Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19854
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張慶瑞(Ching-Ray Chang)
dc.contributor.authorWei-Ying Chengen
dc.contributor.author程暐瀅zh_TW
dc.date.accessioned2021-06-08T02:23:14Z-
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-19
dc.identifier.citationReference
1. Ramanathan, V. and Feng, Y., Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmospheric Environment, 2009. 43(1): p. 37-50.
2. Hsu, L.C.; Newman, J.; Ativanichayaphong, T.; Cao, H.; Sin, J.; Graff, M.; Stephanou, H.E. and Chiao, J.C., Evaluation of commercial metal‐oxide based NO2 sensors. Sensor Review, 2007. 27(2): p. 121-131.
3. Hao, C.S.; Shepson, P.B.; Drummond, J.W. and Muthuramu, K., Gas Chromatographic Detector for Selective and Sensitive Detection of Atmospheric Organic Nitrates. Analytical Chemistry, 1994. 66: p. 3737-3743.
4. Yan, W.J.; Chen, D.Y.; Fuh, H.R.; Li, Y.L.; Zhang, D.; Liu, H.; Wu, G.; Zhang, L.; Ren, X.; Cho, J.; Choi, M.; Chun, B.S.; Coileáin, C.Ó.; Xu, H.-J.; Wang, Z.; Jiang, Z.; Chang, C.-R. and Wu, H.-C., Photo-enhanced gas sensing of SnS2 with nanoscale defects. RSC Advances, 2019. 9(2): p. 626-635.
5. Carey, W. and Kowalski, B., Chemical piezoelectric sensor and sensor array characterization. Analytical Chemistry, 1986. 58(14): p. 3077-3084.
6. Fergus, J., Materials for high temperature electrochemical NOx gas sensors. Sensors and Actuators B: Chemical, 2007. 121(2): p. 652-663.
7. Lu, G.; Xu, J.; Sun, J.; Yu, Y.; Zhang, Y. and Liu, F., UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sensors and Actuators B: Chemical, 2012. 162(1): p. 82-88.
8. Kohl, D., Function and applications of gas sensors. Journal of Physics D-Applied Physics, 2001. 34(19): p. R125-R149.
9. Kanazawa, E.S., G; Shimanoe, K; Kanmura, Y; Teraoka, Y; Miura, N; Yamazoe, N, Metal oxide semiconductor N2O sensor for medical use. Sensors and Actuators B-Chemical, 2001. 77(1-2): p. 72-77.
10. Tang, X.; Du, A. and Kou, L., Gas sensing and capturing based on two-dimensional layered materials: Overview from theoretical perspective. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018. 8(4).
11. Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I. and Novoselov, K.S., Detection of individual gas molecules adsorbed on graphene. Nature Materials, 2007. 6(9): p. 652-655.
12. Zhang, Y.H.; Chen, Y.B.; Zhou, K.G.; Liu, C.H.; Zeng, J.; Zhang, H.L. and Peng, Y., Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology, 2009. 20(18): p. 185504.
13. Ghosh, R.; Midya, A.; Santra, S.; Ray, S.K. and Guha, P.K., Chemically reduced graphene oxide for ammonia detection at room temperature. ACS Applied Materials Interfaces, 2013. 5(15): p. 7599-7603.
14. Nomani, M.W.K.; Shishir, R.; Qazi, M.; Diwan, D.; Shields, V.B.; Spencer, M.G.; Tompa, G.S.; Sbrockey, N.M. and Koley, G., Highly sensitive and selective detection of NO2 using epitaxial graphene on 6H-SiC. Sensors and Actuators B: Chemical, 2010. 150(1): p. 301-307.
15. Lee, G.; Yang, G.; Cho, A.; Han, J.W. and Kim, J., Defect-engineered graphene chemical sensors with ultrahigh sensitivity. Physical Chemistry Chemical Physics, 2016. 18(21): p. 14198-14204.
16. Yavari, F.; Castillo, E.; Gullapalli, H.; Ajayan, P.M. and Koratkar, N., High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Applied Physics Letters, 2012. 100(20).
17. Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.J.; Loh, K.P. and Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013. 5(4): p. 263-75.
18. Liu, X.; Ma, T.; Pinna, N. and Zhang, J., Two-Dimensional Nanostructured Materials for Gas Sensing. Advanced Functional Materials, 2017. 27(37).
19. Kim, Y.H.; Kim, K.Y.; Choi, Y.R.; Shim, Y.-S.; Jeon, J.-M.; Lee, J.-H.; Kim, S.Y.; Han, S. and Jang, H.W., Ultrasensitive reversible oxygen sensing by using liquid-exfoliated MoS2 nanoparticles. Journal of Materials Chemistry A, 2016. 4(16): p. 6070-6076.
20. Yue, Q.; Shao, Z.; Chang, S. and Li, J., Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Research Letters, 2013. 8(425).
21. Ou, J.Z.; Ge, W.Y.; Carey, B.; Daeneke, T.; Rotbart, A.; Shan, W.; Wang, Y.C.; Fu, Z.Q.; Chrimes, A.F.; and Wiodarski, W.e.a., Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 Gas Sensing. ACS Nano., 2015. 9: p. 10313–10323.
22. Pham, T.; Li, G.; Bekyarova, E.; Itkis, M.E. and Mulchandani, A., MoS2-Based Optoelectronic Gas Sensor with Sub-parts-per-billion Limit of NO2 Gas Detection. ACS Nano, 2019. 13(3): p. 3196-3205.
23. Julien, C.; Eddrief, M.; Samaras, I.; Balkanski, M., Optical and electrical characterizations of SnSe, SnS2, and SnSe2 single crystals. Materials Science And Engineering B-Solid State Materials for Advanced Technology, 1992. 15(1): p. 70-72.
24. Manou, P.; Kalomiros, J.A.; Anagnostopoulos, A. N. and Kamba, K., Optical properties of SnSe2 single crystals. Materials Research Bulletin, 1996. 31: p. 1407-1415.
25. Xu, Y. and Schoonen, M.A.A., The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals. American Mineralogist, 2000. 85: p. 543-556.
26. Yang, Z.; Su, C.; Wang, S.; Han, Y.; Chen, X.; Xu, S.; Zhou, Z.; Hu, N.; Su, Y. and Zeng, M., Highly sensitive NO2 gas sensors based on hexagonal SnS2 nanoplates operating at room temperature. Nanotechnology, 2020. 31(7): p. 075501.
27. Zhao, S.; Xue, J. and Kang, W., Gas adsorption on MoS2 monolayer from first-principles calculations. Chemical Physics Letters, 2014. 595-596: p. 35-42.
28. Manou, P.; Kalomiros, J.A.; Anagnostopoulos, A.N. and Kamba, K., Optical properties of SnSe2 single crystals. Materials Research Bulletin, 1996. 31(11): p. 1407-1415.
29. Subramanian, B.; Mahalingam, T.; Sanjeeviraja, C.; Jayachandran, M. and Chockalingam, M.J., Electrodeposition of Sn, Se, SnSe and the material properties of SnSe films. Thin Solid Films, 1999. 357(2): p. 119-124.
30. Mukhokosi, E.P.; Krupanidhi, S.B. and Nanda, K.K., Band Gap Engineering of Hexagonal SnSe2 Nanostructured Thin Films for Infra-Red Photodetection. Scientific Reports, 2017. 7: p. 10.
31. Su, Y.; Ebrish, M.A.; Olson, E.J. and Koester, S.J., SnSe2 field-effect transistors with high drive current. Applied Physics Letters, 2013. 103(26): p. 3.
32. Evans, B.L. and Hazelwoo, R.A., Optical and Electrical Properties of SnSe2. Journal of Physics D-Applied Physics, 1969. 2(11): p. 1507-1516.
33. Huang, Y.; Xu, K.; Wang, Z.; Shifa, T.A.; Wang, Q.; Wang, F.; Jiang, C. and He, J., Designing the shape evolution of SnSe2 nanosheets and their optoelectronic properties. Nanoscale, 2015. 7(41): p. 17375-17380.
34. Guo, C.; Tian, Z.; Xiao, Y.; Mi, Q. and Xue, J., Field-effect transistors of high-mobility few-layer SnSe2. Applied Physics Letters, 2016. 109(20): p. 203104.
35. Karaduman, I.; Yildiz, D.E.; Sincar, M.M. and Acar, S., UV light activated gas sensor for NO2 detection. Materials Science in Semiconductor Processing, 2014. 28: p. 43-47.
36. Pei, T.; Bao, L.; Wang, G.; Ma, R.; Yang, H.; Li, J.; Gu, C.; Pantelides, S.; Du, S. and Gao, H.J., Few-layer SnSe2 transistors with high on/off ratios. Applied Physics Letters, 2016. 108(5): p.053506.
37. Assili, K.; Gonzalez, O.; Alouani, K. and Vilanova, X., Structural, morphological, optical and sensing properties of SnSe and SnSe2 thin films as a gas sensing material. Arabian Journal of Chemistry, 2017. 13(1): p.1229-1246.
38. Sun, B.Z.; Ma, Z.; He, C. and Wu, K., Anisotropic thermoelectric properties of layered compounds in SnX2 (X = S, Se): a promising thermoelectric material. Physical Chemistry Chemical Physics, 2015. 17(44): p. 29844-29853.
39. Pawar, M.; Kadam, S. and Late, D.J., High-Performance Sensing Behavior Using Electronic Ink of 2D SnSe2 Nanosheets. Chemistry Select, 2017. 2: p. 4068-4075.
40. Popescu, M.; Sava, F.; Lorinczi, A.; Socol, G.; Mihailescu, I.N.; Tomescu, A. and Simion, C., Structure, properties and gas sensing effect of SnSe2 films prepared by pulsed laser deposition method. Journal of Non-Crystalline Solids, 2007. 353(18-21): p. 1865-1869.
41. Camargo Moreira, O.L.; Cheng, W.Y.; Fuh, H.R.; Chien, W.C.; Yan, W.; Fei, H.; Xu, H.; Zhang, D.; Chen, Y.; Zhao, Y.; Lv, Y.; Wu, G.; Lv, C.; Arora, S.K.; C, O.C.; Heng, C.; Chang, C.R. and Wu, H.C., High Selectivity Gas Sensing and Charge Transfer of SnSe2. ACS Sens, 2019. 4(9): p. 2546-2552.
42. Huang, Y.; Zhou, D.; Chen, X.; Liu, H.; Wang, C. and Wang, S., First-Principles Study on Doping of SnSe2 Monolayers. Chemphyschem, 2016. 17(3): p. 375-379.
43. Hyeon, D.S.; Oh, M.S.; Kim, J.T.; Lee, Y.J.; Kim, S.-i.; Moon, S.P.; Hamayoun, N.; Kim, S.W.; Lee, K.H.; Bang, J. and Lee, K., Electrical properties of bromine doped SnSe2 van der Waals material. Journal of Physics D: Applied Physics, 2018. 51(45): p. 455102.
44. Kim, S.I.; Hwang, S.; Kim, S.Y.; Lee, W.J.; Jung, D.W.; Moon, K.S.; Park, H.J.; Cho, Y.J.; Cho, Y.H.; Kim, J.H.; Yun, D.J.; Lee, K.H.; Han, I.T.; Lee, K. and Sohn, Y., Metallic conduction induced by direct anion site doping in layered SnSe2. Scientific Reports, 2016. 6: p. 19733.
45. Kim, J.T.; Hyeon, D.S.; Hanzawa, K.; Kanai, A.; Kim, S.Y.; Lee, Y.J.; Hosono, H.; Bang, J. and Lee, K., Role of fluorine in two-dimensional dichalcogenide of SnSe2. Scientific Reports, 2018. 8(1): p. 1645.
46. Xiang, H.; Xu, B.; Xia, Y.; Yin, J. and Liu, Z., Strain tunable magnetism in SnX2 (X = S, Se) monolayers by hole doping. Scientific Reports, 2016. 6: p. 39218.
47. Cheng, W.Y.; Fuh, H.R. and Chang, C.R., First-Principles Study for Gas Sensing of Defective SnSe2 Monolayers. Applied Sciences, 2020. 10(5): p. 1623.
48. Hohenberg, P. and Kohn, W., Inhomogeneous Electron Gas. Physical Review, 1964. 136(3B): p. B864-B871.
49. Born, M.O., J.R., Zur Quantentheorie der Molekeln [On the Quantum Theory of Molecules]. Annalen der Physik (in German), 1927. 389(20): p. 457-484.
50. Kohn, W. and Sham, L.J., Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.
51. L., B.U.V.H., A local exchange-correlation potential for the spin polarized case: I. Journal of Physics C: Solid State Physics, 1972. 5: p. 1629-1642.
52. Perdew, J.P. and Zunger, A., Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 1981. 23(10): p. 5048-5079.
53. Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J. and Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 1992. 46(11): p. 6671-6687.
54. Perdew, J.P.; Burke, K. and Ernzerhof, M., Generalized Gradient Approximation Made Simple. Physical Review Letters, 1996. 77: p. 3865-3868.
55. Blöchl, P.E., Projector augmented-wave method. Physical Review B., 1994. 50(24): p. 17953–17978.
56. Kresse, G. and Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B., 1999. 59: p. 1758-1775.
57. Grimme, S., Accurate description of van der Waals complexes by density functional theory including empirical corrections. Journal of Computational Chemistry, 2004. 25(12): p. 1463-1473.
58. Grimme, S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 2006. 27(15): p. 1787-1799.
59. Wehling, T.N., K.; Morozov, S.; Vdovin, E.; Katsnelson, M.; Geim, A.; Lichtenstein, A., Molecular doping of graphene. Nano Letters, 2008. 8: p. 173-177.
60. Bader, R., Atoms in Molecules: A Quantum Theory. 1990, New York: Oxford University Press.
61. Henkelman, G.; Arnaldsson, A. and Jónsson, H., A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006. 36(3): p. 354-360.
62. Tang, W.; Sanville, E. and Henkelman, G., A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 2009. 21(8): p. 084204.
63. Momma, K. and Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 2011. 44(6): p. 1272-1276.
64. Alalamy, F.A.S.; Balchin, A.A. and White, M., Expansivities and Thermal-Degradation of Some Layer Compounds. Journal of Materials Science, 1977. 12(10): p. 2037-2042.
65. Zhou, M.; Lu, Y.H.; Cai, Y.Q.; Zhang, C. and Feng, Y.P., Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors. Nanotechnology, 2011. 22(38): p. 385502.
66. Zou, D.F.; Yu, C.B.; Li, Y.H.; Ou, Y. and Gao, Y.Y., Pressure-induced enhancement in the thermoelectric properties of monolayer and bilayer SnSe2. Royal Society Open Science, 2018. 5(3): p. 14.
67. Jiao, Y.; Zheng, Y.; Smith, S.C.; Du, A.J. and Zhu, Z.H., Electrocatalytically Switchable CO2 Capture: First Principle Computational Exploration of Carbon Nanotubes with Pyridinic Nitrogen. ChemSusChem, 2014. 7(2): p. 435-441.
68. Cui, H.P.; Zheng, K.; Zhang, Y.Y.; Ye, H.Y. and Chen, X.P., Superior Selectivity and Sensitivity of C3N Sensor in Probing Toxic Gases NO2 and SO2. Ieee Electron Device Letters, 2018. 39(2): p. 284-287.
69. Zheng, K.; Yang, X.B.; Cui, H.P.; Yang, Q.; Ye, H.Y.; Xiong, D.X.; Ingebrandt, S. and Chen, X.P., Intriguing electronic insensitivity and high carrier mobility in monolayer hexagonal YN. Journal of Materials Chemistry C, 2018. 6(18): p. 4943-4951.
70. Jiang, J.; Liang, Q.; Meng, R.; Yang, Q.; Tan, C.; Sun, X. and Chen, X., Exploration of new ferromagnetic, semiconducting and biocompatible Nb3X8 (X = Cl, Br or I) monolayers with considerable visible and infrared light absorption. Nanoscale, 2017. 9(9): p. 2992-3001.
71. Late, D.J.; Huang, Y.K.; Liu, B.; Acharya, J.; Shirodkar, S.N.; Luo, J.; Yan, A.; Charles, D.; Waghmare, U.V.; Dravid, V.P. and Rao, C.N.R., Sensing Behavior of Atomically Thin-Layered MoS2 Transistors. ACS Nano, 2013. 7(6): p. 4879-4891.
72. Cho, B.; Yoon, J.; Hahm, M.G.; Kim, D.H.; Kim, A.R.; Kahng, Y.H.; Park, S.W.; Lee, Y.J.; Park, S.G.; Kwon, J.D.; Kim, C.S.; Song, M.; Jeong, Y.; Nam, K.S. and Ko, H.C., Graphene-based gas sensor: metal decoration effect and application to a flexible device. Journal of Materials Chemistry C, 2014. 2(27): p. 5280-5285.
73. Li, X.; Zhao, Y.; Wang, X.; Wang, J.; Gaskov, A.M. and Akbar, S.A., Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sensors and Actuators B: Chemical, 2016. 230: p. 330-336.
74. Hong, J.; Lee, S.; Seo, J.; Pyo, S.; Kim, J. and Lee, T., A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid. ACS Applied Materials Interfaces, 2015. 7(6): p. 3554-61.
75. Liu, X.; Zhang, D.; Wu, Y.C.; Yang, M.; Wang, Q.; Coileáin, C.Ó.; Xu, H.; Yang, C.; Abid, M.; Abid, M.; Liu, H.; Chun, B.S.; Shi, Q. and Wu, H.C., Ultra-sensitive graphene based mid-infrared plasmonic bio-chemical sensing using dielectric beads as a medium. Carbon, 2017. 122: p. 404-410.
76. Fei, H.; Wu, G.; Cheng, W.Y.; Yan, W.; Xu, H.; Zhang, D.; Zhao, Y.; Lv, Y.; Chen, Y.; Zhang, L.; C, O.C.; Heng, C.; Chang, C.R. and Wu, H.C., Enhanced NO2 Sensing at Room Temperature with Graphene via Monodisperse Polystyrene Bead Decoration. ACS Omega, 2019. 4(2): p. 3812-3819.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19854-
dc.description.abstract二硒化錫是一種非均向性的多層材料,具有豐富的物理性質,具有各種不同應用的可能性。本論文使用第一原理計算來研究二硒化錫的氣體偵測特性。理論模擬結果顯示電子從二硒化錫轉移到二氧化氮氣體分子上,其電子轉移的方向與氨氣相反。值得注意的是,二硒化錫吸附二氧化氮分子之後,在費米能量附近出現一條平坦的能帶,該能帶主要為二氧化氮分子所佔據。與氨氣相比,吸附在二硒化錫上的二氧化氮分子具有較低的吸附能和較高的電荷轉移量。與原始單層的二硒化錫相比,含有Se空缺的單層二硒化錫明顯增強了對二氧化氮吸附的敏感性。當吸附二氧化氮分子時,摻雜氧原子的單層二硒化錫與原始單層二硒化錫顯示出相似的靈敏度。但是,只有摻雜氮原子的單層二硒化錫顯示出對二氧化氮和氨氣吸附敏感度的明顯增強。雖然我們之前用聚苯乙烯微米顆粒裝飾石墨烯表面的相關研究,結果呈現前述系統可增強二氧化氮分子感測度。然而,前述系統會包含太多原子,我們無法確定是否可以直接用VASP來做計算。在未來的工作中,我們會再嘗試找尋適當的方式來計算前述複雜系統的氣體偵測性質。zh_TW
dc.description.abstractSnSe2 is an anisotropic binary-layered material with rich physics, which is used for a variety of potential applications. Here, we investigate the gas-sensing properties of SnSe2 with first-principles calculations. Theoretical simulations indicate that electrons transfer from SnSe2 to NO2, whereas the direction of charge transfer is the opposite for NH3. Notably, a flat molecular band appears around the Fermi energy after NO2 adsorption and the induced molecular band is close to the conduction band minimum. Moreover, compared with NH3, NO2 molecules adsorbed on SnSe2 have lower adsorption energy and a higher charge transfer value. Compared with the gas molecular adsorbed on pristine SnSe2 monolayer, the Se-vacancy SnSe2 monolayer obviously enhances sensitivity to NO2 adsorption. The O-doped SnSe2 monolayer shows similar sensitivity to the pristine SnSe2 monolayer when adsorbing NO2 molecule. However, only the N-doped SnSe2 monolayer represents a visible enhancement for NO2 and NH3 adsorption. Our previous work shows NO2 sensing enhancement of graphene decorated with polystyrene beads, which include many atoms that we cannot be sure if it could be calculated by VASP. In future work, we will try to simulate this complex system.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:23:14Z (GMT). No. of bitstreams: 1
U0001-1408202015284700.pdf: 4245949 bytes, checksum: 5d28901e43a2e6d89e221af242e296fe (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Gas sensing of 2D materials 2
1.3 Promising candidate for gas sensing - SnSe2 5
1.4 Enhancement of gas sensing of defective SnSe2 6
1.5 Summary of Chapters 7
Chapter 2 Theoretical framework 9
2.1 Density functional theory (DFT) 9
2.1.1 Hohenberg-Kohn theorem 10
2.1.2 Kohn–Sham equations 11
2.1.3 Exchange correlation potential solving Kohn–Sham equations 14
2.2 Self-consistent field (SCF) calculation for solving Kohn–Sham equations in VASP 15
2.3 Projector augmented wave (PAW) method in VASP 17
2.4 van der Waals correction: DFT-D2 method 19
2.5 Bader analysis for charge transfer 20
Chapter 3 High Selectivity Gas Sensing and Charge Transfer of pristine SnSe2 22
3.1 Introduction 23
3.2 Methodology 23
3.3 Benchmark of NO2 and NH3 adsorption on graphene 24
3.4 Results of molecules adsorbed on pristine SnSe2 monolayer 25
3.4.1 Optimized structures 27
3.4.2 Band structures 28
3.4.3 Adsorption energy 30
3.4.4 Charge density difference and charge transfer 31
3.4.5 Electron localization function (ELF) 33
3.5 Verified by dynamic experiments 34
3.5.1 The SnSe2 gas sensor device 34
3.5.2 The dynamic sensing responses 35
3.6 Conclusion 38
Chapter 4 Gas Sensing of Defective SnSe2 Monolayers 39
4.1 Introduction 40
4.2 Computational details and parameters 41
4.3 Results of molecules adsorbed on pristine and defective SnSe2 monolayers 45
4.3.1 SnSe2 monolayers 45
4.3.2 molecules adsorbed on SnSe2 monolayers 47
.4.3.2.1 NO2 49
.4.3.2.2 NH3 53
4.4 Comparison of molecules adsorbed on defective SnSe2 monolayers 58
4.4.1 On the Se-vacancy SnSe2 monolayer 58
4.4.2 On the O-doped SnSe2 monolayer 59
4.4.3 On the N-doped SnSe2 monolayer 59
4.5 Conclusions 60
Chapter 5 Summary and Perspectives 62
5.1 Summary 62
5.2 Perspectives and suggestions for future work 63
Appendix: Benchmark of NO2 and NH3 adsorption on graphene 65
Reference 66
dc.language.isoen
dc.title二硒化錫的單層結構對於二氧化氮與氨氣的吸附性質的第一原理研究
zh_TW
dc.titleFirst-Principles Study for NO2 and NH3 sensing properties of pristine and defective SnSe2 monolayersen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.oralexamcommittee林倫年(Michitoshi Hayashi),朱士維(Shi-Wei Chu),蔡政達(Jeng-Da Chai),關肇正(Chao-Cheng Kaun),傅薈如(Huei-Ru Fuh)
dc.subject.keyword二硒化錫,氣體偵測器,第一原理計算,zh_TW
dc.subject.keywordSnSe2,gas sensors,first-principle study,en
dc.relation.page71
dc.identifier.doi10.6342/NTU202003430
dc.rights.note未授權
dc.date.accepted2020-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
Appears in Collections:應用物理研究所

Files in This Item:
File SizeFormat 
U0001-1408202015284700.pdf
  Restricted Access
4.15 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved