Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19709
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王金和(Ching Ho Wang)
dc.contributor.authorCheng-Ta Tsaien
dc.contributor.author蔡政達zh_TW
dc.date.accessioned2021-06-08T02:14:42Z-
dc.date.copyright2020-08-25
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citationAbdel-Moneim, A.S., Zlotowski, P., Veits, J., Keil, G.M., Teifke, J.P., 2009. Immunohistochemistry for detection of avian infectious bronchitis virus strain M41 in the proventriculus and nervous system of experimentally infected chicken embryos. Virology journal 6, 15.
Albassam, M.A., Winterfield, R.W., Thacker, H.L., 1986. Comparison of the nephropathogenicity of four strains of infectious bronchitis virus. Avian diseases 30, 468-476.
Alexander, D.J., Jones, R.C., 2008. Paramyxoviridae. In M. Pattison. Poultry Diseases 6th edn.
Ammayappan, A., Upadhyay, C., Gelb, J., Jr., Vakharia, V.N., 2008. Complete genomic sequence analysis of infectious bronchitis virus Ark DPI strain and its evolution by recombination. Virology journal 5, 157.
Ammayappan, A., Upadhyay, C., Gelb, J., Jr., Vakharia, V.N., 2009. Identification of sequence changes responsible for the attenuation of avian infectious bronchitis virus strain Arkansas DPI. Archives of virology 154, 495-499.
Andrade, J.M., Estevez-Perez, M.G., 2014. Statistical comparison of the slopes of two regression lines: A tutorial. Analytica chimica acta 838, 1-12.
Armesto, M., Cavanagh, D., Britton, P., 2009. The replicase gene of avian coronavirus infectious bronchitis virus is a determinant of pathogenicity. PloS one 4, e7384.
Arvidson, Y., Tannock, G.A., Zerbes, M., Ignjatovic, J., 1991. Efficacy of Australian vaccines against recent isolates of avian infectious bronchitis viruses. Australian veterinary journal 68, 211-212.
Barretto, N., Jukneliene, D., Ratia, K., Chen, Z., Mesecar, A.D., Baker, S.C., 2005. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. Journal of virology 79, 15189-15198.
Bijlenga, G., Cook, J.K., Gelb, J., Jr., de Wit, J.J., 2004. Development and use of the H strain of avian infectious bronchitis virus from the Netherlands as a vaccine: a review. Avian pathology : journal of the W.V.P.A 33, 550-557.
Binns, M.M., Boursnell, M.E., Cavanagh, D., Pappin, D.J., Brown, T.D., 1985. Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. The Journal of general virology 66 ( Pt 4), 719-726.
Boursnell, M.E., Brown, T.D., Foulds, I.J., Green, P.F., Tomley, F.M., Binns, M.M., 1987. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. The Journal of general virology 68 ( Pt 1), 57-77.
Brian, D.A., Baric, R.S., 2005. Coronavirus genome structure and replication. Current topics in microbiology and immunology 287, 1-30.
Brierley, I., Boursnell, M.E., Binns, M.M., Bilimoria, B., Blok, V.C., Brown, T.D., Inglis, S.C., 1987. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. The EMBO journal 6, 3779-3785.
Brierley, I., Jenner, A.J., Inglis, S.C., 1992. Mutational analysis of the 'slippery-sequence' component of a coronavirus ribosomal frameshifting signal. Journal of molecular biology 227, 463-479.
Brierley, I., Rolley, N.J., Jenner, A.J., Inglis, S.C., 1991. Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal. Journal of molecular biology 220, 889-902.
Brown, T.D., Boursnell, M.E., Binns, M.M., 1984. A leader sequence is present on mRNA A of avian infectious bronchitis virus. The Journal of general virology 65 ( Pt 8), 1437-1442.
Butcher, G.D., Winterfield, R.W., Shapiro, D.P., 1989. An outbreak of nephropathogenic H13 infectious bronchitis in commercial broilers. Avian diseases 33, 823-826.
Butcher, G.D., Winterfield, R.W., Shapiro, D.P., 1990. Pathogenesis of H13 nephropathogenic infectious bronchitis virus. Avian diseases 34, 916-921.
Casais, R., Davies, M., Cavanagh, D., Britton, P., 2005. Gene 5 of the avian coronavirus infectious bronchitis virus is not essential for replication. Journal of virology 79, 8065-8078.
Casais, R., Dove, B., Cavanagh, D., Britton, P., 2003. Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. Journal of virology 77, 9084-9089.
Cavanagh, D., 1981. Structural polypeptides of coronavirus IBV. The Journal of general virology 53, 93-103.
Cavanagh, D., 1983a. Coronavirus IBV: further evidence that the surface projections are associated with two glycopolypeptides. The Journal of general virology 64 (Pt 8), 1787-1791.
Cavanagh, D., 1983b. Coronavirus IBV: structural characterization of the spike protein. The Journal of general virology 64 ( Pt 12), 2577-2583.
Cavanagh, D., Casais, R., Armesto, M., Hodgson, T., Izadkhasti, S., Davies, M., Lin, F., Tarpey, I., Britton, P., 2007. Manipulation of the infectious bronchitis coronavirus genome for vaccine development and analysis of the accessory proteins. Vaccine 25, 5558-5562.
Cavanagh, D., Davis, P.J., 1986. Coronavirus IBV: removal of spike glycopolypeptide S1 by urea abolishes infectivity and haemagglutination but not attachment to cells. The Journal of general virology 67 ( Pt 7), 1443-1448.
Cavanagh, D., Davis, P.J., 1988. Evolution of avian coronavirus IBV: sequence of the matrix glycoprotein gene and intergenic region of several serotypes. The Journal of general virology 69 ( Pt 3), 621-629.
Cavanagh, D., Davis, P.J., Cook, J.K., 1992. Infectious bronchitis virus: evidence for recombination within the Massachusetts serotype. Avian pathology : journal of the W.V.P.A 21, 401-408.
Cavanagh, D., Davis, P.J., Darbyshire, J.H., Peters, R.W., 1986a. Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. The Journal of general virology 67 ( Pt 7), 1435-1442.
Cavanagh, D., Davis, P.J., Mockett, A.P., 1988. Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes. Virus research 11, 141-150.
Cavanagh, D., Davis, P.J., Pappin, D.J., Binns, M.M., Boursnell, M.E., Brown, T.D., 1986b. Coronavirus IBV: partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. Virus research 4, 133-143.
Cavanagh, D., Davis, P.J., Pappin, D.J.C., 1986c. Coronavirus IBV glycopolypeptides: locational studies using proteases and saponin, a membrane permeabilizer. Virus research 4, 145-156.
Chen, B.Y., Itakura, C., 1996. Cytopathology of chick renal epithelial cells experimentally infected with avian infectious bronchitis virus. Avian pathology : journal of the W.V.P.A 25, 675-690.
Chen, H.W., Wang, C.H., Cheng, I.C., 2011. A type-specific blocking ELISA for the detection of infectious bronchitis virus antibody. Journal of virological methods 173, 7-12.
Chen, Y., Guo, D., 2016. Molecular mechanisms of coronavirus RNA capping and methylation. Virologica Sinica 31, 3-11.
Chew, P.H., Wakenell, P.S., Farver, T.B., 1997. Pathogenicity of attenuated infectious bronchitis viruses for oviducts of chickens exposed in ovo. Avian diseases 41, 598-603.
Chong, K.T., Apostolov, K., 1982. The pathogenesis of nephritis in chickens induced by infectious bronchitis virus. Journal of comparative pathology 92, 199-211.
Chow, D.C., Wenning, L.A., Miller, W.M., Papoutsakis, E.T., 2001. Modeling pO(2) distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models. Biophysical journal 81, 685-696.
Cirotto, C., Arangi, I., 1989. How do avian embryos breathe? Oxygen transport in the blood of early chick embryos. Comparative biochemistry and physiology. A, Comparative physiology 94, 607-613.
Cook, J.K., Chesher, J., Baxendale, W., Greenwood, N., Huggins, M.B., Orbell, S.J., 2001. Protection of chickens against renal damage caused by a nephropathogenic infectious bronchitis virus. Avian pathology : journal of the W.V.P.A 30, 423-426.
Cook, J.K., Orbell, S.J., Woods, M.A., Huggins, M.B., 1999. Breadth of protection of the respiratory tract provided by different live-attenuated infectious bronchitis vaccines against challenge with infectious bronchitis viruses of heterologous serotypes. Avian pathology : journal of the W.V.P.A 28, 477-485.
Corse, E., Machamer, C.E., 2003. The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction. Virology 312, 25-34.
Cowen, B.S., Wideman, R.F., Jr., Braune, M.O., Owen, R.L., 1987. An infectious bronchitis virus isolated from chickens experiencing a urolithiasis outbreak. I. In vitro characterization studies. Avian diseases 31, 878-883.
Darbyshire, J.H., Peters, R.W., 1984. Sequential development of humoral immunity and assessment of protection in chickens following vaccination and challenge with avian infectious bronchitis virus. Research in veterinary science 37, 77-86.
Dennis, D.E., Brian, D.A., 1982. RNA-dependent RNA polymerase activity in coronavirus- infected cells. Journal of virology 42, 153-164.
Domanska-Blicharz, K., Minta, Z., Smietanka, K., Porwan, T., 2006. New variant of IBV in Poland. The Veterinary record 158, 808.
Egloff, B., Schmukle, S., Burns, L., Schwerdtfeger, A., 2006. Spontaneous Emotion Regulation During Evaluated Speaking Tasks: Associations with Negative Affect, Anxiety Expression, Memory, and Physiological Responding. Emotion (Washington, D.C.) 6, 356-366.
Enjuanes, L., Sola, I., Almazan, F., Ortego, J., Izeta, A., Gonzalez, J.M., Alonso, S., Sanchez, J.M., Escors, D., Calvo, E., Riquelme, C., Sanchez, C., 2001. Coronavirus derived expression systems. Journal of biotechnology 88, 183-204.
Feng, K., Xue, Y., Wang, J., Chen, W., Chen, F., Bi, Y., Xie, Q., 2015. Development and efficacy of a novel live-attenuated QX-like nephropathogenic infectious bronchitis virus vaccine in China. Vaccine 33, 1113-1120.
Gerritzen, M.A., Lambooij, E., Reimert, H.G., Spruijt, B.M., Stegeman, J.A., 2006. Susceptibility of duck and turkey to severe hypercapnic hypoxia. Poultry science 85, 1055-1061.
Godet, M., L'Haridon, R., Vautherot, J.F., Laude, H., 1992. TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions. Virology 188, 666-675.
Gorbalenya, A.E., Koonin, E.V., Lai, M.M., 1991. Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS letters 288, 201-205.
Gough, R.E., Alexander, D.J., 1979. Comparison of duration of immunity in chickens infected with a live infectious bronchitis vaccine by three different routes. Research in veterinary science 26, 329-332.
Hodgson, T., Britton, P., Cavanagh, D., 2006. Neither the RNA nor the proteins of open reading frames 3a and 3b of the coronavirus infectious bronchitis virus are essential for replication. Journal of virology 80, 296-305.
Hodgson, T., Casais, R., Dove, B., Britton, P., Cavanagh, D., 2004. Recombinant infectious bronchitis coronavirus Beaudette with the spike protein gene of the pathogenic M41 strain remains attenuated but induces protective immunity. Journal of virology 78, 13804-13811.
Hofstad, M.S., Yoder, H.W., 1966. Avian infectious bronchitis--virus distribution in tissues of chicks. Avian diseases 10, 230-239.
Huang, J., Song, W., Huang, H., Sun, Q., 2020. Pharmacological therapeutics targeting RNA-dependent RNA polymerase, proteinase and spike protein: from mechanistic studies to clinical trials for COVID-19. Journal of clinical medicine 9, 1131.
Huang, Y.P., Chang, W.C., Wang, C.H., 2005. Evaluation of an attenuated TW I infectious bronchitis vaccine. Taiwan Veterinary Journal 31, 148-154.
Huang, Y.P., Chang, W.C., Wang, C.H., 2006. Evaluation of an attenuated TW II infectious bronchitis vaccine. Taiwan Veterinary Journal 32, 123-128.
Huang, Y.P., Wang, C.H., 2006. Development of attenuated vaccines from Taiwanese infectious bronchitis virus strains. Vaccine 24, 785-791.
Huang, Y.P., Wang, C.H., 2007. Sequence changes of infectious bronchitis virus isolates in the 3' 7.3 kb of the genome after attenuating passage in embryonated eggs. Avian pathology : journal of the W.V.P.A 36, 59-67.
Hulo, C., de Castro, E., Masson, P., Bougueleret, L., Bairoch, A., Xenarios, I., Le Mercier, P., 2011. ViralZone: a knowledge resource to understand virus diversity. Nucleic acids research 39, D576-582.
Huo, Y.F., Huang, Q.H., Lu, M., Wu, J.Q., Lin, S.Q., Zhu, F., Zhang, X.M., Huang, Y.Y., Yang, S.H., Xu, C.T., 2016. Attenuation mechanism of virulent infectious bronchitis virus strain with QX genotype by continuous passage in chicken embryos. Vaccine 34, 83-89.
Ignjatovic, J., Galli, L., 1994. The S1 glycoprotein but not the N or M proteins of avian infectious bronchitis virus induces protection in vaccinated chickens. Archives of virology 138, 117-134.
Ignjatovic, J., Gould, G., Sapats, S., 2006. Isolation of a variant infectious bronchitis virus in Australia that further illustrates diversity among emerging strains. Archives of virology 151, 1567-1585.
Ignjatovic, J., Sapats, S.I., Ashton, F., 1997. A long-term study of Australian infectious bronchitis viruses indicates a major antigenic change in recently isolated strains. Avian pathology : journal of the W.V.P.A 26, 535-552.
Imbert, I., Snijder, E.J., Dimitrova, M., Guillemot, J.C., Lécine, P., Canard, B., 2008. The SARS-Coronavirus PLnc domain of nsp3 as a replication/transcription scaffolding protein. Virus research 133, 136-148.
Inglis, S.C., Rolley, N., Brierley, I. 1990. A Ribosomal Frameshift Signal in the Polymerase-Encoding Region of the IBV Genome. In: Coronaviruses and their Diseases, Boston, MA, 269-273.
Jackwood, M., Wit, S., 2013. Infectious bronchitis. In: D. Swayne. Diseases of Poultry 13th eds.
Jin, Z., Leveque, V., Ma, H., Johnson, K.A., Klumpp, K., 2012. Assembly, purification, and pre-steady-state kinetic analysis of active RNA-dependent RNA polymerase elongation complex. The Journal of biological chemistry 287, 10674-10683.
Kanjanahaluethai, A., Chen, Z., Jukneliene, D., Evans, S., 2007. Membrane Topology of Murine Coronavirus Replicase Nonstructural Protein 3. Virology 361, 391-401.
Kant, A., Koch, G., van Roozelaar, D.J., Kusters, J.G., Poelwijk, F.A., van der Zeijst, B.A., 1992. Location of antigenic sites defined by neutralizing monoclonal antibodies on the S1 avian infectious bronchitis virus glycopolypeptide. The Journal of general virology 73 ( Pt 3), 591-596.
Kao, C.C., Singh, P., Ecker, D.J., 2001. De novo initiation of viral RNA-dependent RNA synthesis. Virology 287, 251-260.
Keep, S., Bickerton, E., Armesto, M., Britton, P., 2018. The ADRP domain from a virulent strain of infectious bronchitis virus is not sufficient to confer a pathogenic phenotype to the attenuated Beaudette strain. The Journal of general virology 99, 1097-1102.
Klumperman, J., Locker, J.K., Meijer, A., Horzinek, M.C., Geuze, H.J., Rottier, P.J., 1994. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. Journal of virology 68, 6523-6534.
Koch, G., Hartog, L., Kant, A., van Roozelaar, D.J., 1990. Antigenic domains on the peplomer protein of avian infectious bronchitis virus: correlation with biological functions. The Journal of general virology 71 ( Pt 9), 1929-1935.
Koonin, E.V., Gorbalenya, A.E., Chumakov, K.M., 1989. Tentative identification of RNA-dependent RNA polymerases of dsRNA viruses and their relationship to positive strand RNA viral polymerases. FEBS letters 252, 42-46.
Kottier, S.A., Cavanagh, D., Britton, P., 1995. Experimental Evidence of Recombination in Coronavirus Infectious Bronchitis Virus. Virology 213, 569-580.
Kusters, J.G., Jager, E.J., Lenstra, J.A., Koch, G., Posthumus, W.P., Meloen, R.H., van der Zeijst, B.A., 1989a. Analysis of an immunodominant region of infectious bronchitis virus. Journal of immunology (Baltimore, Md. : 1950) 143, 2692-2698.
Kusters, J.G., Jager, E.J., Niesters, H.G., van der Zeijst, B.A., 1990. Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus. Vaccine 8, 605-608.
Kusters, J.G., Niesters, H.G., Lenstra, J.A., Horzinek, M.C., van der Zeijst, B.A., 1989b. Phylogeny of antigenic variants of avian coronavirus IBV. Virology 169, 217-221.
Lee, C.W., Brown, C., Jackwood, M.W., 2002. Tissue distribution of avian infectious bronchitis virus following in ovo inoculation of chicken embryos examined by in situ hybridization with antisense digoxigenin-labeled universal riboprobe. Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc 14, 377-381.
Liao, C.L., Lai, M.M., 1992. RNA recombination in a coronavirus: recombination between viral genomic RNA and transfected RNA fragments. Journal of virology 66, 6117-6124.
Lim, K.P., Liu, D.X., 1998. Characterization of the two overlapping papain-like proteinase domains encoded in gene 1 of the coronavirus infectious bronchitis virus and determination of the C-terminal cleavage site of an 87-kDa protein. Virology 245, 303-312.
Lim, K.P., Ng, L.F., Liu, D.X., 2000. Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus Avian infectious bronchitis virus and characterization of the cleavage products. Journal of virology 74, 1674-1685.
Lin, T.L., Loa, C.C., Wu, C.C., 2004. Complete sequences of 3' end coding region for structural protein genes of turkey coronavirus. Virus research 106, 61-70.
Liu, D.X., Cavanagh, D., Green, P., Inglis, S.C., 1991. A polycistronic mRNA specified by the coronavirus infectious bronchitis virus. Virology 184, 531-544.
Liu, S., Kong, X., 2004. A new genotype of nephropathogenic infectious bronchitis virus circulating in vaccinated and non-vaccinated flocks in China. Avian pathology : journal of the W.V.P.A 33, 321-327.
Liu, S., Zhang, X., Gong, L., Yan, B., Li, C., Han, Z., Shao, Y., Li, H., Kong, X., 2009. Altered pathogenicity, immunogenicity, tissue tropism and 3'-7kb region sequence of an avian infectious bronchitis coronavirus strain after serial passage in embryos. Vaccine 27, 4630-4640.
Lomniczi, B., 1977. Biological properties of avian coronavirus RNA. The Journal of general virology 36, 531-533.
Lu, Y.S., Lee, S.Y., Yang, W.L., Liu, J.Y., Wu, C.H., 1966. Studies on infectious bronchitis of chickens. Exp Rep Taiwan Prov Res Inst Anim Health 3, 72-78.
Lu, Y.S., Shieh, H.K., Tsai, H.J., Lin, D.F., Lee, Y.L., 1993. The incidence and virus isolation of infectious bronchitis in chickens in Taiwan. J Chin Soc Vet Sci 19, 119-129.
Lukert, P.D., 1965. Comparative Sensitivities of Embryonating Chicken's Eggs and Primary Chicken Embryo Kidney and Liver Cell Cultures to Infectious Bronchitis Virus. Avian diseases 9, 308-316.
Machamer, C.E., Rose, J.K., 1987. A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. The Journal of cell biology 105, 1205-1214.
Mardani, K., Browning, G.F., Ignjatovic, J., Noormohammadi, A.H., 2006. Rapid differentiation of current infectious bronchitis virus vaccine strains and field isolates in Australia. Australian veterinary journal 84, 59-62.
Marle, G., Dobbe, J., Gultyaev, A., Luytjes, W., Spaan, W., Snijder, E., 1999. Arterivirus Discontinuous mRNA Transcription Is Guided by Base Pairing between Sense and Antisense Transcription-Regulating Sequences. Proceedings of the National Academy of Sciences of the United States of America 96, 12056-12061.
Masters, P.S., 2006. The molecular biology of coronaviruses. Advances in virus research 66, 193-292.
McIntosh, K. 1974. Coronaviruses: A comparative review. In, Berlin, Heidelberg, 85-129.
Mockett, A.P., Cavanagh, D., Brown, T.D., 1984. Monoclonal antibodies to the S1 spike and membrane proteins of avian infectious bronchitis coronavirus strain Massachusetts M41. The Journal of general virology 65 ( Pt 12), 2281-2286.
Mortola, J.P., 2009. Gas exchange in avian embryos and hatchlings. Comparative biochemistry and physiology. Part A, Molecular integrative physiology 153, 359-377.
Nasr, F., Filipowicz, W., 2000. Characterization of the Saccharomyces cerevisiae cyclic nucleotide phosphodiesterase involved in the metabolism of ADP-ribose 1',2'-cyclic phosphate. Nucleic acids research 28, 1676-1683.
Niesters, H.G., Lenstra, J.A., Spaan, W.J., Zijderveld, A.J., Bleumink-Pluym, N.M., Hong, F., van Scharrenburg, G.J., Horzinek, M.C., van der Zeijst, B.A., 1986. The peplomer protein sequence of the M41 strain of coronavirus IBV and its comparison with Beaudette strains. Virus research 5, 253-263.
Parr, R.L., Collisson, E.W., 1993. Epitopes on the spike protein of a nephropathogenic strain of infectious bronchitis virus. Archives of virology 133, 369-383.
Phillips, J.E., Jackwood, M.W., McKinley, E.T., Thor, S.W., Hilt, D.A., Acevedol, N.D., Williams, S.M., Kissinger, J.C., Paterson, A.H., Robertson, J.S., Lemke, C., 2012. Changes in nonstructural protein 3 are associated with attenuation in avian coronavirus infectious bronchitis virus. Virus genes 44, 63-74.
Pickett, B.E., Greer, D.S., Zhang, Y., Stewart, L., Zhou, L., Sun, G., Gu, Z., Kumar, S., Zaremba, S., Larsen, C.N., Jen, W., Klem, E.B., Scheuermann, R.H., 2012. Virus pathogen database and analysis resource (ViPR): a comprehensive bioinformatics database and analysis resource for the coronavirus research community. Viruses 4, 3209-3226.
Pohl, R., 1974. The histopathogenesis of the nephrosis-nephritis syndrome. Avian pathology : journal of the W.V.P.A 3, 1-13.
Purcell, D.A., Tham, V.L., Surman, P.G., 1976. The histopathology of infectious bronchitis in fowls infected with a nephrotropic 'T' strain of virus. Australian veterinary journal 52, 85-91.
Putics, Á., Filipowicz, W., Hall, J., Gorbalenya, A.E., Ziebuhr, J., 2005. ADP-Ribose-1'-Monophosphatase: a Conserved Coronavirus Enzyme That Is Dispensable for Viral Replication in Tissue Culture. Journal of virology 79, 12721-12731.
Ratia, K., Saikatendu, K., Santarsiero, B., Barretto, N., Evans, S., Stevens, R., Mesecar, A., 2006. Severe acute respiratory syndrome coronavirus papain-like protease: Structure of a viral deubiquitinating enzyme. Proceedings of the National Academy of Sciences of the United States of America 103, 5717-5722.
Saikatendu, K., Subramanian, V., Clayton, T., Griffith, M., Moy, K., Velasquez, J., Neuman, B., Buchmeier, M., Stevens, R., Kuhn, P., 2005. Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1″-phosphate dephosphorylation by a conserved domain of nsp3. Structure (London, England : 1993) 13, 1665-1675.
Sawicki, S.G., Sawicki, D.L. 1995. Coronaviruses use Discontinuous Extension for Synthesis of Subgenome-Length Negative Strands, In: Talbot, P.J., Levy, G.A. (Eds.) Corona- and Related Viruses: Current Concepts in Molecular Biology and Pathogenesis. Springer US, Boston, MA, 499-506.
Sawicki, S.G., Sawicki, D.L. 1998. A New Model for Coronavirus Transcription, In: Enjuanes, L., Siddell, S.G., Spaan, W. (Eds.) Coronaviruses and Arteriviruses. Springer US, Boston, MA, 215-219.
Scholtissek, C., Muller, K., Herzog, S., Frese, K., 1988. Multiplication of influenza A viruses with cleavable and non-cleavable haemagglutinin in chicken embryo membranes or organs, and cell cultures derived therefrom. The Journal of general virology 69 ( Pt 9), 2155-2164.
Shan, D., Fang, S., Han, Z., Ai, H., Zhao, W., Chen, Y., Jiang, L., Liu, S., 2018. Effects of hypervariable regions in spike protein on pathogenicity, tropism, and serotypes of infectious bronchitis virus. Virus research 250, 104-113.
Sharma, J.M., Burmester, B.R., 1982. Resistance to Marek's disease at hatching in chickens vaccinated as embryos with the turkey herpesvirus. Avian diseases 26, 134-149.
Shien, J.H., Su, Y.D., Wu, H.Y., 2014. Regulation of coronaviral poly(A) tail length during infection is not coronavirus species- or host cell-specific. Virus genes 49, 383-392.
Siddell, S., Wege, H., Ter Meulen, V., 1983. The biology of coronaviruses. The Journal of general virology 64 (Pt 4), 761-776.
Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L.M., Guan, Y., Rozanov, M., Spaan, W.J.M., Gorbalenya, A.E., 2003. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. Journal of molecular biology 331, 991-1004.
Somogyi, P., Jenner, A.J., Brierley, I., Inglis, S.C., 1993. Ribosomal pausing during translation of an RNA pseudoknot. Molecular and cellular biology 13, 6931-6940.
Spaan, W., Cavanagh, D., Horzinek, M.C., 1988. Coronaviruses: structure and genome expression. The Journal of general virology 69 ( Pt 12), 2939-2952.
Tan, J., Kusov, Y., Mutschall, D., Tech, S., Nagarajan, K., Hilgenfeld, R., Schmidt, C.L., 2007. The 'SARS-unique domain' (SUD) of SARS coronavirus is an oligo(G)-binding protein. Biochemical and biophysical research communications 364, 877-882.
Thiel, V., Ivanov, K.A., Putics, Á., Hertzig, T., Schelle, B., Bayer, S., Weißbrich, B., Snijder, E.J., Rabenau, H., Doerr, H.W., Gorbalenya, A.E., Ziebuhr, J., 2003. Mechanisms and enzymes involved in SARS coronavirus genome expression. The Journal of general virology 84, 2305-2315.
Tsai, C.T., Chiou, H.Y., Wang., C.H., 2016. Infectious bronchitis vaccine is more pathogenic in chicken embryos than its wild strain. Veterinarski Arhiv 86, 699-709.
Tsai, C.T., Lee, M.C., Wang, C.H., 2020a. Reduced chicken embryo dwarfing effect is related to infectious bronchitis virus TW2575/98 replication efficiency. Taiwan Veterinary Journal.
Tsai, C.T., Wu, H.Y., Wang, C.H., 2020b. Genetic sequence changes related to the attenuation of avian infectious bronchitis virus strain TW2575/98. Virus genes 56, 369-379.
van Hemert, M.J., van den Worm, S.H., Knoops, K., Mommaas, A.M., Gorbalenya, A.E., Snijder, E.J., 2008. SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. PLoS pathogens 4, e1000054.
Vennema, H., Godeke, G.J., Rossen, J.W., Voorhout, W.F., Horzinek, M.C., Opstelten, D.J., Rottier, P.J., 1996. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. The EMBO journal 15, 2020-2028.
Wang, C.H., Huang, Y.C., 2000. Relationship between serotypes and genotypes based on the hypervariable region of the S1 gene of infectious bronchitis virus. Archives of virology 145, 291-300.
Wang, C.H., Tsai, C.T., 1996. Genetic grouping for the isolates of avian infectious bronchitis virus in Taiwan. Archives of virology 141, 1677-1688.
Wang, K., 2014. Molecular mechanisms of hepatic apoptosis. Cell death disease 5, e996.
Wang, L., Junker, D., Collisson, E.W., 1993. Evidence of natural recombination within the S1 gene of infectious bronchitis virus. Virology 192, 710-716.
Wang, L., Junker, D., Hock, L., Ebiary, E., Collisson, E.W., 1994. Evolutionary implications of genetic variations in the S1 gene of infectious bronchitis virus. Virus research 34, 327-338.
White, P.T., 1974. Experimental studies on the circulatory system of the late chick embryo. The Journal of experimental biology 61, 571-592.
Williams, A.K., Wang, L., Sneed, L.W., Collisson, E.W., 1992. Comparative analyses of the nucleocapsid genes of several strains of infectious bronchitis virus and other coronaviruses. Virus research 25, 213-222.
Wolin, S.L., Walter, P., 1988. Ribosome pausing and stacking during translation of a eukaryotic mRNA. The EMBO journal 7, 3559-3569.
Woo, P.C., Huang, Y., Lau, S.K., Yuen, K.Y., 2010. Coronavirus genomics and bioinformatics analysis. Viruses 2, 1804-1820.
Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.-L., Abiona, O., Graham, B.S., McLellan, J.S., 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260.
Wu, H.Y., Ke, T.Y., Liao, W.Y., Chang, N.Y., 2013. Regulation of coronaviral poly(A) tail length during infection. PloS one 8, e70548.
Xia, J., He, X., Yao, K.C., Du, L.J., Liu, P., Yan, Q.G., Wen, Y.P., Cao, S.J., Han, X.F., Huang, Y., 2016. Phylogenetic and antigenic analysis of avian infectious bronchitis virus in southwestern China, 2012-2016.Infection, genetics and evolution 45, 11-19.
Yu, X., Bi, W., Weiss, S.R., Leibowitz, J.L., 1994. Mouse hepatitis virus gene 5b protein is a new virion envelope protein. Virology 202, 1018-1023.
Zanotto, P.M., Gibbs, M.J., Gould, E.A., Holmes, E.C., 1996. A reevaluation of the higher taxonomy of viruses based on RNA polymerases. Journal of virology 70, 6083.
Zhao, F., Han, Z., Zhang, T., Shao, Y., Kong, X., Ma, H., Liu, S., 2014. Genomic characteristics and changes of avian infectious bronchitis virus strain CK/CH/LDL/97I after serial passages in chicken embryos. Intervirology 57, 319-330.
Zhao, Y., Cheng, J., Yan, S., Jia, W., Zhang, K., Zhang, G., 2019. S gene and 5a accessory gene are responsible for the attenuation of virulent infectious bronchitis coronavirus. Virology 533, 12-20.
Ziebuhr, J., Thiel, V., Gorbalenya, A.E., 2001. The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond. The Journal of biological chemistry 276, 33220-33232.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19709-
dc.description.abstract家禽傳染性支氣管炎(Avian infectious bronchitis; IB)是一種侵害世界各國雞隻的病毒性急性高度傳染病。家禽傳染性支氣管炎病毒(IB virus)可經過連續接種雞胚胎蛋培養進行減毒程序降低對雞隻之病害而獲得疫苗株,但減毒疫苗株對雞胚胎的致病性卻增加。為探討家禽傳染性支氣管炎病毒減毒株之雞胚胎致病性及毒力相關的作用機制與可能的分子決定位,以TW2575/98野外株(TW2575/98w)與減毒疫苗株(TW2575/98vac)接種雞胚胎蛋,證實減毒疫苗株對雞胚胎的致病程度高於野外株,胚胎死亡率較高、早期死亡較多與胚胎矮化現象較少,且病毒增殖效率較高與產量較多。而雞胚胎蛋分別接種TW2575/98病毒之野外株或減毒疫苗株後的病理學變化無明顯差異。通過免疫組織化學檢測,病毒抗原主要存在於絨毛膜上皮、肺旁支氣管、腎小管上皮細胞及一些在脾臟和心臟漿膜層間皮細胞,顯示早期的胚胎死亡和矮化與疫苗株的細胞/組織親和性的變化無關,但與早期感染的建立和病毒量有關。進而對兩毒株的病毒基因體完全定序後,與國內外數個家禽傳染性支氣管炎病毒野外株及減毒疫苗株比對分析,可在TW2575/98vac病毒基因體中發現44個突變核苷(造成30個變異胺基酸),且均未在國內外其他病毒株(TW2296/95、Ark/Ark-DPI/81、麻薩諸塞州株、GA98/CWL0470/98和CK/CH等)中看到同樣變化,反之亦然。經過三個方面的進一步比較和評估:(1)對特定的同源毒株繼代中出現變異時間進行縱向分析;(2)對其他5個病毒株之野外株和減毒疫苗株間的胺基酸變化進行水平評估;(3)檢查病毒蛋白中變異的胺基酸化學特性變化,四個發生取代變異的胺基酸位點[P87蛋白之V342D、HD1蛋白之S1493P及P2025S與HD1(P41)蛋白之F2308Y]被選為具高度可能性之分子決定位,與TW2575/98病毒之減毒作用有關。可知不同病毒株成功減毒相關的胺基酸變異位點及型態,其實是多樣性的,並不僅限於特定病毒蛋白的改變或發生取代的胺基酸。再者,為克服減毒疫苗株對雞胚胎具有更高的毒力而降低孵化率,推測可能藉由調低疫苗株於卵內接種之最佳劑量而達成。zh_TW
dc.description.abstractAvian infectious bronchitis (IB) caused by the IB virus (IBV) is an acute, highly contagious infectious disease in chickens around the world. Live IB vaccine strain could be acquired because its pathogencity for chickens has lowered after attenuation by continuous serial passages in chicken embryos (CEs). However, its pathogencity for CEs was increased. To investigate the mechanism for pathogenicity of the attenuated IB virus in CEs and virulence related possible molecular determinants, wild strain (TW2575/98w) and vaccine strain (TW2575/98vac) were inoculated into CEs, respectively. It has proved that the attenuated vaccine strains are more pathogenic than the wild virus strains. TW2575/98vac has higher embryonic leathal rate and early death as well as lower dwarfing effect for CEs. Meanwhile, replication efficiency and yield of vaccine strain in CEs are higher. There were no significant differences in the pathological changes in CE infected by both wild and attenuated strains. Detected by immunohistochemistry, the viral antigens of both strains could be found mainly at the epithelium of the chorioallantoic membrane, lung parabronchi, renal tubules and some in the spleen and heart serosa. These findings indicated that the early embryonic death and dwarfing is not related to the change in cell/tissue tropism of the vaccine strain, rather on the early infection establishment and viral load. Full length of viral genomes from TW2575/98w and TW2575/98vac were determined and subject to comparisons with gene sequences of wild strains and vaccine strains from the other IB viruses in Taiwan and other countries. In TW2575/98vac, there are 30 varied amino acid residues resulting from 44 mutated nucleotides compared to TW2575/98w. However, all of the molecular variations lead to attenuation, found in TW2575/98, were not observed consistently in the other IBVs (TW2296/95, Ark/Ark-DPI/81, the Massachusetts strain, GA98/CWL0470/98, and CK/CH/LDL/97I) and vice versa. After further comparisons and evaluations from three aspects: (1) longitudinal analysis on the timing of variations appeared in specific homologous strain passages, (2) horizontal evaluations with the amino acid changes between wild and vaccine strains among the other 5 IBVs, and (3) inspection on alterations in the chemical characteristics of substituted amino acid residues in viral proteins, four amino acid substitutions [V342D in P87, S1493P and P2025S in HD1, as well as F2308Y in HD1(P41)] were selected as highly possible candidates for successful TW2575/98w attenuation. Furthermore, the results in the study imply that molecular variations, which contribute to the successful attenuation of different IBVs, are diverse and not restricted to a fixed pattern or specific amino acid substitutions in viral proteins. Finally, it suggests that the vaccine strain inoculated titer might be adjusted to an optimal low level for in ovo vaccination to overcome the poor hatching rate for its higher virulence to CEs.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:14:42Z (GMT). No. of bitstreams: 1
U0001-1508202015032700.pdf: 2005146 bytes, checksum: 775bf3fddafe33ca2c6306df4a8e99ef (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents論文口試委員會審定書 2
Acknowledgments 致謝 3
Abstract 4
中文摘要 7
目錄 9
Chapter 1. Preface 15
Chapter 2. Literature Reviews 22
2.1 History 22
2.2 Classification of IBV 23
2.3 Properties of IBV 23
2.3.1 Virus structure 24
2.3.2 Replicase polyprotein 1ab 29
2.3.3 Structural protein 35
2.4 Viral replication 37
2.5 The relationship between genes and serology 41
2.6 Virulence gene 43
2.7 Tissue tropism 48
2.8 Live-attenuated vaccines 49
Chapter 3. The infectious bronchitis vaccine strain virus is more pathogenic in chicken embryos than the wild virus strain TW2575/98/98 52
3.1 Materials and methods 52
3.1.1 Viruses 52
3.1.2 Quantify IBV in allantoic fluid of embryos by real-time RT-PCR. 53
3.1.3 Construction of standard curves 54
3.1.4 Pathogenicity in CEs 54
3.1.5 Dwarfing effect of wild and vaccine strains in embryos inoculated with 1 EID50 55
3.1.6 Pathology 55
3.1.7 Immunohistochemical (IHC) staining 56
3.1.8 Statistical analysis 57
3.2 Results 58
3.2.1 Quantification of viruses in embryos 58
3.2.2 Pathogenicity and dwarfing effects in CEs 58
3.2.3 Pathologic lesions in virus-inoculated embryos 59
Chapter 4. Genetic sequence changes related to the attenuation of avian infectious bronchitis virus strain TW2575/98 61
4.1 Materials and methods 61
4.1.1 Viruses 61
4.1.2 Comparison of the differences in the ability to infect CEs between wild and vaccine strains 61
4.1.3 Quantitation of viral genomes using real time RT PCR 62
4.1.4 Gene sequencing and comparison 63
4.1.5 Sequence accession number 67
4.2 Results 67
4.2.1 Replication efficiency and embryonic death revealed from TW2575/98w and TW2575/98vac 67
4.2.2 Sequence analyses and comparisons 68
Chapter 5. Reduced CE dwarfing effect is related to infectious bronchitis virus TW2575/98 replication efficiency 72
5.1 Materials and Methods 72
5.1.1 Viruses 72
5.1.2 Virus infectivity in CEs 72
5.1.3 RNA extraction 74
5.1.4 IBV quantitation using qRT-PCR 75
5.1.5 Pathological examination and Immunohistochemical staining 76
5.2 Results 78
5.2.1 Difference of virus infectivity on CEs 78
5.2.2 Virus-inoculated embryo pathological analysis 79
Chapter 6. Discussion 81
Chapter 7. Conclusion 94
List of illustrations 97
Fig. 1 A. Normal chorioallantoic membrane from 15-day-old embryo without inoculation. B. Chorioallantoic membrane from 13-day-old embryo inoculated with the wild IBV strain. 97
Fig. 2 A. Normal lung from a 15-day-old embryo without inoculation. B. lung from a 16-day-old embryo inoculated with the vaccine strain. 98
Fig. 3 A. Normal liver from a 15-day-old embryo without inoculation. B. Liver from a 16-day-old embryo inoculated with the wild strain. 99
Fig. 4 Immunohistochemical staining with anti-IBV monoclonal antibody, QI3-4a. 100
Fig. 5 Viral genome copies detected in allantoic fluid and number of days to embryonic death with a low concentration (1 EID50) of wild and vaccine TW2575/98 strains. 101
Fig. 6 Sequences of 3’-UTR downstream (the compared region is from nt 27,217 to nt 27,283, 67bp according to TW2296/95w) of the N protein gene from different passages of strain TW2296/95 were compared. 102
Fig. 7 The histopathology of dwarfed embryos infected by wild type IBV (H E stain). 103
Fig. 8 Immunohistochemical staining with the anti-IBV monoclonal antibody, QI3-4a. 104
List of tables 105
Table 1 The IBV quantification of wild and vaccine strains in CEs inoculated with 10 EID50 105
Table 2 Comparison of embryo death rates and times after inoculation with different titers of wild and vaccine strains 106
Table 3 The death and dwarfing effect of wild and vaccine strains on CEs inoculated with 1 EID50 107
Table 4 Primers used for direct sequencing of the whole genome in this study 108
Table 5 Mean viral gene copies detected in allantoic fluid and mean days of embryonic death by inoculation with a low concentration (1 EID50) of wild and vaccine strains of TW2575/98 109
Table 6 Viral gene copies detected in allantoic fluid and days of embryonic death by inoculation with different concentrations of wild and vaccine strains of TW2575/98 110
Table 7 The transcriptional regulatory sequences (TRS) of TW2575/98 111
Table 8 Different proteins cleaved from the 1ab protein of TW2575/98 112
Table 9 Differences between wild and vaccine strains of TW2575/98 at the nucleotide and deduced amino acid 113
Table 10 Comparison of amino acid changes in viral proteins between wild and vaccine strains from the 30 corresponding sites in TW2575/98 and the other 5 IB viruses 114
Table 11 The difference in the rates for death, infection and dwarf effect on CEs inoculated with different titers of wild and vaccine strains during 1-7 DPI 115
Table 12 Different times and titers on the establishment of infection in CEs infected by wild and vaccine strains 116
Table 13 The histopathological changes in CEs infected by wild type and attenuated strains 117
Table 14 Wild type and attenuated IBV tissue tropism in CEs revealed by immunohistochemistry 118
References 119
Appendix 1: Abbreviation 142
Appendix 2: Published or accepted papers 146
Appendix 3: Symposium papers 147
dc.language.isoen
dc.title傳染性支氣管炎病毒減毒株在雞胚胎增殖之分析zh_TW
dc.titleReplication Analysis of Attenuated Infectious Bronchitis Virus in Chicken Embryos
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.author-orcid0000-0001-8587-0117
dc.contributor.advisor-orcid王金和(0000-0001-8482-4477)
dc.contributor.oralexamcommittee謝快樂(Happy K Shieh),蔡向榮(Hsiang Jung Tsai),陳慧文(Hui Wen Chen),林昭男(Chao Nan Lin),鄭明珠(Ming Chu Cheng)
dc.subject.keyword傳染性支氣管炎,免疫組織化學,毒力,基因體,病毒複製,組織親和性,矮化效應,zh_TW
dc.subject.keywordInfectious bronchitis,Immunohistochemistry,Virulence,Genome,Virus replication,Tissue tropism,Dwarfing effect,en
dc.relation.page147
dc.identifier.doi10.6342/NTU202003517
dc.rights.note未授權
dc.date.accepted2020-08-18
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
U0001-1508202015032700.pdf
  未授權公開取用
1.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved