請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19796
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李苑玲(Yuan-Ling Lee) | |
dc.contributor.author | Jyun-Wei Yang | en |
dc.contributor.author | 楊竣為 | zh_TW |
dc.date.accessioned | 2021-06-08T02:19:38Z | - |
dc.date.copyright | 2015-09-24 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-20 | |
dc.identifier.citation | Abraham W (1983). Principles of biochemistry: mammalian biochemistry.
Alameh M, Jean M, DeJesus D, Buschmann MD, Merzouki A (2010). Chitosanase-based method for RNA isolation from cells transfected with chitosan/siRNA nanocomplexes for real-time RT-PCR in gene silencing. International Journal of Nanomedicine 5(473-481. Ambrosio AMA, Sahota JS, Khan Y, Laurencin CT (2001). A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization. Journal of Biomedical Materials Research 58(3):295-301. Boskey A, Posner A (1976). Formation of hydroxyapatite at low supersaturation. The Journal of Physical Chemistry 80(1):40-45. Boskey AL (1997). Amorphous Calcium Phosphate: The Contention of Bone. J Dent Res 76(8):1433-1436. Botchwey EA, Pollack SR, Levine EM, Laurencin CT (2001). Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system. Journal of Biomedical Materials Research 55(2):242-253. Brown WE (1962). Octacalcium phosphate and hydroxyapatite: crystal structure of octacalcium phosphate. Cai Y, Liu Y, Yan W, Hu Q, Tao J, Zhang M et al. (2007). Role of hydroxyapatite nanoparticle size in bone cell proliferation. Journal of Materials Chemistry 17(36):3780-3787. Cerroni L, Filocamo R, Fabbri M, Piconi C, Caropreso S, Condo SG (2002). Growth of osteoblast-like cells on porous hydroxyapatite ceramics: an in vitro study. Biomol Eng 19(2-6):119-124. Chang Y-L, Lew D, Park JB, Keller JC (1999). Biomechanical and morphometric analysis of hydroxyapatite-coated implants with varying crystallinity. Journal of Oral and Maxillofacial Surgery 57(9):1096-1108. Delmas PD (1993). Biochemical markers of bone turnover. Journal of Bone and Mineral Research 8(S2):S549-S555. Dorozhkin SV, Epple M (2002). Biological and Medical Significance of Calcium Phosphates. Angewandte Chemie International Edition 41(17):3130-3146. Eun Jin K, Suk Joon Y, Guw-Dong Y, Chaul-Min P, Inn-Kyu K (2009). Preparation of biodegradable PLA/PLGA membranes with PGA mesh and their application for periodontal guided tissue regeneration. Biomedical Materials 4(5):055001. Giraud-Guille M-M (1994). Liquid crystalline order of biopolymers in cuticles and bones. Microscopy Research and Technique 27(5):420-428. Glimcher MJ (1984). Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Philos Trans R Soc Lond B Biol Sci 304(1121):479-508. Goldberg RA, Holds JB, Ebrahimpour J (1992). Exposed Hydroxyapatite Orbital Implants: Report of Six Cases. Ophthalmology 99(5):831-836. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A et al. (2002). Stem Cell Properties of Human Dental Pulp Stem Cells. J Dent Res 81(8):531-535. Heneka MT, Löschmann P-A, Gleichmann M, Weller M, Schulz JB, Wüllner U et al. (1998). Induction of Nitric Oxide Synthase and Nitric Oxide-Mediated Apoptosis in Neuronal PC12 Cells After Stimulation with Tumor Necrosis FActor-α/Lipopolysaccharide. Journal of Neurochemistry 71(1):88-94. Hoehn H (1974). Heat treatment of membranes of selected polyimides,polyesters and polyamides: Google Patents. Hu Q, Tan Z, Liu Y, Tao J, Cai Y, Zhang M et al. (2007). Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. Journal of Materials Chemistry 17(44):4690-4698. Ito M, Hidaka Y, Nakajima M, Yagasaki H, Kafrawy AH (1999). Effect of hydroxyapatite content on physical properties and connective tissue reactions to a chitosan–hydroxyapatite composite membrane. Journal of Biomedical Materials Research 45(3):204-208. Jansen T, Wallin R (1998). A Practical Guide to ISO 10993-12: Sample Preparation and Reference Materials. MEDICAL DEVICE AND DIAGNOSTIC INDUSTRY 20(61-62. Johansen E, Parks HF (1962). Electron-microscopic observations on sound human dentine. Arch Oral Biol 7(185-193. Kesting RE (1973). Concerning the microstructure of dry-RO membranes. Journal of Applied Polymer Science 17(6):1771-1785. Kikuchi M, Ikoma T, Itoh S, Matsumoto HN, Koyama Y, Takakuda K et al. (2004). Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Composites Science and Technology 64(6):819-825. Klaas dG (1984). Bioceramics of Calcium Phosphate. Journal of Clinical Engineering 9(1):52. Koike T, Martin DP, Johnson EM (1989). Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells. Proceedings of the National Academy of Sciences 86(16):6421-6425. Liao S, Wang W, Uo M, Ohkawa S, Akasaka T, Tamura K et al. (2005). A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials 26(36):7564-7571. Lin CP, Chen YJ, Lee YL, Wang JS, Chang MC, Lan WH et al. (2004). Effects of root‐end filling materials and eugenol on mitochondrial dehydrogenase activity and cytotoxicity to human periodontal ligament fibroblasts. Journal of Biomedical Materials Research Part B: Applied Biomaterials 71(2):429-440. Lin S, Rohanizadeh R, Mijares D, LeGeros J (2003). Biphasic calcium phosphate bioceramics: preparation, properties and applications. Journal of materials science: Materials in Medicine 14(3):201-209. Ma J, Wang H, He B, Chen J (2001). A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials 22(4):331-336. Matsumine A, Kusuzaki K, Matsubara T, Okamura A, Okuyama N, Miyazaki S et al. (2006). Calcium phosphate cement in musculoskeletal tumor surgery. Journal of Surgical Oncology 93(3):212-220. Maxian SH, Di Stefano T, Melican MC, Tiku ML, Zawadsky JP (1998). Bone cell behavior on Matrigel®-coated Ca/P coatings of varying crystallinities. Journal of Biomedical Materials Research 40(2):171-179. Meleti Z, Shapiro IM, Adams CS (2000). Inorganic phosphate induces apoptosis of osteoblast-like cells in culture. Bone 27(3):359-366. Nyman S, Lindhe J, Karring T, Rylander H (1982). New attachment following surgical treatment of human periodontal disease. J Clin Periodontol 9(4):290-296. Ohgaki M, Kizuki T, Katsura M, Yamashita K (2001). Manipulation of selective cell adhesion and growth by surface charges of electrically polarized hydroxyapatite. Journal of Biomedical Materials Research 57(3):366-373. Posner AS, Tannenbaum PJ (1984). The mineral phase of dentin. Dentin and dentinogenesis 2(17-36. Quinaux N, Richelle L (1967). X-RAY DIFFRACTION AND INFRARED ANALYSIS OF BONE SPECIFIC GRAVITY FRACTIONS IN GROWING RAT. Israel Journal of Medical Sciences 3(5):677-&. Ranke J, Mölter K, Stock F, Bottin-Weber U, Poczobutt J, Hoffmann J et al. (2004). Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicology and Environmental Safety 58(3):396-404. Rouahi M, Gallet O, Champion E, Dentzer J, Hardouin P, Anselme K (2006). Influence of hydroxyapatite microstructure on human bone cell response. Journal of Biomedical Materials Research Part A 78A(2):222-235. Sculean A, Chiantella GC, Windisch P, Arweiler NB, Brecx M, Gera I (2005). Healing of intra-bony defects following treatment with a composite bovine-derived xenograft (Bio-Oss Collagen) in combination with a collagen membrane (Bio-Gide PERIO). Journal of Clinical Periodontology 32(7):720-724. Skrtic D, Antonucci JM, Eanes ED, Eichmiller FC, Schumacher GE (2000). Physicochemical evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates. Journal of Biomedical Materials Research 53(4):381-391. Suchanek W, Yoshimura M (1998). Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research 13(01):94-117. Tang R, Wang L, Orme CA, Bonstein T, Bush PJ, Nancollas GH (2004). Dissolution at the nanoscale: self-preservation of biominerals. Angew Chem Int Ed Engl 43(20):2697-2701. Tsai (2014). Different Mineral Phases of Calcium Phosphate Deposited within Chitosan Membranes. Veis A (2005). Materials science. A window on biomineralization. Science 307(5714):1419-1420. Wallin R, Arscott E (1998). A practical guide to ISO 10993-5: Cytotoxicity. MEDICAL DEVICE AND DIAGNOSTIC INDUSTRY 20(96-98. Wang X, Ye J, Wang Y, Wu X, Bai B (2007). Control of crystallinity of hydrated products in a calcium phosphate bone cement. J Biomed Mater Res A 81(4):781-790. Watson ML, Avery JK (1954). The development of the hamster lower incisor as observed by electron microscopy. Am J Anat 95(1):109-161. Wei G, Ma PX (2004). Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25(19):4749-4757. Weiner S, Price PA (1986). Disaggregation of bone into crystals. Calcif Tissue Int 39(6):365-375. Weiss MP, Voegel JC, Frank RM (1981). Enamel crystallite growth: width and thickness study related to the possible presence of octocalcium phosphate during amelogenesis. J Ultrastruct Res 76(3):286-292. Wu Y, Glimcher MJ, Rey C, Ackerman JL (1994). A unique protonated phosphate group in bone mineral not present in synthetic calcium phosphates. Identification by phosphorus-31 solid state NMR spectroscopy. J Mol Biol 244(4):423-435. Xianmiao C, Yubao L, Yi Z, Li Z, Jidong L, Huanan W (2009). Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Materials Science and Engineering: C 29(1):29-35. Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H et al. (2001). Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. Journal of Biomedical Materials Research 55(1):20-27. Yanagishita H, Nakane T, Yoshitome H (1994). Selection criteria for solvent and gelation medium in the phase inversion process. Journal of membrane science 89(3):215-221. Yang F, Both SK, Yang X, Walboomers XF, Jansen JA (2009). Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta Biomaterialia 5(9):3295-3304. Yuasa T, Miyamoto Y, Ishikawa K, Takechi M, Momota Y, Tatehara S et al. (2004). Effects of apatite cements on proliferation and differentiation of human osteoblasts in vitro. Biomaterials 25(7-8):1159-1166. Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J et al. (2002). Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials 23(15):3227-3234. Zhao Y, Zhang Y, Ning F, Guo D, Xu Z (2007). Synthesis and cellular biocompatibility of two kinds of HAP with different nanocrystal morphology. Journal of Biomedical Materials Research Part B: Applied Biomaterials 83B(1):121-126. 蔡佳怡 (2014). Different Mineral Phases of Calcium Phosphate Deposited within Chitosan Membranes. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19796 | - |
dc.description.abstract | 在哺乳類動物的硬組織中,磷酸鹽是主要的無機物成分,而氫氧基磷灰石(hydroxyapatite, HAP)是主要的結構,且不同的組織中的氫氧基磷灰石有不同的次級結構,而非晶性磷酸鈣(amorphous calcium phosphate, ACP)被認為是氫氧基磷灰石的前驅物,兩者皆以奈米的大小存在於生物體內。在過去的研究中發現,人工合成的氫氧基磷灰石具有良好的生物相容性,而非晶性磷酸鈣則表現有較好的溶解度,生物降解性及生物活性,所以皆被廣泛應用在生醫材料的用途上。另外動物體內的鈣化組織除了有磷酸鹽之外,還包含有機物的膠原蛋白基質來做為礦化物的支架,也因此在組織工程的觀念裡面,除了氫氧基磷灰石之外,支架的材料也是研發的重點,而幾丁聚醣具有良好的生物相容性且其結構與膠原蛋白基質類似,所以利用幾丁聚醣(Chitosan, CS)與磷酸鈣進行結合,也是具有生醫潛力開發的材料。本研究團隊利用直接沉澱法成功研發出奈米級磷酸鈣(例如:HAP, ACP)與幾丁聚醣膜結合的製程,但是這些磷酸鈣的產物在膜上的分布情形、材料的生物相容性以及與細胞的交互作用行為目前仍不清楚。因此本研究的目的是分析奈米磷酸鈣顆粒於磷酸鈣-幾丁聚醣複合膜的分佈情況與材料性質,並且評估磷酸鈣結構對於牙髓細胞與骨細胞行為的影響。在磷酸鈣-幾丁聚醣複合膜製備方面,藉由改變磷酸根離子溶液與鈣離子溶液的反應順序以及反應環境條件來控制HAP與ACP產物的生成,先與磷酸根離子反應的製程為P-Ca系統,而先與鈣離子溶液反應的製程為Ca-P系統。使用X光繞射分析(XRD)與傅立葉轉換紅外線光譜儀(FTIR)來鑑定分析製備產物的結晶與官能基結構,使用SEM來觀察磷酸鈣的分佈與滲透情形,以萃取液的方式評估材料的毒性,並以直接接觸法評估材料對於骨細胞與牙髓細胞的細胞行為反應的評估。研究結果顯示,P-Ca系統在開放環境有CO2存在的情況下,可於幾丁聚醣膜上生成大小約100~200nm均勻分布的ACP(P-Ca)顆粒,而在密閉環境下則生成HAP(P-Ca)顆粒,滲透深度約為5~6μm。Ca-P系統所得的產物為HAP(Ca-P),磷酸鈣滲透深度為7~9μm,Ca-P系統有較顯著的滲透深度,此結果可能與鈣離子比磷酸根離子小有關。在材料毒性測試的部分,幾丁聚醣膜以及磷酸鹽-幾丁聚醣膜皆沒有細胞毒性,都具有良好的生物相容性。在細胞貼附的部分,U2OS、MRPC-1及DPC在HAP組別有最好的表現,其細胞貼附數量與形態都略好於ACP組別;而CS組別則有最差的表現,細胞貼附數量最少且細胞都成現圓球狀。在細胞增生行為方面, CS組的細胞在第一天與第五天的生長數量沒有明顯的變化,增生倍率皆不到一倍,而HAP與ACP組的細胞增生速率都明顯比CS組快,其中HAP組又略優於ACP組,HAP組增生倍率約為一到兩倍,ACP組則約為一倍。此外,相較於細胞在細胞培養盤進行生長增生的行為,骨源性細胞(U2OS)在HAP組的細胞生長速率明顯較快,而牙髓細胞(MRPC-1, DPC)在HAP組的增生速率則有較低的現象。顯示磷酸鈣對於不同細胞對的增生行為反應有不同的影響效果,對於生長較緩慢的U2OS細胞,HAP具有促進生長的效果,而對於生長速度較快的DPC與MRPC-1細胞,HAP則有抑制其生長的效果。在細胞分化行為分析上, RT-PCR分析結果顯示HAP與ACP組都會促進U2OS細胞表現ALP與OPN,而有誘導細胞分化的效果。綜合本研究之結果,不同磷酸鈣結構的ACP與HAP所構成的磷酸鈣-幾丁聚醣複合膜都擁有良好的生物相容性,不具備細胞毒性。同時,ACP與HAP 均能促進牙髓細胞與骨細胞的貼附、增生與分化行為;其中HAP比起ACP,對牙髓細胞與骨細胞的行為功能有較為顯著的影響。 | zh_TW |
dc.description.abstract | Calcium phosphate is the main inorganic component of mammals’ hard tissues and hydroxyapatite (Meleti et al.) is its primary structure. There are several substructures of hydroxyapatite in different kinds of hard tissues and amorphous calcium phosphate (ACP) is regarded as the primer of hydroxyapatite. Both biological HAP and ACP are in nano-scale. According to previous researches, artificial hydroxyapatite was biocompatible and amorphous calcium phosphate presented good solubility, biodegradability and bioactivity. Hence, ACP and HAP are widely used as biomaterials. In addition, the design of scaffold to mimic the collagen matrix for precipitation of mineral contents in biological hard tissue also play important role in tissue engineering. Since chitosan (CS) has good biocompatibility and similar structure to protein matrix, calcium phosphate combined with chitosan is considered as a potential biomaterial in bone regeneration. Therefore, our research team has successfully developed a new biomaterials composed of chitosan membrane and nano-sized ACP (CS-ACP) and HAP (CS-HAP) via direct precipitation method. However, the disperse pattern of the calcium phosphate products on the CS membrane, the biocompatibility of these materials and their interaction with cells are unclear. The purpose of this study is to investigate the distribution of nano-scaled ACP and HAP in CS membrane, and to evaluate the biocompatibility of CS-ACP and CS-HAP membranes and their influences on the behavior of bone and pulpal cells. The calcium phosphates with different morphology were produced in 2% chitosan (CS) membrane via direct precipitation method. The synthetic process of P-Ca was the CS membrane soaking in solution with phosphate ions first and then in solution with calcium ions. The synthetic process of Ca-P was the reaction via different order of calcium and phosphate solutions. Using XRD, FTIR and SEM as tools, we found ACP (P-Ca) and HAP (P-Ca) particles with the size of 100~200 nm were produced and distributed evenly on CS membrane surface with the depth of 5~6m in close and open system via P-Ca synthetic process, respectively. By Ca-P synthetic process, only HAP (Ca-P) particles were produced but with deeper in depth (7~9m) on CS membrane surface, which may be due to the smaller calcium ions have better ability to penetrate through CS membrane. All of Cs, CS-ACP and CS-HAP membranes presented no cytotoxity and good biocompatibility. In addition, U2OS, MRPC-1 and DPC all presented bested cell adhesion and proliferation behaviors in CS-HAP group and worst in CS group. Compared to the cells growing on culture plate, U2OS, with slow growth in culture plate, presented a higher cell growth rate in CS-HAP group. However, MRPC-1 and DPC, with faster growth in culture plate, presented different behavior with a lower cell growth rate in CS-HAP group. These findings implies that HAP regulates cells functions differently according to their ability in growth. By RT-PCR, we found CS-HAP and CS-ACP could enhance ALP and OCN expression of U2OS cells, which indicates both HAP and ACP may enhance differentiation and mineralization of bone cells. In general, both CS-ACP and CS-HAP presented good biocompability and could enhance the cell adhesion, proliferation and differentiation of pulpal and bone cells. Furthermore, HAP presented better effects on cell functions of pulpal and bone cells than ACP in vitro. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:19:38Z (GMT). No. of bitstreams: 1 ntu-104-R01422019-1.pdf: 8304409 bytes, checksum: 12cc2b26dae5880ceb36982c07fe6b79 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 謝誌 i
中文摘要 ii Abstract iv 縮寫表 ix 第一章 前言 1 第二章 文獻回顧 3 2.1 磷酸鈣於生物醫學的應用 3 2.2 生醫材料膜於牙醫學修補治療上的應用 6 2.3 生醫材料生物相容性之評估 8 2.3.1 材料與細胞接觸模型 9 2.3.2 材料萃取液的製備 10 2.3.3 評估細胞相容性的測試方法 11 2.4 生醫材料與細胞交互作用之評估 13 2.4.1 細胞貼附的行為 13 2.4.2 細胞分裂行為 14 2.4.3 細胞分化行為 14 第三章 動機與目的 16 第四章 材料與方法 17 4.1 儀器裝置 17 4.2 磷酸鈣-幾丁聚醣複合膜材料製備 17 4.2.1 幾丁聚醣膜(CS)之製備: 18 4.2.2 P-Ca系統之磷酸鈣-幾丁聚醣複合膜 { CS-ACP(P-Ca)與 CS-HAP(P-Ca)}備製 18 4.2.3 Ca-P系統之磷酸鈣-幾丁聚醣複合膜{ CS-HAP(Ca-P)}備製 19 4.3 磷酸鈣-幾丁聚醣複合膜之結構分析 19 4.3.1 掃描式電子顯微鏡(SEM)分析 19 4.3.2 X光繞射(XRD)分析 19 4.3.3 傅立葉轉換紅外線光譜儀(FTIR)分析 20 4.4 磷酸鈣-幾丁聚醣複合膜生物相容性分析 20 4.4.1 細胞選擇 20 4.4.2 材料滅菌 21 4.4.3 材料萃取液製備 21 4.4.4 細胞存活率 21 4.4.5 細胞死亡率 22 4.4.6 統計分析 22 4.5 磷酸鈣-幾丁聚醣複合膜對細胞行為之影響 22 4.5.1 細胞貼附行為測試 22 4.5.2 細胞增生能力測試 23 4.5.3 細胞分化能力測試 23 第五章 結果 25 5.1 磷酸鹽-幾丁聚醣複合膜材料性質分析 25 5.1.1 磷酸鹽-幾丁聚醣複合膜結構觀察 25 5.1.2 X光繞射(XRD)分析 26 5.1.3 傅立葉轉換紅外線光譜儀(FTIR)分析 26 5.2 磷酸鹽-幾丁聚醣複合膜生物相容性之分析 27 5.2.1 細胞存活率分析 27 5.2.2 細胞死亡率分析 27 5.3 磷酸鹽-幾丁聚醣複合膜對細胞行為影響之分析 29 5.3.1 細胞貼附行為分析 29 5.3.2 細胞增生能力分析 29 5.3.3 細胞分化能力分析 31 第六章 討論 32 6.1磷酸鹽-幾丁聚醣複合膜結構探討 32 6.2 磷酸鹽-幾丁聚醣複合膜之細胞毒性評估 33 6.3 磷酸鹽幾丁聚醣複合膜生物相容性之探討 33 6.3.1 不同細胞貼附行為影響之探討 33 6.3.2 不同細胞增生率影響之探討 34 6.3.3 細胞分化影響之探討 34 第七章 結論 36 參考文獻 37 附錄 44 | |
dc.language.iso | zh-TW | |
dc.title | 磷酸鈣之顯微結構對牙髓細胞與骨細胞反應之影響 | zh_TW |
dc.title | Influences of calcium phosphate microstructure on pulpal and bone cells response | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃何雄(Her-Hsiung Huang),李伯訓(Bor-Shiunn Lee),陳振中(Chun-Chung Chan) | |
dc.subject.keyword | 氫氧基磷灰石,非晶性磷酸鈣,幾丁聚醣,細胞貼附,細胞增生,細胞分化,骨瘤細胞,牙本質母細胞,牙髓細胞, | zh_TW |
dc.subject.keyword | Hydroxyapatite,amorphous calcium phosphate,chitosan,cell adhesion,cell division,cell differentiation,U2OS,MRPC-1,DPC, | en |
dc.relation.page | 67 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2015-08-20 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 8.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。