Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19780
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝旭亮(Hsu-Liang Hsieh)
dc.contributor.authorMaw-Yeun Chengen
dc.contributor.author鄭貿允zh_TW
dc.date.accessioned2021-06-08T02:18:44Z-
dc.date.copyright2015-08-26
dc.date.issued2015
dc.date.submitted2015-08-25
dc.identifier.citation吳牧寰 (2011) Functional study of GA-stimulated transcript 4 (AtGASA4) involved in Infrared light signaling in Arabidopsis. AtGASA4在紅外光訊息傳遞中之功能性研究,碩士論文,植物科學研究所,臺灣大學,台北。
吳金龍 (2012) Functional study of the molecular mechanism underlying transcription factor TDR4-regulated lycopene accumulation in tomato fruit. 番茄果實中轉錄因子TDR4調控茄紅素累積之分子機制研究,碩士論文,植物科學研究所,臺灣大學,台北。
李德政 (2006) Identification of blue light-induced genes involved in the lycopene accumulation of Lycopersicon esculentum fruit. 選殖番茄果實中受藍光誘導而影響茄紅素累積之相關基因,碩士論文,植物科學研究所,臺灣大學,台北。
張紫煥 (2013) Functional Studies of Arabidopsis FAR-RED INSENSITIVE 219 and Cryptochrome 2 interaction in the integration of blue light and JA signaling. 阿拉伯芥FAR-RED INSENSITIVE 219與Cryptochrome 2的交互作用對藍光和茉莉酸訊息傳遞之整合的功能性研究,碩士論文,植物科學研究所,臺灣大學,台北。
曾鈺媛 (2010) Functional study of a light-induced factor TDR4 affecting lycopene levels in tomato fruit. 受光調控因子TDR4影響番茄果實中茄紅素含量之功能性研究,碩士論文,植物科學研究所,臺灣大學,台北。
蔡旻潔 (2013) Functional studies of GASA4 in light and the integration of hormone signalings in Arabidopsis. 阿拉伯芥GASA4在光及荷爾蒙交互作用中的功能性研究,碩士論文,植物科學研究所,臺灣大學,台北。
Alba, R., Cordonnier-Pratt, M.M., and Pratt, L.H. (2000). Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato. Plant Physiol 123: 363-370.
Alexander, L., and Grierson, D. (2002). Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53: 2039-2055.
Becker, A., and Theissen, G. (2003). The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29: 464-489.
Bemer, M., Karlova, R., Ballester, A.R., Tikunov, Y.M., Bovy, A.G., Wolters-Arts, M., Rossetto, Pde.B., Angenent, G.C., and de Maagd, R.A. (2012). The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell 24: 4437–4451.
Berger, Y., Harpaz-Saad, S., Brand, A., Melnik, H., Sirding, N., Alvarez, J.P., Zinder, M., Samach, A., Eshed, Y. and Ori, N. (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136: 823–832.
Boter, M., Ruiz-Rivero, O., Abdeen, A., and Prat, S. (2004). Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18: 1577-1591.
Busi, M.V., Bustamante, C., D'Angelo, C., Hidalgo-Cuevas, M., Boggio, S.B., Valle, E.M., and Zabaleta, E. (2003). MADS-box genes expressed during tomato seed and fruit development. Plant Mol Biol 52: 801-815.
Chaerle, L., Van Der Straeten, D. (2000). Imaging techniques and the early detection of plant stress. Trends Plant Sci. 5: 495-501.
Cazzonelli C.I., Pogson B.J. (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15: 266–274
Chini, A., Fonseca, S. Fernandez, G., Adie, B., Chico, J.M., Lorenzo, O.,Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F.M., Ponce, M.R., Micol,J.L., and Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666-671.
Chollet, R., Vidal, J., and O'Leary, M.H. (1996) PHOSPHOENOLPYRUVATE CARBOXYLASE: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 273-298.
Christina S. (2012). Effects of lighting time and light intensity on growth, yield and quality of greenhouse tomato. Rit LbhÍ 40: 0-49.
Cristina F., Qing G., Robert M. and Martin F. Y. (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127: 725-734.
Cristina F., Sarah J. L., and Martin F. Y. (2000) Negative Regulation of the SHATTERPROOF Genes by FRUITFULL During Arabidopsis Fruit Development. Science 289: 436-438
Devoto, A., and Turner, J.G. (2003). Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann Bot 92: 329-337.
Devoto, A., Nieto-Rostro, M., Xie, D., Ellis, C., Harmston, R., Patrick, E., Davis, J., Sherratt, L., Coleman, M., and Turner, J.G. (2002). COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32: 457-466.
Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M., and Kazan, K. (2007). MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19: 2225-2245.
Droby S., Porat R., and Cohen L. (1999) Suppressing green mold decay in grapefruit with postharvest jasmonate application. J Amer Soc Hort Sci 124:184-188.
Dumas, Y., Dadomo, M., Di Lucca, G., and Grolier, P. (2003). Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J Sci Food Agr 83: 369-382.
Eriksson, E.M., Bovy, A., Manning, K., Harrison, L., Andrews, J., De Silva, J., Tucker, G.A., and Seymour, G.B. (2004). Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol 136: 4184-4197.
Fan X., Mattheis J. P., and Fellman J. K. (1998) Responses of apples to postharvest jasmonate treatments. J. Amer Soc Hort Sci 123: 421-425.
Farmer, E.E., and Ryan, C.A. (1990). Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87: 7713-7716.
Fernandez-Calvo, P., Chini, A., Fernandez-Barbero, G., Chico, J.M., Gimenez-Ibanez, S., Geerinck, J., Eeckhout, D., Schweizer, F., Godoy, M., Franco-Zorrilla, J.M., Pauwels, L., Witters, E., Puga, M.I., Paz-Ares, J., Goossens, A., Reymond, P., De Jaeger, G., and Solano, R. (2011). The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23: 701-715.
Fonseca, S., Chini, A., Hamberg, M., Adie, B., Porzel, A., Kramell, R., Miersch, O., Wasternack, C., and Solano, R. (2009). 7-iso-Jasmonoyl-Lisoleucine is the endogenous bioactive jasmonate. Nature Chem Biol 5: 344-350.
Fraser, P.D., Truesdale, M.R., Bird, C.R., Schuch, W., and Bramley, P.M. (1994). Carotenoid Biosynthesis during Tomato Fruit Development (Evidence for Tissue-Specific Gene Expression). Plant Physiol 105: 405-413.
Fujisawa, M., Nakano, T., and Ito, Y. (2011). Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation. BMC Plant Biol 11: 26.
Gary D., Anusak P., Pedro R., Soraya P., and Martin F. Y. (2004) The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem Identity. Curr Biol 14: 1935–1940.
Giliberto, L., Perrotta, G., Pallara, P., Weller, J.L., Fraser, P.D., Bramley, P.M., Fiore, A., Tavazza, M., and Giuliano, G. (2005). Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol 137: 199-208.
Giovannoni, J.J. (2004). Genetic regulation of fruit development and ripening. Plant Cell 16 Suppl: S170-180.
Gonzalez-Aguilar G. A., Fortiz. J., and Wang C. Y. (2000) Methyl jasmonate reduces chilling injury and maintains postharvest quality of mango fruit. J Agric Food Chem 48: 515-519.
Gonzalez-Aguilar G. A., Buta J. G., and Wang C. Y. (2001) Methyl jasmonate reduces chilling injury symptoms and enhances color development of 'Kent' mangoes. J Sci Food Agri 81: 1244-1249.
Gorou H., Ushio F., Ali F., Naoko I., and Hirokazu T. (2006) Large-scale histological analysis of leaf mutants using two simple leaf observation methods: identification of novel genetic pathways governing the size and shape of leaves. Plant J 48: 638–644
Gramzow, L., and Theissen, G. (2010). A hitchhiker's guide to the MADS world of plants. Genome Biol 11.
Gu, Q., Ferrandiz, C., Yanofsky, M.F., and Martienssen, R. (1998). The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125: 1509-1517.
Heber, D. (2004). Vegetables, fruits and phytoestrogens in the prevention of diseases. J Postgrad Med 50, 145-149.
Hirschberg, J. (2001). Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4, 210-218.
Horton, P., Ruban, A.V., and Walters, R.G. (1996). Regulation of Light Harvesting in Green Plants. Annu Rev Plant Physiol Plant Mol Biol 47: 655-684.
Hsieh, H.L., Okamoto, H., Wang, M., Ang, L.H., Matsui, M., Goodman, M., and Deng, X.W. (2000). FIN219, an auxin-regulated gene, defines a genetic link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev 14: 1958-1970.
Itkin, M., Seybold, H., Breitel, D., Rogachev, I., Meir, S., and Aharoni, A. (2009).TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J 60: 1081-1095.
Jaakola, L., Poole, M., Jones, M.O., Kämäräinen-Karppinen, T., Koskimäki, J.J., Hohtola, A., Häggman, H., Fraser, P.D.,Manning, K., King, G.J., Thomson, H., and Seymour, G.B. (2010). A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiol 153: 1619–1629.
Jensen, P.E., Gilpin, M., Knoetzel, J., and Scheller, H.V. (2000). The PSI-K subunit of photosystem I is involved in the interaction between light-harvesting complex I and the photosystem I reaction center core. J Biol Chem 275: 24701-24708.
Jiao, Y., Lau, O.S., and Deng, X.W. (2007). Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8: 217-230.
Kagale, S., Links, M.G., and Rozwadowski, K. (2010). Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis. Plant Physiol 152: 1109-1134.
Krah, N.M., and Logan, B.A. (2010). Loss of psbS expression reduces vegetative growth, reproductive output, and light-limited, but not light-saturated, photosynthesis in Arabidopsis thaliana (Brassicaceae) grown in temperate light environments. Am J Bot 97: 644-649.
Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y., and Howe, G.A. (2008). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105: 7100-7105.
Kazan, K. (2006). Negative regulation of defence and stress genes by EAR-motifcontaining repressors. Trends Plant Sci. 11: 109–112.
Kazan, K., and Manners, J.M. (2013). MYC2: the master in action. Mol Plant 6: 686-703.
Keuskamp, D.H., Sasidharan, R., and Pierik, R. (2010) Physiological regulation and functional significance of shade avoidance responses to neighbors. Plant Signal Behav 5: 655–662.
Kiss, A.Z., Ruban, A.V. and Horton, P. (2008). The PsbS protein controls the organisation of the photosystem II antenna in higher plant thylakoid membranes. J Biol Chem 283: 3972–3988.
Leseberg, C.H., Eissler, C.L., Wang, X., Johns, M.A., Duvall, M.R., and Mao, L. (2008). Interaction study of MADS-domain proteins in tomato. J Exp Bot 59: 2253-2265.
Lieberman, M., Segev, O., Gilboa, N., Lalazar, A., and Levin, I. (2004). The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theor Appl Genet 108: 1574-1581.
Liu, L., Wei, J., Zhang, W., Zhang, L., Li, C., and Wang, Q. (2012). Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates. J Exp Bot 63 : 5751-5761.
Lozano, R., Gimenez, E., Cara, B., Capel, J., and Angosto, T. (2009). Genetic analysis of reproductive development in tomato. Int J Dev Biol 53: 1635-1648.
Lu, S., and Li, L. (2008). Carotenoid metabolism: biosynthesis, regulation, and beyond. J Integr Plant Biol 50: 778-785.
Manning, K., Tor, M., Poole, M., Hong, Y., Thompson, A.J., King, G.J., Giovannoni, J.J., and Seymour, G.B. (2006). A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38: 948-952.
Martel, C., Vrebalov, J., Tafelmeyer, P., and Giovannoni, J.J. (2011). The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol 157: 1568-1579.
Meir S., Philosoph-Hadas S., and Lurie S. (1996) Reduction of chilling injury in stored avocado, grapefruit, and bell pepper by methyl jasmonate. Can J Bot 74: 870-874.
Moline H. E., Buta J. G., and Saftner R. A. (1997) Comparison of three volatile natural products for the reduction of postharvest decay in strawberries. Adv Strawberry 16: 43-48.
Mustilli, A.C., Fenzi, F., Ciliento, R., Alfano, F., and Bowler, C. (1999). Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11: 145-157.
Niyogi, K.K., Grossman, A.R., and Bjorkman, O. (1998). Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10, 1121-1134.
Pauwels, L., Barbero, G.F., Geerinck, J., Tilleman, S., Grunewald, W., Perez, A.C., Chico, J.M., Bossche, R.V., Sewell, J., Gil, E., Garcia-Casado, G., Witters, E., Inze, D., Long, J.A., De Jaeger, G., Solano, R., and Goossens, A. (2010). NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464: 788-791.
Phillips, W.D., and Chilton, T.J. (1994) A level Biology Revised Edition, Oxford,
UK: Oxford University Press.
Penuelas, J., and Munne-Bosch, S. (2005). Isoprenoids: an evolutionary pool for photoprotection. Trends Plant Sci 10: 166-169.
Pnueli, L., Abu-Abeid, M., Zamir, D., Nacken, W., Schwarz-Sommer, Z., and Lifschitz, E. (1991). The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J 1: 255-266.
Porra, R.J., Thompson, W.A., and Kriedemann, P.E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975: 384-394.
Qing G., Cristina F., Martin F. Y. and Robert M. (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125: 1509-1517.
Quail, P.H. (2002). Photosensory perception and signalling in plant cells: new Paradigms. Curr Opin Cell Biol 14: 180-188.
Ronen, G., Cohen, M., Zamir, D., and Hirschberg, J. (1999). Regulation of carotenoid biosynthesis during tomato fruit development:expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J 17, 341-351.
Schroeder, D.F., Gahrtz, M., Maxwell, B.B., Cook, R.K., Kan, J.M., Alonso, J.M., Ecker, J.R., and Chory, J. (2002). De-etiolated 1 and damaged DNA binding protein 1 interact to regulate Arabidopsis photomorphogenesis. Curr Biol 12: 1462-1472.
Sheard, L.B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T.R., Kobayashi, Y., Hsu, F.F., Sharon, M., Browse, J., He, S.Y., Rizo, J., Howe, G.A., and Zheng, N. (2010). Jasmonate perception by inositol-phosphatepotentiated COI1-JAZ co-receptor. Nature 468: 400-405.
Shyu, C., Figueroa, P., Depew, C.L., Cooke, T.F., Sheard, L.B., Moreno, J.E., Katsir, L., Zheng, N., Browse, J., and Howe, G.A. (2012). JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis. Plant Cell 24: 536-550.
Staswick, P.E. (2002). Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14: 1405-1415.
Szabo, I., Bergantino, E., and Giacometti, G.M. (2005). Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation. EMBO Rep 6: 629-634.
Thompson, A. (1962). A comparision of fruit quality constituents of normal and high pigment tomatoes. Proc Am Soc Hortic Sci 78: 464-473.
Thines, B., Katsir, L.,Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., and Browse, J. (2007). JAZ repressor proteins are targets of the SCF-COI1 complex during jasmonate signaling. Nature 448: 661–665.
Trainotti L., Pavanello A., and Casadoro G. (2005) Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits. J Exp Bot 56: 2037-2046.
Vrebalov, J., Pan I.L., Arroyo, A.J., McQuinn, R., Chung, M., Poole, M., Rose, J., Seymour, G., Grandillo, S., Giovannoni, J., and Irish, V.F., (2009) Fleshy fruit expansion and ripening are regulated by the Tomato SHATTERPROOF gene TAGL1. Plant Cell 21: 3041-3062.
Vrebalov, J., Ruezinsky, D., Padmanabhan, V., White, R., Medrano, D., Drake, R., Schuch, W., and Giovannoni, J. (2002). A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296: 343-346.
Wang C. Y. (2003) Maintaining postharvest quality of raspberries with natural volatile compounds. Int J Food Sci Technol 38: 869-875.
Wang, J.G., Chen, C.H., Chien, C.T., and Hsieh, H.L. (2011) FAR-RED INSENSITIVE219 modulates CONSTITUTIVE PHOTOMORPHOGENIC1 activity via physical interaction to regulate hypocotyl elongation in Arabidopsis. Plant Physiol 156: 631-646.
Wang, J.G., and Hsieh, H.L. (2012) Induction of tomato Jasmonate-Resistant 1-Like 1 gene expression can delay the colonization of Ralstonia solanacearum in transgenic tomato. Bot Stud 53: 75-84.
Wasternack, C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100: 681-697.
Wasternack, C., and Kombrink, E. (2010). Jasmonates, structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 5: 63-77.
Woldemariam, M.G., Baldwin, I.T., and Galis, I. (2011). Transcriptional regulation of plant inducible defenses against herbivores, a mini-review. J Plant Interact 6: 113-119.
Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W.L., Ma, H., Peng, W., Huang, D., and Xie, D. (2002). The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14: 1919-1935.
Yadav, V., Mallappa, C., Gangappa, S.N., Bhatia, S., and Chattopadhyay, S. (2005). A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. Plant Cell 17: 1953-1966.
Yan, Y., Stolz, S., Chetelat, A., Reymond, P., Pagni, M., Dubugnon, L., and Farmer, E.E. (2007). A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19: 2470-2483.
Yao H., and Tian S. (2005) Effect of pre- and post-harvest application of salicylicacid or methyl jasmonate on inducing desease resistance of cherry fruit in storage. Posthar Biol Technol 35: 253-262.
Yilmaz, S., Atessahin, A., Sahna, E., Karahan, I., and Ozer, S. (2006). Protective effect of lycopene on adriamycin-induced cardiotoxicity and nephrotoxicity. Toxicology 218, 164-171.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19780-
dc.description.abstract本研究分為兩個部分,第一個部份為探討番茄TDR4在藍光與茉莉酸訊息傳遞之間的功能性分析。植物荷爾蒙茉莉酸,在植物防禦反應和生長發育扮演重要角色。過去的研究指出,茉莉酸也能影響果實成熟的過程,然而其相關的調控機制卻尚未明瞭。前人研究發現在藍光處理之下,番茄果皮的TDR4表現量顯著上升, 且TDR4可藉由正向調控果實成熟及類胡蘿蔔素生合成相關基因的表現,增加番茄果皮的茄紅素累積。因此,本研究利用JAR1-like 1 (JRL1)大量表現之番茄轉殖株以及分別由35S啟動子與TDR4自身啟動子所建立之TDR4大量表現轉殖株為材料,將其幼苗與果實交互處理藍光及茉莉酸甲酯,藉由生理性狀的觀察以及基因的表現量分析,來釐清TDR4對於番茄生長發育的影響以及是否參與在茉莉酸的訊息傳遞路徑當中,並探討TDR4和JRL1之間的調控關係。目前的研究結果顯示,TDR4可受茉莉酸所誘導表現,也能正向調控茉莉酸訊息傳遞路徑相關基因的表現。而在藍光處理之下,JRL1也能促進TDR4的表現。此外,TDR4和JRL1對於番茄幼苗下胚軸的抑制具有拮抗現象,而TDR4對於種子產量與節間長度的影響,分別具有負向與正向的調控。綜合以上所述,TDR4可參與在茉莉酸的訊息傳遞路徑中,並會影響番茄的生長發育及果實成熟。本研究的第二部分為探討紅外光對植物光合作用與生長發育的影響。前人研究發現紅外光的處理能增加C4植物PEP carboxylase基因的表現,並且能使玉米與阿拉伯芥葉圓體維持較多的葉綠素含量。因此我們推測,紅外光對於植物具有增加光合作用效率並延緩老化的能力。而本研究實際利用葉菜類幼苗與葉片進行試驗的結果顯示,紅外光確實能延緩蔬菜葉綠素的流失而增加儲藏的時間。此外,紅外光也能增加PEP carboxylase的活性並且增加蔬菜幼苗的生物量。這些結果顯示紅外光的處理對於葉菜類的保鮮與產量上具有實質應用的潛力與價值。zh_TW
dc.description.abstractThis thesis involves two parts of discussions. The first part attempts to analyze the function of tomato TDR4 in the integration of blue light and jasmonate signaling pathways. Jasmonates (JAs) are plant hormones with essential roles in plant defense and development. Current studies showed that JA might influence fruit ripening processes. However, the regulatory mechanism is still unknown. Our lab found that blue light contributed to the expression of TDR4 in the pericarp of tomato fruit. By positively regulating the expression of fruit ripening and carotenoid biosynthesis related genes, TDR4 enhances the accumulation of lycopene. Thus, this research uses Jasmonate-resistant 1-like1 (JRL1) overexpressing lines as well as TDR4 transgenic lines generated by 35S and the TDR4 native promoter respectively from previous studies, and treats the seedlings and the fruit under blue light along with methyl jasmonate (MeJA). By observing of the phenotype and analyses of mRNA expression levels, we try to link the regulatory relationship between TDR4 and JRL1. Current data show that TDR4 can be induced by MeJA and regulate the expression of JA responsive genes. JRL1 can also up-regulate the expression of TDR4 under blue light. In addition, TDR4 and JRL1 show an antagonistic effect on the inhibition of tomato hypocotyl elongation, and TDR4 poses an influence on the yield of seeds and the internode length positively and negatively, respectively. Taken together, current results indicate that TDR4 participates in JA-mediated growth and fruit ripening in tomato. The other part of this research attempts to study the effect of infrared light (IR) on plant photosynthesis and growth. Our lab found that IR irradiation contributed to the expression of PEP carboxylase gene in C4 plants. Also, IR can maintain higher chlorophyll content in the leaf discs of both maize and Arabidopsis. Therefore, we hypothesize that IR is able to enhance the efficiency of photosynthesis and to delay senescence. By testing vegetable seedlings and leaves, we found that IR can indeed postpone the loss of chlorophyll content, and increase the time of vegetable storage. As well, IR can enhance the activity of PEP carboxylase and the biomass of seedlings, which suggests that IR plays a vital role in enhancing vegetable fresh and yield.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:18:44Z (GMT). No. of bitstreams: 1
ntu-104-R99b42009-1.pdf: 2299911 bytes, checksum: fb33ef9ae6fc19e8ddd9659f43aae3da (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要...............................................III
Abstract...............................................IV
前言....................................................1
一、番茄簡介.............................................1
二、類胡蘿蔔素之功能與生合成...............................1
三、光影響植物之生長發育...................................2
四、TDR4轉錄因子.........................................3
五、茉莉酸訊息傳遞........................................5六、JAR1/FIN219.........................................6
七、茉莉酸在果實上的應用...................................7
八、紅外光對光合作用的影響.................................7
九、PEP carboxylase.....................................8
十、研究動機.............................................9
十一、研究策略...........................................9
實驗材料與方法..........................................11
一、植物材料與生長條件...................................11
二、處理條件............................................11
三、下胚軸測量與抑制百分比................................12
四、種子產量與節間長度計算................................13
五、茄紅素測定..........................................13
六、總RNA萃取與基因表現測定..............................13
七、葉綠素之萃取及定量...................................13
八、PEPC酵素活性測試.....................................14
九、生物量(Biomass)測定.................................14
Chapter 1
Functional Studies of Tomato TDR4 in the Integration of Blue Light and Jasmonate Signaling Pathways
結果...................................................16
一、TDR4負調控種子產量...................................16
二、TDR4影響茉莉酸反應相關基因與果實成熟相關基因的表現......16
三、p35S::TDR4轉殖株有較長之節間.........................16
四、黑暗中生長的p35S::TDR4轉殖株對MeJA造成的下胚軸抑制性不敏感.....................................................17
五、p35S::TDR4轉殖株幼苗之TDR4表現量顯著上升...............17
六、番茄幼苗處理MeJA和藍光會誘導TDR4與JRL1的表現...........18
七、藍光與MeJA處理的p35S::TDR4轉殖株之MYC2與JAZ1表現量上升.18
八、黑暗中生長的JRL1 OE幼苗對MeJA造成的下胚軸的抑制性較為敏感.....................................................18
九、藍光處理後的JRL1OE幼苗之TDR4表現量顯著上升.............19
十、JRL1 OE幼苗之CRY與GOB表現量顯著上升...................19
十一、CL5915番茄果實處理MeJA與藍光後,茄紅素含量上升........20
討論...................................................21
一、TDR4轉殖株之基因表現探討..............................21
二、TDR4影響茉莉酸反應相關之基因..........................22
三、TDR4與JRL1對於番茄生長發育之影響......................22
四、TDR4與JRL1之調控關係.................................24
五、茉莉酸與茄紅素之關係探討..............................24
六、總結................................................25
七、未來工作建議.........................................25
Chapter 2
Effect of Infrared Light on Plant Photosynthesis and Growth
結果...................................................28
一、紅外光減緩蔬菜葉綠素含量降解之速率.....................28
二、紅外光處理增加PEP carboxylase活性....................28
三、紅外光處理提高蔬菜幼苗生物量..........................28
討論...................................................30
一、紅外光處理能延長蔬菜低溫儲藏期........................30
二、紅外光對植物生長發育之影響...........................30
結果圖片...............................................32
參考文獻...............................................50
附錄一、實驗流程........................................59
附錄二、種子消毒、種植與收集..............................62
附圖與附表..............................................63
dc.language.isozh-TW
dc.title番茄TDR4在藍光和茉莉酸訊息傳遞中之整合功能性研究zh_TW
dc.titleFunctional Studies of Tomato TDR4 in the Integration of Blue Light and Jasmonate Signaling Pathwayen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉開溫(Kai-Wen Yeh),王淑珍(Shu-Jen Wang),葉國楨(Kuo-Chen Yeh),鄭秋萍(Chiu-Ping Cheng)
dc.subject.keywordTDR4,JRL1,藍光,茉莉酸,番茄,紅外光,zh_TW
dc.subject.keywordTDR4,JRL1,Blue light,Jasmonate,tomato,Infrared Light,en
dc.relation.page66
dc.rights.note未授權
dc.date.accepted2015-08-25
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
2.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved