15, pp. 1074-1075, 2010. [22] M. Staab and H. F. Schlaak, “Novel Electrothermally Actuated Magnetostatic Bistable Microrelay For Telecommunication Applications,” in Proc IEEE MEMS 2011 Conference, Maastricht, Cancun, MEXICO, pp. 1261-1264,2011 [23] N. D. Masters and L. L. Howell, “A Self-Retracting Fully Compliant Bistable Micromechanism,” J. Microelectromech. Syst., vol. 12, no. 3, pp. 273-280, 2003. [24] H. W. Huang and Y. J. Yang, “A MEMS Bistable Device With Push-On–Push-Off Capability,” J. Microelectromech. Syst., vol. 22, no.1, pp.7-9, 2012 [25] Course of Bistable Multivibrators in benchmark-companies http://www.benchmark-companies.com [26] C. Lee and C. Y. Wu, “Study of electrothermal V-beam actuators and latched mechanism for optical switch,” J. Micromech. Microeng., vol. 15, no. 1, 2008. [27] J. E. Sunderland and K. R. Johnson, “Shape factors for heat conduction through bodies with isothermal or convective boundary conditions,” ASHRAE TRANSACTIONS 71st Annual Meeting, Cleveland 1964, Ohio. USA, vol. 70, no. 1884, pp. 237-241. [28] Y. Zhu, A, Corigliano and Horacio. D. Espinosa, “A thermal actuator for nanoscale in situ microscopy testing: design and characterization,” J. Micromech. Microeng., vol. 16, no. 2, pp. 242-253, 2008. [29] E. T. Enikov, S. S. Kedar and K. V. Lazarov, “Analytical Model for Analysis and Design of V-Shaped Thermal Microactuators,” J. Microelectromech. Syst., vol. 14, no. 4, pp.788-798, 2005. [30] J. Qiu, J. H. Lang and A. H. Slocum, “A Centrally-Clamped Parallel-Beam Bistable MEMS Mechanism,” in Proc IEEE MEMS 2001 Conference, Interlaken. SWITZERLAND, pp. 353-356. [31] J. Cleary and H. J. Su, “Modeling and Experimental Validation of Actuating a Bistable Buckled Beam Via Moment Input,” Journal of Applied Mechanics vol. 82, no. 5, 2008 [32] P. Seunghoon and H. Dooyoung, “Pre-shaped buckled-beam actuators Theory and experiments,” Sensors and Actuators A: Physical vol. 148, no. 1, pp. 186-192, 2004. [33] D.Peroulis, S.P. Pacheco, K. Sarabandi, L. P. B. Katehi, “Electromechanical considerations in developing low-voltage RF MEMS switches,” IEEE Transactions On Microwave Theory And Techniques, vol. 15 pp. 259 – 270, 2003 [34] C. J. Glassbrenner and G. A. Slack, 'Thermal conductivity of Silicon and Germanium from 3°K to the melting point,' Physical Review, vol. 134, no. 4, pp. A1058-A1069, 1964. [35] R. B. Roberts, “Thermal expansion reference data: Silicon 300-850 K,” Journal of Physics D: Applied Physics, vol. 14, no. 10, pp. L163-L166, 1981. [36] A. Goldsmith, T. E. Waterman, and H. J. Hirschhorn, Handbook of thermophysical properties of solid materials. Oxford: Pergamon Pr., 1961. [37] 郭文正,”高深寬比懸浮微結構之製程開發及在微機電式光開關的應用,” 國立台灣大學機械工程研究所博士論文, 2006. [38] R. A. Gottscho, C. W. Jurgensen, and D. J. Vitkacage, “Microscopic uniformity in plasma etching,” J. Vac. Sci. Technol., B, vol. 10, no. 5, pp. 2133-2147, 1992 [39] F. Laermer and A. Urban, “Challenges, developments and applications of silicon deep reactive ion etching,” Microelectron. Eng., vol. 67-68, pp. 349-355, 2003. [40] S. Seok, B. Lee, J. Kim, H. Kim and K. Chun, “A new compensation method for the footing effect in MEMS fabrication,” J. Micromech. Microeng., vol. 15, pp. 1791-1796, 2005. [41] B. Camescasse, A. Fernandes, J. Pouget “Bistable buckled beam and force actuation: Experimental validations,” Journal of Mechanical Design, vol. 131, 2009. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19881 | - |
dc.description.abstract | 本研究系研發製作一新型微機電式雙穩態之驅動裝置「單鍵驅動微機電式正反器」,僅需要單一驅動電壓以及相同驅動時間即可切換雙穩態機構之兩個穩態,為全世界第一個以單鍵驅動實現Push-On-Push-Off以及相同驅動電壓的微機電開關元件。由於其雙穩態的特性、狀態切換條件的一致性,可應用於機械式正反器之發展。此裝置由兩組雙曲型樑(Centrally clamped double curved beam)及一組V型樑致動器(V-beam actuator,VBA)所組成,此兩組雙曲型樑分別連接一扭矩推桿以及彈簧推桿。此驅動裝置之操作分為兩部分,雙穩態機構由第一穩態跳躍至第二穩態為Push-On,當雙穩態機構由第二穩態被釋放回第一穩態為Push-Off。在Push-On操作時,施加電壓於V型樑致動器,加熱產生熱形變並推動上曲型樑的扭矩推桿,形成力矩驅動雙曲樑結構但第一穩態(Off-State)跳躍(snap through)至第二穩態(On-State)時,彈簧推桿會碰觸V型樑致動器,由於其撓性大可穩定切換至第二穩態。Push-Off操作時,施加相同之電壓以及時間於V型樑致動器,產生位移推擠彈簧推桿,其造成的力矩使雙曲樑機構由第二穩態被釋放回到第一穩態。此裝置結構之設計乃是架構於物理模型的推導並且配合數值模擬之結果來進行設計。製程相當簡單,只需要單一光罩並採用SOI 晶圓,以標準化微機電製程ICP-RIE加工。
此裝置Push-On及Push-Off的操作方式同正反器的時脈輸入,輸入相同電壓、相同脈衝時間的方波訊號,即有On/Off切換現象。經實驗初步測試後,尺寸2000μm的元件輸入頻率62.5赫茲、佔空率50%、12伏特的clock訊號,可使元件連續執行Push-On以及Push-Off的動作,亦即元件可執行最高頻率31.25赫茲On/Off的完整操作。 | zh_TW |
dc.description.abstract | This paper presents the first MEMS fully compliant bistable device that only requires one actuator for switching between its two stable states using single driving voltage with the same actuation duration. Based on these characteristics, the device is in fact a mechanical flip-flop which is analogous to the flip-fop device in electronics. The proposed device employs a mechanically Push-On-Push-Off mechanism consisting of two curved beam structures. An integrated V-beam actuator is used as the only actuation component. The proposed device can be easily realized on an SOI wafer by using the ICP-RIE process with a single photomask. Preliminary measurement results show that a 62.5 pulse frequency of 12 V with 50% duty cycle applied to the V-beam actuator can continuously switch the device between the On state and the Off state. Transient displacement results measured by using a vibrometer are also provided.
The bistability of a pre-shaped buckled beam with elastically constrained boundary conditions was also studied theoretically and experimentally. The buckled shape model, which characterizes the initial buckled deflection, is employed in this study. A systematic method of designing a bi-stable buckled beam has been developed and applied to the bistable switch mechanism and the torque rod mechanism. The method is validated with the results by FEM simulations. The proposed analytical models were also in good agreement with measured results. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:24:51Z (GMT). No. of bitstreams: 1 ntu-104-R02522721-1.pdf: 4866688 bytes, checksum: 9cbda435039263e560329e01078d9d3b (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 致謝 I
摘要 III ABSTRACT IV 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2. 文獻回顧 2 1.2.1 雙穩態機構 3 1.2.2 可調變式雙穩態機構 6 1.2.3 電熱式致動器 9 1.2.4 靜電式致動器 11 1.2.5 電磁式致動器 14 1.2.6 記憶合金式致動器 17 1.2.7 混合式致動器 17 1.2.8 單致動器雙穩態機構 22 1.2.9 雙穩態多諧振盪器 23 1.3 研究動機與目的 23 第二章 理論、設計與分析 25 2.1單鍵驅動微機電式正反器 25 2.2元件致動原理 25 2.3微致動器的設計與模擬 32 2.3.1 V型樑致動器之設計 32 2.3.2 熱傳模型 32 2.3.3 熱致動模型 37 2.4 雙穩態機構設計與模擬 42 2.4.1雙穩態開關機構分析: 43 2.4.2 雙曲樑力矩穩態分析 44 2.4.3雙曲樑側向力穩態分析 48 2.5 DESIGN GUIDE LINES 56 第三章 製程方法與系統設計 59 3.1 元件製作流程 59 3.2 光罩設計與製作 63 3.2.1 基材清洗 65 3.2.2 微影製程 65 3.2.3 晶圓切割 69 3.2.4 氫氟酸蝕刻懸浮 69 3.3 元件製作成果 70 第四章 實驗量測與討論 73 4.1 彈簧推桿剛性 73 4.2 V型樑致動器電壓驅動 75 4.3 PUSH-ON-PUSH-OFF驅動電壓 75 4.4 PUSH-ON-PUSH-OFF運動過程 77 4.5 動態量測設備架設 79 4.6 動態量測結果 81 4.7 共振頻率分析 85 第五章 結論與未來展望 87 5.1 結論 87 5.2 未來展望 88 參考文獻 89 附錄 A 95 附錄 B 99 | |
dc.language.iso | zh-TW | |
dc.title | 具正反器特性之微機電式雙穩態元件 | zh_TW |
dc.title | An MEMS Bistable Device with Flip-Flop Capability | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蘇裕軒,葉哲良,鄭兆希 | |
dc.subject.keyword | 雙穩態機構,V型樑致動器,彈簧推桿,扭矩推桿,正反器, | zh_TW |
dc.subject.keyword | Bistable mechanism,Push-On Push-Off,V-beam actuator,flip-flop,spring rod, | en |
dc.relation.page | 100 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2015-08-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 4.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。