Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19838
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭明燕
dc.contributor.authorKuang-Chen Hsiaoen
dc.contributor.author蕭光呈zh_TW
dc.date.accessioned2021-06-08T02:22:15Z-
dc.date.copyright2015-09-17
dc.date.issued2015
dc.date.submitted2015-08-19
dc.identifier.citationReferences
[1] Adams, R., A. Berger, and R. Sickles, 1999, Semiparametric Approaches to
Stochastic Panel Frontiers with Applications in the Banking Industry,' Journal
of Business and Economic Statistics, 17, pp. 349{358.
[2] Aigner, D.J. and S.F. Chu (1968), On Estimating the Industry Production
Function,' American Economic Review 58, 826-839.
[3] Aigner,D., K. Lovell, and P. Schmidt, 1977, Formulation and Estimation of
Stochastic Frontier Production Function Models,' Journal of Econometrics, 6,
pp. 21{37.
[4] Aguilar, R., 1988, E ciency in Production: Theory and an Application on
Kenyan Smallholders,' Ph.D. Dissertation, Department of Economics, University
of Gteborg, Sweden.
[5] Arrow, K., H. Chenery, B.Minhas, and R. Solow, 1961,Capital Labor Substi-
tution and Economic E ciency,' Review of Economics and Statistics, 45, pp.
225{247.
[6] Beckers,D., and C.Hammond, 1987,A Tractable Likelihood Function for
theNormal- Gamma Stochastic Frontier Model,' Economics Letters, 24, pp.
33{38.
[7] Berger, A., and D. Humphrey, 1991, The Dominance of Ine ciencies over Scale
and Product Mix Economies in Banking,' Journal of Monetary Economics, 28,
pp. 117{148.
[8] Berger, A., and D. Humphrey, 1992, Measurement and E ciency Issues in Com-
mercial Banking,' in National Bureau of Economic Research Studies in Income
and Wealth, Vol. 56, Output Measurement in the Service Sector, Z. Griliches,
ed., Chicago, University of Chicago Press.
[9] Bierens, H. J. 1990, A Consistent Conditional Moment Test of Functional
Form,' Econometrica, 58, pp. 1443{1458.
[10] Bierens, H. J. and Wang, L. 2012, Integrated Conditional Moment Tests for
Parametric Conditional Distributions, 'Econometric Theory, 28, pp. 328{362.
[11] Brendt, E. R., and Christensen, L. R., 'The Internal Structure of Functional
Relationships: Separability, Substitution, and Aggregation,' The Review of Eco-
nomic Studies, 1973
[12] Chen, T., and D. Tang, 1989, Comparing Technical E ciency Between Im-
port Substitution Oriented and Export Oriented Foreign Firms in a Developing
Economy,' Journal of Development of Economics, 26, pp. 277{289.
[13] Chen, Y. T. andWang, H. J. 2012 Centered-Residuals-Based Moment Estimator
and Test for Stochastic Frontier Models,' Econometric Review, 31, pp. 625{653.
[14] Cheng, M. Y., 2015, 'Testing speci cation of the ine ciency in stochastic frontier
models', working paper
[15] Christensen, L. R., Jorgenson, D. W., and Lau, L. J., 1973. 'Transcendental
Logarithmic Production Frontiers,' The Review of Economics and Statistics,
MIT Press, vol. 55(1), pages 28-45, February.
[16] Deprins, D., and L. Simar, 1989a, Estimation of Deterministic Frontiers with
Exogenous Factors of Ine ciency,' Annals of Economics and Statistics (Paris),
14, pp. 117{150.
[17] Deprins,D., and L. Simar, 1989b,Estimating Technical Ine ciencies with Cor-
rections for Environmental Conditionswith an Application to Railway Compa-
nies,'Annals of Public and Cooperative Economics, 60, pp. 81{102.
[18] Fan, Y., Q. Li, and A. Weersink, 1996, Semiparametric Estimation of Stochas-
tic Production Frontiers,' Journal of Business and Economic Statistics, 64, pp.
865{890.
[19] Frsund, F., and E. Jansen, 1977,On EstimatingAverage and Best Practice-
Homothetic Production Functions via Cost Functions,' International Economic
Review, 18, pp. 463{476.
[20] Greene, W., 1980, Maximum Likelihood Estimation of Econometric Frontier
Functions,' Journal of Econometrics, 13, pp. 27{56.
[21] Greene, W., 1990, A Gamma Distributed Stochastic Frontier Model,' Journal
of Econometrics, 46, pp. 141{163.
[22] Greene, W., 2003, Econometric Analysis, 5th ed., Prentice Hall, Upper Saddle
River, NJ.
[23] Greene,W., and S. Misra, 2003, Simulated Maximum Likelihood Estimation of
General Stochastic Frontier Regressions,' Working Paper, William Simon School
of Business, University of Rochester, NY
[24] Gri n, J., and Steel, M., 2004, Semiparametric Bayesian Inference for Stochas-
tic Frontier Models,' Journal of Econometrics, 123, pp. 121{152.
[25] Guo, X., G. Li, and W. Wong (2014). Speci
cation testing of production frontier function in stochastic frontier model. MPRA
Paper 57999.
[26] Huang, C., and T. Fu, 1999, An Average Derivative Estimator of a Stochastic
Frontier,' Journal of Productivity Analysis, 12, pp. 49{54.
[27] Huang, R., 2004, Estimation of Technical Ine ciencies with Heterogeneous
Technologies,' Journal of Productivity Analysis, 21, pp. 277{296.
[28] Hansen, L.P. (1982) Large sample properties of generalized method of moments
estimators,' Econometrica, 50, pp. 1029{1054.
[29] Hunt-McCool, J., and R. Warren, 1993, Earnings Frontiers and Labor Market
E ciency,' in The Measurement of Productive E ciency, H. Fried, K. Lovell,
and S. Schmidt, eds., Oxford University Press, New York.
[30] Koop, G., M. Steel, and J. Osiewalski, 1995, Posterior Analysis of Stochas-
tic Frontier Models Using Gibbs Sampling,' Computational Statistics, 10, pp.
353{373.
[31] Kopp, R., and J. Mullahy, 1989, Moment-Based Estimation and Testing of
Stochastic Frontier Models,' Discussion Paper No. 89-10, Resources for the Fu-
ture, Washington, DC
[32] Kumbhakar, S. C., B. U. Park, L. Simar and E. G. Tsionas (2007), Nonparamet-
ric Stochastic Frontiers: A Local Likelihood Approach, Journal of Econometrics
137(1), 1- 27.
[33] Lee, L., 1983, A Test for Distributional Assumptions for the Stochastic Frontier
Function,' Journal of Econometrics, 22, pp. 245{267.
[34] Meeusen,W., and J. van den Broeck, 1977, E ciency Estimation from Cobb-
Douglas Production Functions with Composed Error,' International Economic
Review, 18, pp. 435{444.
[35] Migon, H., and E. Medici, 2001, Bayesian Hierarchical Models for Stochastic
Production Frontier,'Working Paper, UFRJ, Brazil.
[36] Nerlove, M., 1963, Returns to Scale in Electricity Supply,' in Measurement in
Economics, C. Christ et al., eds., Stanford University Press, Stanford, CA.
[37] Neumeyer, N., and Van Keilegom, I. (2010). Estimating the error distribution in
nonparametric multiple regression with applications to model testing. J. Multi-
variate Anal., 101, 1067-1078.
[38] Newey, W. K. (1985) Maximum Likelihood Speci cation Testing and Condi-
tional Moment Tests,' Econometrica, 53, pp. 1047{1070.
[39] Orea, C., and S. Kumbhakar, 2004, E ciency Measurement Using a Latent
Class Stochastic Frontier Model,' Empirical Economics, 29, pp. 169{184.
[40] Schmidt, P. (1976), On the Statistical Estimation of Parametric Frontier Pro-
duction Functions,' Review of Economics and Statistics 58, 238-239.
[41] Schmidt, P., and T. Lin, 1984, Simple Tests of Alternative Speci cations in
Stochastic Frontier Models,' Journal of Econometrics, 24, pp. 349{361.
[42] Sickles, R.,D. Good, and L. Getachew, 2002,Speci cation of Distance Function-
sUsing Semi- and Nonparametric Methods with an Application to the Dynamic
Performance of Eastern and Western European Air Carriers,' Journal of Pro-
ductivity Analysis, 17, pp. 133{156.
[43] Sickles, R., 2005, Panel Estimators and the Identi cation of Firm Speci c E -
ciency Levels in Parametric, Semiparametric and Nonparametric Settings, Jour-
nal of Econometrics, 126, 2005, pp. 305{324.
[44] Simar, L.,Van Keilegom, I., and Zelenyuk, V., 2014. 'Nonparametric Least
Squares Methods for Stochastic Frontier Models,' CEPA Working Paper
[45] Stevenson, R., 1980, Likelihood Functions for Generalized Stochastic Frontier
Estimation,' Journal of Econometrics, 13, pp. 58{66.
[46] Tauchen, G. (1985) Diagnostic Testing and Evaluation of Maximum Likelihood
Models,' Journal of Econometrics, 30, pp. 415{444.
[47] Tsionas, E., 2002, Stochastic Frontier Models with Random Coe cients,' Jour-
nal of Applied Econometrics, 17, pp. 127{147.
[48] Tsionas, E., andW. Greene (2003),Non-Gaussian Stochastic FrontierMod-
els,'Working Paper, Department of Economics, Athens University of Economics
and Business.
[49] van den Broeck, J., G. Koop, J. Osiewalski, and M. Steel, 1994, Stochastic
Frontier Models: A Bayesian Perspective,' Journal of Econometrics, 61, pp.
273{303.
[50] Wang, W. S., Schmidt, P. 2009, On the distribution of estimated technical
e ciency in stochastic frontier models,' J Econom 148:3645
[51] Wang, W. S., Amsler, C. and Schmidt, P. 2011, Goodness of Fit Tests in
Stochastic frontier Models,' Journal of Productivity Analysis, 35, pp. 95{118.
[52] Weinstein, M., 1964, The Sum of Values from a Normal and a Truncated Normal
Distribution,' Technometrics, 6, pp. 104{105, 469{470.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19838-
dc.description.abstract隨機邊界模型經常被使用在生產或成本函數分析。傳統的模型估計方法多半以最大化概似函數估計為主,而建構概似函數需要關於模型中非效率項的分配假設,因此此假設於分析中非常重要。過往的研究文獻中已有若干關於檢定此非效率項分配假設的統計檢定方法,然而其中多半需假設隨機邊界函數為特定的參數化函數。本篇論文中介紹Cheng (2015)的檢定方法並不需要此特別的參數化假設。其主要的概念為利用由非參數估計與半參數估計所得出的殘差項導出之經驗非配函數的差,建構出Kolmogorov-Smirnov 檢定統計量以進行檢定。若非效率項的真實條件分配確實如預先設定的假定分配,由非參數估計與半參數估計所得出的殘差項之分配應約略相同,此為本文中統計方法的立論概念。由於在虛無假設下漸進分配函數的複雜性,我們使用重複抽樣法(bootstrap method)來得出檢定所需的p -值。模擬的數值分析結果顯示此方法有不錯的效果量與檢定力。zh_TW
dc.description.abstractStochastic frontier model is widely used in studying production or cost frontiers. Traditional approach for the estimation of parametric stochastic frontier function is to maximize the constructed log-likelihood to get the estimators of the model parameters. The construction of the log-likelihood requires distributional assumptions of the inefficiency term. Therefore, the performance of the frontier model estimation relies heavily on the accuracy of this distributional specification of the inefficiency term. There have been several testing procedures in the literature dealing with this kind of specification problem, under the assumption of parametric stochastic frontier function. While the literature focus on modeling, inference and testing specification of the (unobserved) inefficiency term, the problems are always coupled with specification of the frontier function. In other words, validity of the analysis of the inefficiency is dependent on assumed parametric form of the frontier function. We investigate the emerging issue of testing some parametric specification of the conditional distribution of the inefficiency given the covariate, without parametric assumption on the frontier function. Existing methods uses information on specifications of both components. Hence, the null hypothesis is true only if both specifications are correct and when it is rejected there is no clue which specification is violated
relies heavily on the accuracy of this distributional specification of the inefficiency term. There have been several testing procedures in the literature dealing with this kind of specification problem, under the assumption of parametric stochastic frontier
function. While the literature focus on modeling, inference and testing specification of
the (unobserved) inefficiency term, the problems are always coupled with specification
of the frontier function. In other words, validity of the analysis of the inefficiency is
dependent on assumed parametric form of the frontier function. We investigate the
emerging issue of testing some parametric specification of the conditional distribution
of the inefficiency given the covariate, without parametric assumption on the frontier
function. Existing methods uses information on specifications of both components.
Hence, the null hypothesis is true only if both specifications are correct and when it
is rejected there is no clue which specification is violated.
The main idea of the proposed specification test in this thesis is to construct the
Kolmogorov-Smirnov test statistic via using the difference between the two empiri-
cal distributions of the residuals from nonparametric and semiparametric estimation.
Without the distributional assumption of the inefficiency term, we may still esti-
mate the frontier function via using nonparametric techniques, which results the first
version of the wanted residuals. With the imposed parametric specification of the
conditional distribution of the inefficiency , we can utilize the relationship between
the conditional moment of the residuals and the parameters of the conditional distri-
bution of the inefficiency to estimate the frontier function, which results the second
version of the residuals. The rationale here is, if the parametric specification of the
conditional distribution of the inefficiency is true, the residuals obtained from fully
nonparametric estimation and the residuals obtained from semiparametric estimation
should roughly have the same distributions. This idea forms the basis of the testing
procedure. Because of the complexity of the asymptotic null distribution, we employ
bootstrap to generate the p-values. We examine numerical performance of this non-
parametric approach to test the specification of the inefficiency proposed by Cheng
(2015) via an extensive simulation study. Our simulation study includes two sets of
the parametric specification of the conditional distribution of the inefficiency , one is
the standard half-normal distribution setting, and the other is the log-normal distri-
bution. Heteroscedasticity in the conditional distribution of the inefficiency term is
also considered. We find that the test has good level accuracy and nontrivial power
even under heteroscedasticity.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:22:15Z (GMT). No. of bitstreams: 1
ntu-104-D95221002-1.pdf: 5949089 bytes, checksum: ef77ae438d2ff33df271464473a6898a (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsTable of Contents
1 Introduction ......................................................................................................................... 1
2 Literature review ................................................................................................................. 5
2.1 Background ..................................................................................................................... 5
2.2 Deterministic frontier model ......................................................................................... 8
2.3 Stochastic frontier model .............................................................................................. 11
2.3.1 Parametric stochastic frontier model ................................................................. 11
2.3.2 Testings of the stochastic frontier model ............................................................ 16
2.3.3 Nonparametric stochastic frontier model ........................................................... 21
3 Nonparametric test ............................................................................................................ 25
3.1 Estimation ..................................................................................................................... 25
3.2 Test Statistics ................................................................................................................. 30
3.3 Bootstrap Tests .............................................................................................................. 31
4 Simulation study ................................................................................................................ 32
4.1 Discussion: size of the test ............................................................................................ 33
4.2 Discussion: power of the test ....................................................................................... 34
References .............................................................................................................................. 38
dc.language.isoen
dc.title非參數模型檢定問題zh_TW
dc.titleNonparametric Model Testingen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee彭亮,鄧文舜,黃瑞卿,林亦珍,鄭少為
dc.subject.keyword高斯隨機過程,適合度檢定,zh_TW
dc.subject.keywordGaussian process,goodness of fit,en
dc.relation.page43
dc.rights.note未授權
dc.date.accepted2015-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
5.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved