Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19863
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張富雄
dc.contributor.authorKuan-Chi Huangen
dc.contributor.author黃冠綺zh_TW
dc.date.accessioned2021-06-08T02:23:47Z-
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citationArpicco, S., G. De Rosa, and E. Fattal, Lipid-Based Nanovectors for Targeting of CD44-Overexpressing Tumor Cells. J Drug Deliv, 2013. 2013: p. 860780.
Aslan, B., et al., Nanotechnology in cancer therapy. J Drug Target, 2013. 21(10): p. 904-13.
Auzenne, E., et al., Hyaluronic acid-paclitaxel: antitumor efficacy against CD44(+) human ovarian carcinoma xenografts. Neoplasia, 2007. 9(6): p. 479-86.
Borjesson, P.K., et al., Phase I therapy study with (186)Re-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with head and neck squamous cell carcinoma. Clin Cancer Res, 2003. 9(10 Pt 2): p. 3961S-72S.
Broxterman, H.J., J. Lankelma, and K. Hoekman, Resistance to cytotoxic and anti-angiogenic anticancer agents: similarities and differences. Drug Resist Updat, 2003. 6(3): p. 111-27.
Ching-ling Lin, Establishment and characterization of a multidrug resistance (MDR) colon carainoma cell line and MDR tumor model in BALB/c Mice. Master thesis, 2007.
Cho, H.J., et al., Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic(R) for tumor-targeted delivery of docetaxel. Biomaterials, 2011. 32(29): p. 7181-90.
Day, A.J. and G.D. Prestwich, Hyaluronan-binding proteins: tying up the giant. J Biol Chem, 2002. 277(7): p. 4585-8.
Dong, X. and R.J. Mumper, Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine (Lond), 2010. 5(4): p. 597-615.
Eliaz, R.E. and F.C. Szoka, Jr., Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res, 2001. 61(6): p. 2592-601.
Ekambaram, P. and H.S. Abdul, Formulation and evaluation of solid lipid nanoparticles of ramipril. J Young Pharm, 2011. 3(3): p. 216-20.
Fardel, O., et al., P-glycoprotein induction in rat liver epithelial cells in response to acute 3-methylcholanthrene treatment. Biochem Pharmacol, 1996. 51(11): p. 1427-36.
Gibbs, P., et al., Hyaluronan-Irinotecan improves progression-free survival in 5-fluorouracil refractory patients with metastatic colorectal cancer: a randomized phase II trial. Cancer Chemother Pharmacol, 2011. 67(1): p. 153-63.
Itano, N., et al., Selective expression and functional characteristics of three mammalian hyaluronan synthases in oncogenic malignant transformation. J Biol Chem, 2004. 279(18): p. 18679-87.
Iyer, A.K., et al., Role of integrated cancer nanomedicine in overcoming drug resistance. Adv Drug Deliv Rev, 2013. 65(13-14): p. 1784-802.
Kapse-Mistry, S., et al., Nanodrug delivery in reversing multidrug resistance in cancer cells. Front Pharmacol, 2014. 5: p. 159.
Kirtane, A.R., S.M. Kalscheuer, and J. Panyam, Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities. Adv Drug Deliv Rev, 2013. 65(13-14): p. 1731-47.
Kuo, Practical aspects of hyaluronan based medical products, CRC/Taylor Francis, Boca Raton, Fla, USA, 2006.
Kuritzkes, D., Drug resistance. Navigating resistance pathways. AIDS Read, 2002. 12(9): p. 395-400, 407.
Laurent, T.C. and J.R. Fraser, Hyaluronan. FASEB J, 1992. 6(7): p. 2397-404.
Lee, E.S., K. Na, and Y.H. Bae, Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release, 2005. 103(2): p. 405-18.
Ma, P., et al., Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. J Biomed Nanotechnol, 2009. 5(2): p. 151-61.
McDevitt, C.A. and R. Callaghan, How can we best use structural information on P-glycoprotein to design inhibitors? Pharmacol Ther, 2007. 113(2): p. 429-41.
Miele, E., et al., Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomedicine, 2009. 4: p. 99-105.
Nieth, C., et al., Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett, 2003. 545(2-3): p. 144-50.
Onoue, S., S. Yamada, and H.K. Chan, Nanodrugs: pharmacokinetics and safety. Int J Nanomedicine, 2014. 9: p. 1025-37.
Orian-Rousseau, V., CD44, a therapeutic target for metastasising tumours. Eur J Cancer, 2010. 46(7): p. 1271-7.
Parkinson, R.J. and J.P. Callaghan, Can periods of static loading be used to enhance the resistance of the spine to cumulative compression? J Biomech, 2007. 40(13): p. 2944-52.
Petros, R.A. and J.M. DeSimone, Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov, 2010. 9(8): p. 615-27.
Rivkin, I., et al., Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors. Biomaterials, 2010. 31(27): p. 7106-14.
Sharom, F.J., The P-glycoprotein efflux pump: how does it transport drugs? J Membr Biol, 1997. 160(3): p. 161-75.
Shionoya, M., et al., DJ-927, a novel oral taxane, overcomes P-glycoprotein-mediated multidrug resistance in vitro and in vivo. Cancer Sci, 2003. 94(5): p. 459-66.
Slevin, M., et al., Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biol, 2007. 26(1): p. 58-68.
Tomida, A., and Tsuruo, T., Drug resistance pathways as targets. Anticancer Drug Development, Chapter 5, eds B. C. Baguley and D. J. Kerr, 2002. P77-90.
Toole, B.P., Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer, 2004. 4(7): p. 528-39.
Velingkar, V., and Dandekar, V., Modulation of P-glycoprotein mediated multidrug resistance (MDR) in cancer using chemosensitizers. Int. J. Pharm, 2010. 1(2): p. 104-111.
Wang, J., et al., Reversion of multidrug resistance by tumor targeted delivery of antisense oligodeoxynucleotides in hydroxypropyl-chitosan nanoparticles. Biomaterials, 2010. 31(15): p. 4426-33.
Wu, C.P., A.M. Calcagno, and S.V. Ambudkar, Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies. Curr Mol Pharmacol, 2008. 1(2): p. 93-105.
Yang, X.Y., et al., Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett, 2013. 334(2): p. 338-45.
Yerushalmi, N., A. Arad, and R. Margalit, Molecular and cellular studies of hyaluronic acid-modified liposomes as bioadhesive carriers for topical drug delivery in wound healing. Arch Biochem Biophys, 1994. 313(2): p. 267-73.
Yim, H., et al., Biodegradable cationic nanoparticles loaded with an anticancer drug for deep penetration of heterogeneous tumours. Biomaterials, 2013. 34(31): p. 7674-82.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19863-
dc.description.abstract以抗癌藥物治療腫瘤一段時間後,往往會有多重抗藥性(multidrug resistance; MDR)的產生,以至於抗癌藥物無法有效地對腫瘤進行治療。而最常導致MDR的產生即是腫瘤細胞之細胞膜上大量表現藥物運輸蛋白(drug transporter),其中又以p-glycoprotein (P-gp)最常見。P-gp位於細胞膜表面,可以將其受質排出細胞外,避免受質停留於細胞內,對細胞造成毒殺效果。而P-gp有廣泛的受質專一性,許多抗癌藥物亦是其受質,例如:Doxorubicin、Etoposide等。
以脂微粒作為藥物的載體,用於治療抗藥性腫瘤被認為是一個具有潛力的治療方法,因其可以透過內吞作用 (endocytosis),有效的將藥物運輸至細胞中,避免P-gp之作用,並有利於增加藥物在細胞中的含量以達到毒殺效果。此外,以玻尿酸 (hyaluronic acid)修飾脂微粒可以減少非專一性之結合、增加循環效果,且玻尿酸為CD44 受體之配位體,可用於做為標靶治療。因此,本研究利用玻尿酸修飾正價脂微粒並包覆抗癌藥物,分析其對腫瘤之治療效果。
本實驗利用膽固醇為基礎的正價脂質 (GEC-Chol),與膽固醇 (Chol)以不同比例混和,製備膽固醇基礎之脂微粒 (GCC)。接著脂微粒以不同濃度之玻尿酸進行修飾。實驗結果發現,GEC-Chol : Chol之molar ratio為1 : 3,且脂微粒與玻尿酸之濃度比為22.5 : 1時,是脂微粒與玻尿酸混和之最佳比例。而利用流式細胞儀分析細胞對脂微粒及玻尿酸脂微粒之吞噬效果,其結果顯示,細胞對玻尿酸脂微粒吞噬效果較差,表示玻尿酸脂微粒有助於減少非專一性之結合。另一方面,玻尿酸脂微粒包覆抗癌藥物組與未被包覆之藥物組相比,不論在活體外或活體內,皆顯著的增加治療抗藥性腫瘤之效果。
本研究探討玻尿酸包覆脂微粒及其對抗藥性腫瘤治療效果之分析,期望未來可以應用於活體治療,且作為往後用於活體抗藥性腫瘤治療之參考,並改善正價奈米材料應用上的不足,運用在更廣泛之用途。
zh_TW
dc.description.abstractChemotherapy is one of the major cancer treatments, but this treatment could be impeded by cellular mechanisms such as multidrug resistance (MDR). The most common attribute to drug resistance is the overexpression of P-glycoprotein (P-gp), which is the plasma membrane protein encode by mdr1 gene and acts as an energy-dependent efflux transporter. P-gp has the wide range of substrate specificity, for example, Doxorubicin, Etoposide; it can pump out the antitumor drug to reduce intracellular drug accumulation and compromise drug efficacy.
Previous study indicates that nanoparticles, with the endocytosis mechanism of cell uptake, have potential to overcome drug resistance and prevent P-gp from pumping out. On the other hand, micelles modified with hyaluronic acid could reduce non-specific binding and improve half life in blood circulation. Furthermore, hyaluronic acid as ligand of CD44 receptor on general tumor cells surface also could be strategy of targeting therapy for cancers. Consequently, we used hyaluronic acid modified micellar etoposide to study the drug resistance tumor.
In this study, the major lipid, GEC-Chol which is a kind of cationic cholesterol-based lipid was fabricated, and mixed with different ratio of cholesterol to prepare cholesterol-based nanoparticles (GCC). Then, modified with hyaluronic acid in different concentration. The results indicate that, GEC-Chol : Chol as 1 : 3, and micelles : hyaluronic acid as 22.5 : 1, is the most perfect ratio to study. To reveal the cellular uptake of hyaluronic acid modified micelles, flow cytometry was used to analyze the changes in amount of fluorescence in cells and analysis statistical results. The results shows that, hyaluronic acid modified micelles have less affinity with tumor cells than GCC, so it is a potential strategy to bring down the non-specific binding. Moreover, the cytotoxicity of hyaluronic acid modified micellar etoposide has more efficiency compared to free drug whatever in vivo or in vitro.
The findings of this study have important implications for understanding effectiveness of hyaluronic acid modified micelles targeting to drug resistant tumor cells. It is expected that the hyaluronic acid modified micelles will be used widely in the future, and can improve the inadequate in nanomaterial applications for cancer therapy.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:23:47Z (GMT). No. of bitstreams: 1
ntu-104-R02442028-1.pdf: 1982620 bytes, checksum: 1f59f9dbe6a3e0866add1264a261ff09 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 Ⅰ
致謝 Ⅱ
中文摘要 Ⅲ
英文摘要 Ⅳ
第一章 緒論
1.1 抗藥性腫瘤 1
1.1.1 多重藥物抗藥性 1
1.1.2 P-glycoprotein 2
1.1.3 常用之抗藥性細胞株 3
1.1.4 抗藥性腫瘤之治療方法 4
1.2 奈米粒子 5
1.2.1 奈米粒子特性 5
1.2.2 奈米藥物遞送系統 7
1.3 玻尿酸 9
1.3.1 玻尿酸與CD44受體間關係 10
1.3.2 玻尿酸於奈米粒子之應用 11
1.4 研究動機與目的 13
第二章 實驗材料與方法
2.1 實驗材料 14
2.1.1 細胞株 14
2.1.2 實驗動物 14
2.1.3 脂質 14
2.1.4 化學藥品 14
2.1.5 儀器 15
2.2 實驗方法 16
2.2.1 脂微粒包覆藥物之製備 16
2.2.2玻尿酸修飾脂微粒之製備 17
2.2.3 脂微粒粒徑大小、均質度以及表面電荷之分析 17
2.2.4 脂微粒於不同溶液中之穩定性測試 18
2.2.5 脂微粒包覆藥物之效率測試 18
2.2.6 細胞株繼代培養 19
2.2.7 利用流式細胞儀分析細胞株中CD44受體之表現量 19
2.2.8 利用流式細胞儀分析細胞吞噬脂微粒之效率 20
2.2.9 藥物及玻尿酸脂微粒包裹依託泊苷對細胞毒性之分析 21
2.2.10 玻尿酸脂微粒包裹依託泊苷對腫瘤治療之分析 21
第三章 實驗結果
3.1 玻尿酸脂微粒粒徑大小、均質度以及表面電荷之分析 23
3.2 脂微粒穩定性之分析 24
3.3 脂微粒包覆藥物之效率分析 24
3.4 細胞中CD44受體表現量之分析 25
3.5 玻尿酸修飾脂微粒被細胞吞噬之情形 25
3.6 藥物及玻尿酸脂微粒包裹依託泊苷對細胞毒性之影響 26
3.7活體內測試玻尿酸脂微粒包覆依託泊苷抗腫瘤之療效 26
3.8腫瘤組織H E染色之分析 27
第四章 討論
4.1玻尿酸脂微粒粒徑大小、均質度以及表面電荷之分析 29
4.2 脂微粒穩定性之分析 30
4.3 脂微粒包覆藥物之效率分析 31
4.4 細胞中CD44受體表現量之分析 32
4.5 玻尿酸修飾脂微粒被細胞吞噬之情形 32
4.6 藥物及玻尿酸脂微粒包裹依託泊苷對細胞毒性之影響 34
4.7活體內測試玻尿酸脂微粒包覆依託泊苷抗腫瘤之療效 34
第五章 圖表與說明
表一 不同組成比例之玻尿酸脂微粒之物性分析 37
表二 於不同溶液中脂微粒的穩定性 38
表三 脂微粒對於依託泊苷之包覆率 39
圖一 玻尿酸脂微粒之製備 40
圖二 利用流式細胞儀分析細胞中CD44受體之表現量 41
圖三 利用流式細胞儀分析細胞吞噬脂微粒之效率 42
圖四 不同抗癌藥物對細胞之毒性影響 43
圖五 脂微粒包覆依託泊苷對細胞毒性之影響 44
圖六 活體治療流程及小鼠體重 45
圖七 玻尿酸脂微粒包覆依託泊苷對小鼠活體腫瘤之治療效果 46
圖八 腫瘤組織H E染色 47
第六章 參考文獻 48
dc.language.isozh-TW
dc.title玻尿酸修飾包覆依託泊苷之脂微粒及其對抗藥性腫瘤治療之分析研究zh_TW
dc.titleHyaluronic acid modified micellar etoposide for drug resistance tumor therapyen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張明富,林文澧,詹東榮
dc.subject.keyword腫瘤抗藥性,奈米粒子,玻尿酸,zh_TW
dc.subject.keywordMDR,micelle,Hyaluronic acid,en
dc.relation.page51
dc.rights.note未授權
dc.date.accepted2015-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved