Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19813Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張明富(Ming-Fu Chang) | |
| dc.contributor.author | Ssu-Chia Chien | en |
| dc.contributor.author | 簡偲家 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:20:44Z | - |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-20 | |
| dc.identifier.citation | 1. Kindler, E., H.R. Jonsdottir, D. Muth, O.J. Hamming, R. Hartmann, R. Rodriguez, R. Geffers, R.A. Fouchier, C. Drosten, M.A. Muller, R. Dijkman, and V. Thiel. (2013). Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential. MBio. 4: e00611-12. 2. Zaki, A.M., S. van Boheemen, T.M. Bestebroer, A.D. Osterhaus, and R.A. Fouchier. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 367: 1814-20. 3. de Groot, R.J., S.C. Baker, R.S. Baric, C.S. Brown, C. Drosten, L. Enjuanes, R.A. Fouchier, M. Galiano, A.E. Gorbalenya, Z.A. Memish, S. Perlman, L.L. Poon, E.J. Snijder, G.M. Stephens, P.C. Woo, A.M. Zaki, M. Zambon, and J. Ziebuhr. (2013). Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol. 87: 7790-2. 4. Assiri, A., J.A. Al-Tawfiq, A.A. Al-Rabeeah, F.A. Al-Rabiah, S. Al-Hajjar, A. Al-Barrak, H. Flemban, W.N. Al-Nassir, H.H. Balkhy, R.F. Al-Hakeem, H.Q. Makhdoom, A.I. Zumla, and Z.A. Memish. (2013). Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis. 13: 752-61. 5. CDC. Middle East respiratory syndrome (MERS). Case definitions. http://www.cdc.gov/coronavirus/mers/case-def.html (accessed June 11, 2015) 6. Zumla, A., D.S. Hui, and S. Perlman. (2015). Middle East respiratory syndrome. The Lancet. 10.1016/s0140-6736(15)60454-8. 7. WHO. Coronavirus infections. Middle East respiratory syndrome coronavirus (MERS-CoV). http://www.who.int/csr/don/archive/disease/coronavirus_infections/en/ (accessed July 14, 2015) 8. Oboho, I.K., S.M. Tomczyk, A.M. Al-Asmari, A.A. Banjar, H. Al-Mugti, M.S. Aloraini, K.Z. Alkhaldi, E.L. Almohammadi, B.M. Alraddadi, S.I. Gerber, D.L. Swerdlow, J.T. Watson, and T.A. Madani. (2015). 2014 MERS-CoV outbreak in Jeddah--a link to health care facilities. N Engl J Med. 372: 846-54. 9. Chowell, G., S. Blumberg, L. Simonsen, M.A. Miller, and C. Viboud. (2014). Synthesizing data and models for the spread of MERS-CoV, 2013: key role of index cases and hospital transmission. Epidemics. 9: 40-51. 10. Reusken, C.B.E.M., B.L. Haagmans, M.A. M uuml;ller, C. Gutierrez, G.-J. Godeke, B. Meyer, D. Muth, V.S. Raj, L.S.-D. Vries, V.M. Corman, J.-F. Drexler, S.L. Smits, Y.E. El Tahir, R. De Sousa, J. van Beek, N. Nowotny, K. van Maanen, E. Hidalgo-Hermoso, B.-J. Bosch, P. Rottier, A. Osterhaus, C. Gort aacute;zar-Schmidt, C. Drosten, and M.P.G. Koopmans. (2013). Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis. 13: 859-66. 11. MOHW-CDC. Middle East respiratory syndrome (MERS). http://www.cdc.gov.tw/professional/MERS_CoV (accessed July 11, 2015) 12. Chan, J.F., S.K. Lau, K.K. To, V.C. Cheng, P.C. Woo, and K.Y. Yuen. (2015). Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev. 28: 465-522. 13. van Boheemen, S., M. de Graaf, C. Lauber, T.M. Bestebroer, V.S. Raj, A.M. Zaki, A.D. Osterhaus, B.L. Haagmans, A.E. Gorbalenya, E.J. Snijder, and R.A. Fouchier. (2012). Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio. 3: e00473-12. 14. Chan, J.F., K.S. Li, K.K. To, V.C. Cheng, H. Chen, and K.Y. Yuen. (2012). Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? J Infect. 65: 477-89. 15. Ge, X.Y., J.L. Li, X.L. Yang, A.A. Chmura, G. Zhu, J.H. Epstein, J.K. Mazet, B. Hu, W. Zhang, C. Peng, Y.J. Zhang, C.M. Luo, B. Tan, N. Wang, Y. Zhu, G. Crameri, S.Y. Zhang, L.F. Wang, P. Daszak, and Z.L. Shi. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 503: 535-8. 16. Zhang, N., S. Jiang, and L. Du. (2014). Current advancements and potential strategies in the development of MERS-CoV vaccines. Expert Rev Vaccines. 13: 761-74. 17. Scobey, T., B.L. Yount, A.C. Sims, E.F. Donaldson, S.S. Agnihothram, V.D. Menachery, R.L. Graham, J. Swanstrom, P.F. Bove, J.D. Kim, S. Grego, S.H. Randell, and R.S. Baric. (2013). Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 110: 16157-62. 18. Lu, G., Y. Hu, Q. Wang, J. Qi, F. Gao, Y. Li, Y. Zhang, W. Zhang, Y. Yuan, J. Bao, B. Zhang, Y. Shi, J. Yan, and G.F. Gao. (2013). Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature. 500: 227-31. 19. Raj, V.S., H. Mou, S.L. Smits, D.H. Dekkers, M.A. Muller, R. Dijkman, D. Muth, J.A. Demmers, A. Zaki, R.A. Fouchier, V. Thiel, C. Drosten, P.J. Rottier, A.D. Osterhaus, B.J. Bosch, and B.L. Haagmans. (2013). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 495: 251-4. 20. Du, L., Z. Kou, C. Ma, X. Tao, L. Wang, G. Zhao, Y. Chen, F. Yu, C.T. Tseng, Y. Zhou, and S. Jiang. (2013). A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines. PLoS One. 8: e81587. 21. Ma, C., L. Wang, X. Tao, N. Zhang, Y. Yang, C.T. Tseng, F. Li, Y. Zhou, S. Jiang, and L. Du. (2014). Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments--the importance of immunofocusing in subunit vaccine design. Vaccine. 32: 6170-6. 22. White, J.M., S.E. Delos, M. Brecher, and K. Schornberg. (2008). Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol. 43: 189-219. 23. Lu, L., Q. Liu, Y. Zhu, K.H. Chan, L. Qin, Y. Li, Q. Wang, J.F. Chan, L. Du, F. Yu, C. Ma, S. Ye, K.Y. Yuen, R. Zhang, and S. Jiang. (2014). Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat Commun. 5: 3067. 24. Du, L., G. Zhao, Y. Yang, H. Qiu, L. Wang, Z. Kou, X. Tao, H. Yu, S. Sun, C.T. Tseng, S. Jiang, F. Li, and Y. Zhou. (2014). A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein. J Virol. 88: 7045-53. 25. Jiang, L., N. Wang, T. Zuo, X. Shi, K.M. Poon, Y. Wu, F. Gao, D. Li, R. Wang, J. Guo, L. Fu, K.Y. Yuen, B.J. Zheng, X. Wang, and L. Zhang. (2014). Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein. Sci Transl Med. 6: 234ra59. 26. Surya, W., Y. Li, C. Verdia-Baguena, V.M. Aguilella, and J. Torres. (2015). MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels. Virus Res. 201: 61-6. 27. Yang, Y., L. Zhang, H. Geng, Y. Deng, B. Huang, Y. Guo, Z. Zhao, and W. Tan. (2013). The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell. 4: 951-61. 28. Hurst, K.R., R. Ye, S.J. Goebel, P. Jayaraman, and P.S. Masters. (2010). An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA. J Virol. 84: 10276-88. 29. Almazan, F., M.L. DeDiego, I. Sola, S. Zuniga, J.L. Nieto-Torres, S. Marquez-Jurado, G. Andres, and L. Enjuanes. (2013). Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate. MBio. 4: e00650-13. 30. Perlman, S. and J. Netland. (2009). Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 7: 439-50. 31. Ohnuma, K. and C. Morimoto. (2013). DPP4 (dipeptidyl-peptidase 4). Atlas Genet Cytogenet Oncol Haematol. 17: 301-12. 32. Zhong, J., X. Rao, and S. Rajagopalan. (2013). An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis. 226: 305-14. 33. Antonicelli, F. and P. Bernard. (2012). CXCL10 (chemokine (C-X-C motif) ligand 10). Atlas Genet Cytogenet Oncol Haematol. 16: 782-8. 34. Liu, M., S. Guo, J.M. Hibbert, V. Jain, N. Singh, N.O. Wilson, and J.K. Stiles. (2011). CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev. 22: 121-30. 35. Chen, I.Y., S.C. Chang, H.Y. Wu, T.C. Yu, W.C. Wei, S. Lin, C.L. Chien, and M.F. Chang. (2010). Upregulation of the chemokine (C-C motif) ligand 2 via a severe acute respiratory syndrome coronavirus spike-ACE2 signaling pathway. J Virol. 84: 7703-12. 36. Kindrachuk, J., B. Ork, B.J. Hart, S. Mazur, M.R. Holbrook, M.B. Frieman, D. Traynor, R.F. Johnson, J. Dyall, J.H. Kuhn, G.G. Olinger, L.E. Hensley, and P.B. Jahrling. (2015). Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob Agents Chemother. 59: 1088-99. 37. Kroemer, J.A. and B.A. Webb. (2006). Divergences in protein activity and cellular localization within the Campoletis sonorensis Ichnovirus Vankyrin family. J Virol. 80: 12219-28. 38. Fath-Goodin, A., J.A. Kroemer, and B.A. Webb. (2009). The Campoletis sonorensis ichnovirus vankyrin protein P-vank-1 inhibits apoptosis in insect Sf9 cells. Insect Mol Biol. 18: 497-506. 39. Chan, J.F., K.H. Chan, G.K. Choi, K.K. To, H. Tse, J.P. Cai, M.L. Yeung, V.C. Cheng, H. Chen, X.Y. Che, S.K. Lau, P.C. Woo, and K.Y. Yuen. (2013). Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation. J Infect Dis. 207: 1743-52. 40. Cai, Y., S.Q. Yu, E.N. Postnikova, S. Mazur, J.G. Bernbaum, R. Burk, T. Zhang, S.R. Radoshitzky, M.A. Muller, I. Jordan, L. Bollinger, L.E. Hensley, P.B. Jahrling, and J.H. Kuhn. (2014). CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection. PLoS One. 9: e112060. 41. Ip, N.Y. and L.H. Tsai. (2009). Cyclin dependent kinase 5 (Cdk5). Springer US, 77-9. 42. Sharma, P., Veeranna, M. Sharma, N.D. Amin, R.K. Sihag, P. Grant, N. Ahn, A.B. Kulkarni, and H.C. Pant. (2002). Phosphorylation of MEK1 by cdk5/p35 down-regulates the mitogen-activated protein kinase pathway. J Biol Chem. 277: 528-34. 43. Faure, E., J. Poissy, A. Goffard, C. Fournier, E. Kipnis, M. Titecat, P. Bortolotti, L. Martinez, S. Dubucquoi, R. Dessein, P. Gosset, D. Mathieu, and B. Guery. (2014). Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside? PLoS One. 9: e88716. 44. Zhou, J., H. Chu, C. Li, B.H. Wong, Z.S. Cheng, V.K. Poon, T. Sun, C.C. Lau, K.K. Wong, J.Y. Chan, J.F. Chan, K.K. To, K.H. Chan, B.J. Zheng, and K.Y. Yuen. (2014). Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis. 209: 1331-42. 45. Nakamichi, K., S. Inoue, T. Takasaki, K. Morimoto, and I. Kurane. (2004). Rabies virus stimulates nitric oxide production and CXC chemokine ligand 10 expression in macrophages through activation of extracellular signal-regulated kinases 1 and 2. J Virol. 78: 9376-88. 46. Hitchman, R.B., R.D. Possee, and L.A. King. (2009). Baculovirus expression systems for recombinant protein production in insect cells. Recent Pat Biotechnol. 3: 46-54. 47. Wang, L., W. Shi, M.G. Joyce, K. Modjarrad, Y. Zhang, K. Leung, C.R. Lees, T. Zhou, H.M. Yassine, M. Kanekiyo, Z.Y. Yang, X. Chen, M.M. Becker, M. Freeman, L. Vogel, J.C. Johnson, G. Olinger, J.P. Todd, U. Bagci, J. Solomon, D.J. Mollura, L. Hensley, P. Jahrling, M.R. Denison, S.S. Rao, K. Subbarao, P.D. Kwong, J.R. Mascola, W.P. Kong, and B.S. Graham. (2015). Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun. 6: 7712. 48. Wang, N., X. Shi, L. Jiang, S. Zhang, D. Wang, P. Tong, D. Guo, L. Fu, Y. Cui, X. Liu, K.C. Arledge, Y.H. Chen, L. Zhang, and X. Wang. (2013). Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 23: 986-93. 49. Du, L., G. Zhao, C.C. Chan, S. Sun, M. Chen, Z. Liu, H. Guo, Y. He, Y. Zhou, B.J. Zheng, and S. Jiang. (2009). Recombinant receptor-binding domain of SARS-CoV spike protein expressed in mammalian, insect and E. coli cells elicits potent neutralizing antibody and protective immunity. Virology. 393: 144-50. 50. Chaga, G., J. Hopp, and P. Nelson. (1999). Immobilized metal ion affinity chromatography on Co2+-carboxymethylaspartate-agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle. Biotechnol Appl Biochem. 29: 19-24. 51. Lambert, D.W., M. Yarski, F.J. Warner, P. Thornhill, E.T. Parkin, A.I. Smith, N.M. Hooper, and A.J. Turner. (2005). Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem. 280: 30113-9. 52. Cordero, O.J., F.J. Salgado, and M. Nogueira. (2009). On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol Immunother. 58: 1723-47. 53. Lamers, D., S. Famulla, N. Wronkowitz, S. Hartwig, S. Lehr, D.M. Ouwens, K. Eckardt, J.M. Kaufman, M. Ryden, S. Muller, F.G. Hanisch, J. Ruige, P. Arner, H. Sell, and J. Eckel. (2011). Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes. 60: 1917-25. 54. Wronkowitz, N., S.W. Gorgens, T. Romacho, L.A. Villalobos, C.F. Sanchez-Ferrer, C. Peiro, H. Sell, and J. Eckel. (2014). Soluble DPP4 induces inflammation and proliferation of human smooth muscle cells via protease-activated receptor 2. Biochim Biophys Acta. 1842: 1613-21. 55. Rohrborn, D., J. Eckel, and H. Sell. (2014). Shedding of dipeptidyl peptidase 4 is mediated by metalloproteases and up-regulated by hypoxia in human adipocytes and smooth muscle cells. FEBS Lett. 588: 3870-7. 56. Clarke, D.L., R.L. Clifford, S. Jindarat, D. Proud, L. Pang, M. Belvisi, and A.J. Knox. (2010). TNFalpha and IFNgamma synergistically enhance transcriptional activation of CXCL10 in human airway smooth muscle cells via STAT-1, NF-kappaB, and the transcriptional coactivator CREB-binding protein. J Biol Chem. 285: 29101-10. 57. Singanayagam, A., N. Glanville, R.P. Walton, J. Aniscenko, R.M. Pearson, J.W. Pinkerton, J.C. Horvat, P.M. Hansbro, N.W. Bartlett, and S.L. Johnston. (2015). A short-term mouse model that reproduces the immunopathological features of rhinovirus-induced exacerbation of COPD. Clin Sci (Lond). 129: 245-58. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19813 | - |
| dc.description.abstract | 中東呼吸道症候群冠狀病毒 (Middle East respiratory syndrome coronavirus,MERS-CoV) 為一種新型的第二型冠狀病毒,具有人畜共通的特性。從 2012 年爆發至今,已由原先集中於中東地區,擴及至歐洲、北非、北美、東南亞以及南韓等地。除了造成嚴重呼吸道感染外,MERS-CoV 還會造成急性腎衰竭,此併發症在 SARS-CoV 感染的個案中不曾出現。相對於具有 9.6% 致死率的 SARS-CoV,MERS-CoV 的致死率高達 36%。此病毒為具有套膜、正向單股的 RNA 病毒,當其感染細胞時,須藉由廣泛分布於各種細胞中之雙基胜肽酶 4 (dipeptidyl peptidase 4,DPP4) 作為受器。在棘蛋白質 (spike,S) 與受器 DPP4 結合時,其構形會發生改變進而引發細胞膜融合促使病毒進入細胞,但至今仍不明瞭在兩者結合時是否會誘導訊息傳遞。本研究根據序列分析發現,DPP4 位於細胞質的羧端具有一個可能被 CDK5 磷酸化之位點。此外,已知 ERK/MAPK 和 PI3K/AKT/mTOR 路徑在 MERS-CoV 感染時扮演重要角色。因此擬探討當 MERS-CoV 的 S 蛋白質與其受器 DPP4 結合時,是否會活化訊息傳遞路徑,進而調控宿主細胞的生理反應,希望藉此有助於闡明 MERS-CoV 致病的原因。首先利用桿狀病毒表現載體系統表現出 MERS-CoV S 蛋白質帶有 receptor binding domain 的次單元 S1,並進一步純化。以可被 MERS-CoV 感染的非洲綠猴腎臟細胞株 Vero E6 作為實驗平台,當 S1 蛋白質加入細胞培養液時,觀察到 DPP4 會被磷酸化、ERK1/2 受到活化,以及 CXCL10 mRNA 的表現量增加。接著以專一性辨認 DPP4 的抗體抑制 S1 蛋白質與受器 DPP4 結合,或是 knockdown CDK5 時,發現皆會影響上述所觀察到之現象。此外,CXCL10 mRNA 的表現量也會受到 ERK1/2 上游 MEK1 抑制劑的影響。綜合以上結果,當 MERS-CoV S1 蛋白質與細胞受器 DPP4 結合時,會促使 CDK5 將 DPP4 磷酸化;此一過程會造成 MEK1 及 ERK1/2 的活化,以及下游 CXCL10 mRNA 的表現量增加。本研究說明了一個新的並具有生理及 MERS-CoV 感染之病理上有意義的 DPP4 訊息傳遞路徑。 | zh_TW |
| dc.description.abstract | Middle East respiratory syndrome coronavirus (MERS-CoV) is a new zoonotic betacoronavirus, that caused an outbreak of severe respiratory disease in 2012 in the Middle East with secondary spread to Europe, North Africa, North America, Southeast Asia, and South Korea. The pathology of patients infected with MERS-CoV included not only respiratory disease but also acute renal failure. To date, there have been 1,368 cases of MERS, with a relatively high mortality rate of 36% in comparism with the 9.6% mortality of SARS-CoV. MERS-CoV is an enveloped, positive single-stranded RNA virus. The virus uses the evolutionarily conserved dipeptidyl peptidase 4 (DPP4) as its functional receptor. The spike (S) protein initiates virus entry by binding to DPP4 followed by conformational changes that lead to membrane fusion. It is not clear whether DPP4 conveys signals from the cell surface to the nucleus upon MERS-CoV infection. Phosphorylation site prediction data in NetPhosK 1.0 Server displayed that there is a putative CDK5 phosphorylation site located in the cytoplasmic side of DPP4. In addition, studies demonstrated that ERK/MAPK and PI3K/AKT/mTOR signaling responses played important roles in MERS-CoV infection. Towards understanding the pathogenesis of MERS-CoV, this study aims to examine whether DPP4 signaling pathway is activated upon binding of viral S protein to the DPP4 receptor. The S1 subunit of S protein which contains the receptor binding domain was produced by baculovirus expression system. MERS-CoV S1 protein secreted into the culture medium was purified and incubated with the virus permissive monkey kidney-derived cell line Vero E6 which expresses DPP4 at a high level. The results showed that the MERS-CoV S1 protein binding to DPP4 receptor caused phosphorylation of DPP4 and activation of ERK1/2. Meanwhile, the mRNA level of CXCL10 was up-regulated. In addition, incubation of Vero E6 cells with antibodies specific to DPP4 or CDK5 knockdown abolished the MERS-CoV S1 protein-induced phosphorylation of DPP4 and ERK1/2 and the up-regulation of CXCL10. Furthermore, the mRNA level of CXCL10 was also reduced by the MEK1 inhibitor PD98059 which blocks ERK1/2 phosphorylation. These data suggest that upon infection of MERS-CoV, DPP4 signaling pathway is activated through the interaction between the viral spike protein and the DPP4 receptor. The DPP4 signaling then activates MEK1-ERK1/2 pathway, resulting in an up-regulation of the downstream gene cxcl10. This novel DPP4 signaling pathway is critical for the cell entry and pathogenesis of MERS-CoV infection. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:20:44Z (GMT). No. of bitstreams: 1 ntu-104-R02442015-1.pdf: 2751344 bytes, checksum: a2f790079f11cbdaf3d7a7947217fba5 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要 i 英文摘要 ii 縮寫表 iv 第一章 緒論 1 第二章 研究主題 11 第三章 材料來源 12 第四章 實驗方法 17 第五章 實驗結果 33 第六章 討論 39 第七章 圖表 44 附錄 61 參考文獻 67 | |
| dc.language.iso | zh-TW | |
| dc.title | 中東呼吸道症候群冠狀病毒棘蛋白質透過其受器 DPP4 正調控趨化因子 CXCL10 基因之訊息傳遞 | zh_TW |
| dc.title | Up-regulation of the C-X-C motif chemokine 10 via a MERS-CoV spike-DPP4 signaling pathway | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張富雄(Fu-Hsiung Chang),曾秀如(Shiou-Ru Tzeng),伍安怡(Betty A. Wu-Hsieh) | |
| dc.subject.keyword | 中東呼吸道症候群冠狀病毒,棘蛋白質,雙基胜?? 4,趨化因子,胞外訊息調節激?1/2, | zh_TW |
| dc.subject.keyword | MERS,Spike protein,DPP4,CXCL10,ERK1/2, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-08-20 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| Appears in Collections: | 生物化學暨分子生物學科研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-104-1.pdf Restricted Access | 2.69 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
