Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19666
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張俊哲
dc.contributor.authorYao-chung Chenen
dc.contributor.author陳躍中zh_TW
dc.date.accessioned2021-06-08T02:12:17Z-
dc.date.copyright2016-02-24
dc.date.issued2015
dc.date.submitted2016-01-19
dc.identifier.citationAravind, L., and Koonin, E.V. (1999). DNA polymerase beta-like nucleotidyltransferase superfamily: identification of three new families, classification and evolutionary history. Nucleic Acids Res 27, 1609-1618.
Awmack, C. (1999). Aphid Ecology. A.F.G. Dixon. Integrated Pest Management Reviews 4, 77-78.
Büning, J. (1985). Morphology, ultrastructure, and germ cell cluster formation in ovarioles of aphids. Journal of morphology 186, 209-221.
Barnard, D.C., Ryan, K., Manley, J.L., and Richter, J.D. (2004). Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell 119, 641-651.
Benoit, B., Mitou, G., Chartier, A., Temme, C., Zaessinger, S., Wahle, E., Busseau, I., and Simonelig, M. (2005). An essential cytoplasmic function for the nuclear poly(A) binding protein, PABP2, in poly(A) tail length control and early development in Drosophila. Developmental cell 9, 511-522.
Benoit, P., Papin, C., Kwak, J.E., Wickens, M., and Simonelig, M. (2008). PAP- and GLD-2-type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila. Development 135, 1969-1979.
Blackman, R.L. (1978). Early development of the parthenogenetic egg in three species of aphids (homoptera : Aphididae). International Journal of Insect Morphology and Embryology 7, 33-44.
Bogerd, H.P., Fridell, R.A., Madore, S., and Cullen, B.R. (1995). Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins. Cell 82, 485-494.
Bowerman, B., and O'Rourke, S.M. (2012). Pushing Your Back into Place. Science 336, 984-985.
Chang, C.C., Huang, T.Y., Cook, C.E., Lin, G.W., Shih, C.L., and Chen, R.P. (2009). Developmental expression of Apnanos during oogenesis and embryogenesis in the parthenogenetic pea aphid Acyrthosiphon pisum. The International journal of developmental biology 53, 169-176.
Chang, C.C., Huang, T.Y., Shih, C.L., Lin, G.W., Chang, T.P., Chiu, H., and Chang, W.C. (2008). Whole-mount identification of gene transcripts in aphids: protocols and evaluation of probe accessibility. Archives of insect biochemistry and physiology 68, 186-196.
Chang, C.C., Lee, W.C., Cook, C.E., Lin, G.W., and Chang, T. (2006). Germ-plasm specification and germline development in the parthenogenetic pea aphid Acyrthosiphon pisum: Vasa and Nanos as markers. The International journal of developmental biology 50, 413-421.
Chang, C.C., Lin, G.W., Cook, C.E., Horng, S.B., Lee, H.J., and Huang, T.Y. (2007). Apvasa marks germ-cell migration in the parthenogenetic pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Development genes and evolution 217, 275-287.
Chicoine, J., Benoit, P., Gamberi, C., Paliouras, M., Simonelig, M., and Lasko, P. (2007). Bicaudal-C recruits CCR4-NOT deadenylase to target mRNAs and regulates oogenesis, cytoskeletal organization, and its own expression. Developmental cell 13, 691-704.
Chmiel, N.H., Rio, D.C., and Doudna, J.A. (2006). Distinct contributions of KH domains to substrate binding affinity of Drosophila P-element somatic inhibitor protein. Rna 12, 283-291.
Christiaens, O., Swevers, L., and Smagghe, G. (2014). DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides 53, 307-314.
Coller, J.M., Gray, N.K., and Wickens, M.P. (1998). mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation. Genes & development 12, 3226-3235.
Corbitt, T.S., and Hardie, J. (1985). Juvenile hormone effects on polymorphism in the pea aphid, Acyrthosiphon pisum. Entomologia Experimentalis et Applicata 38, 131-135.
Cummings, M.R., and King, R.C. (1969). The cytology of the vitellogenic stages of oogenesis in Drosophila melanogaster. I. General staging characteristics. Journal of morphology 128, 427-441.
Doitsidou, M., Reichman-Fried, M., Stebler, J., Koprunner, M., Dorries, J., Meyer, D., Esguerra, C.V., Leung, T., and Raz, E. (2002). Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111, 647-659.
Egecioglu, D.E., Henras, A.K., and Chanfreau, G.F. (2006). Contributions of Trf4p- and Trf5p-dependent polyadenylation to the processing and degradative functions of the yeast nuclear exosome. Rna 12, 26-32.
Ephrussi, A., Dickinson, L.K., and Lehmann, R. (1991). Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66, 37-50.
Folkmann, A.W., Collier, S.E., Zhan, X., Aditi, Ohi, M.D., and Wente, S.R. (2013). Gle1 functions during mRNA export in an oligomeric complex that is altered in human disease. Cell 155, 582-593.
Folkmann, A.W., Noble, K.N., Cole, C.N., and Wente, S.R. (2011). Dbp5, Gle1-IP6 and Nup159: a working model for mRNP export. Nucleus 2, 540-548.
Fritz, C.C., Zapp, M.L., and Green, M.R. (1995). A human nucleoporin-like protein that specifically interacts with HIV Rev. Nature 376, 530-533.
Gallot, A., Shigenobu, S., Hashiyama, T., Jaubert-Possamai, S., and Tagu, D. (2012). Sexual and asexual oogenesis require the expression of unique and shared sets of genes in the insect Acyrthosiphon pisum. BMC genomics 13, 76.
Garbarino, J.E., and Gibbons, I.R. (2002). Expression and genomic analysis of midasin, a novel and highly conserved AAA protein distantly related to dynein. BMC genomics 3, 18.
Garcia-Mayoral, M.F., Hollingworth, D., Masino, L., Diaz-Moreno, I., Kelly, G., Gherzi, R., Chou, C.F., Chen, C.Y., and Ramos, A. (2007). The structure of the C-terminal KH domains of KSRP reveals a noncanonical motif important for mRNA degradation. Structure (London, England : 1993) 15, 485-498.
Gott, J.M. (2003). Two distinct roles for terminal uridylyl transferases in RNA editing. Proceedings of the National Academy of Sciences of the United States of America 100, 10583-10584.
Hörandl, E. (2009). Geographical Parthenogenesis: Opportunities for Asexuality. In Lost Sex, I. Schön, K. Martens, and P. Dijk, eds. (Springer Netherlands), pp. 161-186.
Handler, D., Meixner, K., Pizka, M., Lauss, K., Schmied, C., Gruber, F.S., and Brennecke, J. (2013). The genetic makeup of the Drosophila piRNA pathway. Molecular cell 50, 762-777.
Haracska, L., Johnson, R.E., Prakash, L., and Prakash, S. (2005). Trf4 and Trf5 Proteins of Saccharomyces cerevisiae Exhibit Poly(A) RNA Polymerase Activity but No DNA Polymerase Activity. Molecular and cellular biology 25, 10183-10189.
Huang, T.Y., Cook, C.E., Davis, G.K., Shigenobu, S., Chen, R.P., and Chang, C.C. (2010). Anterior development in the parthenogenetic and viviparous form of the pea aphid, Acyrthosiphon pisum: hunchback and orthodenticle expression. Insect molecular biology 19 Suppl 2, 75-85.
Huang, X., and Madan, A. (1999). CAP3: A DNA sequence assembly program. Genome research 9, 868-877.
International Aphid Genomics, C. (2010). Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS biology 8, e1000313.
Jao, L.E., Appel, B., and Wente, S.R. (2012). A zebrafish model of lethal congenital contracture syndrome 1 reveals Gle1 function in spinal neural precursor survival and motor axon arborization. Development 139, 1316-1326.
Jenkins, A.B., McCaffery, J.M., and Van Doren, M. (2003). Drosophila E-cadherin is essential for proper germ cell-soma interaction during gonad morphogenesis. Development 130, 4417-4426.
Johnson, P.E., and Donaldson, L.W. (2006). RNA recognition by the Vts1p SAM domain. Nature structural & molecular biology 13, 177-178.
Juge, F., Zaessinger, S., Temme, C., Wahle, E., and Simonelig, M. (2002). Control of poly(A) polymerase level is essential to cytoplasmic polyadenylation and early development in Drosophila. The EMBO journal 21, 6603-6613.
Kadyk, L.C., and Kimble, J. (1998). Genetic regulation of entry into meiosis in Caenorhabditis elegans. Development 125, 1803-1813.
Kim-Ha, J., Smith, J.L., and Macdonald, P.M. (1991). oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 66, 23-35.
Kohler, A., and Hurt, E. (2007). Exporting RNA from the nucleus to the cytoplasm. Nature reviews Molecular cell biology 8, 761-773.
Kunwar, P.S., Starz-Gaiano, M., Bainton, R.J., Heberlein, U., and Lehmann, R. (2003). Tre1, a G protein-coupled receptor, directs transepithelial migration of Drosophila germ cells. PLoS biology 1, E80.
Le Trionnaire, G., Hardie, J., Jaubert-Possamai, S., Simon, J.C., and Tagu, D. (2008). Shifting from clonal to sexual reproduction in aphids: physiological and developmental aspects. Biology of the cell / under the auspices of the European Cell Biology Organization 100, 441-451.
Lees, A.D. (1973). Photoperiodic time measurement in the aphid Megoura viciae. Journal of insect physiology 19, 2279-2316.
Lipinszki, Z., Kiss, P., Pál, M., Deák, P., Szabó, Á., Hunyadi-Gulyas, E., Klement, E., Medzihradszky, K.F., and Udvardy, A. (2009). Developmental-stage-specific regulation of the polyubiquitin receptors in Drosophila melanogaster. Journal of cell science 122, 3083-3092.
Mahone, M., Saffman, E.E., and Lasko, P.F. (1995). Localized Bicaudal-C RNA encodes a protein containing a KH domain, the RNA binding motif of FMR1. The EMBO journal 14, 2043-2055.
Mao, J., Liu, C., and Zeng, F. (2013). Hunchback is required for abdominal identity suppression and germband growth in the parthenogenetic embryogenesis of the pea aphid, Acyrthosiphon pisum. Archives of insect biochemistry and physiology 84, 209-221.
Mao, J., and Zeng, F. (2012). Feeding-Based RNA Intereference of a Gap Gene Is Lethal to the Pea Aphid, Acyrthosiphon pisum. PloS one 7, e48718.
Marston, A.L., and Amon, A. (2004). Meiosis: cell-cycle controls shuffle and deal. Nature reviews Molecular cell biology 5, 983-997.
Millonigg, S., Minasaki, R., Nousch, M., and Eckmann, C.R. (2014). GLD-4-mediated translational activation regulates the size of the proliferative germ cell pool in the adult C. elegans germ line. PLoS genetics 10, e1004647.
Miura, T., Braendle, C., Shingleton, A., Sisk, G., Kambhampati, S., and Stern, D.L. (2003). A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Journal of experimental zoology Part B, Molecular and developmental evolution 295, 59-81.
Motamedi, M.R., Verdel, A., Colmenares, S.U., Gerber, S.A., Gygi, S.P., and Moazed, D. (2004). Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789-802.
Murata, T., Nagaso, H., Kashiwabara, S.-i., Baba, T., Okano, H., and Yokoyama, K.K. (2001). The hiiragi Gene Encodes a Poly(A) Polymerase, Which Controls the Formation of the Wing Margin in Drosophila melanogaster. Developmental biology 233, 137-147.
Murphy, R., and Wente, S.R. (1996). An RNA-export mediator with an essential nuclear export signal. Nature 383, 357-360.
Nakamura, R., Takeuchi, R., Takata, K.-i., Shimanouchi, K., Abe, Y., Kanai, Y., Ruike, T., Ihara, A., and Sakaguchi, K. (2008). TRF4 Is Involved in Polyadenylation of snRNAs in Drosophila melanogaster. Molecular and cellular biology 28, 6620-6631.
Neuman-Silberberg, F.S., and Schupbach, T. (1993). The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell 75, 165-174.
Norbury, C.J. (2013). Cytoplasmic RNA: a case of the tail wagging the dog. Nature reviews Molecular cell biology 14, 643-653.
Nousiainen, H.O., Kestilä, M., Pakkasjärvi, N., Honkala, H., Kuure, S., Tallila, J., Vuopala, K., Ignatius, J., Herva, R., and Peltonen, L. (2008). Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease. Nature genetics 40, 155-157.
Proudfoot, N.J., Furger, A., and Dye, M.J. (2002). Integrating mRNA Processing with Transcription. Cell 108, 501-512.
Raz, E. (2004). Guidance of primordial germ cell migration. Current opinion in cell biology 16, 169-173.
Reimão-Pinto, Madalena M., Ignatova, V., Burkard, Thomas R., Hung, J.-H., Manzenreither, Raphael A., Sowemimo, I., Herzog, Veronika A., Reichholf, B., Fariña-Lopez, S., and Ameres, Stefan L. (2015). Uridylation of RNA Hairpins by Tailor Confines the Emergence of MicroRNAs in Drosophila. Molecular cell 59, 203-216.
Richardson, B.E., and Lehmann, R. (2010). Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nature reviews Molecular cell biology 11, 37-49.
Richter, J.D. (2000). Influence of Polyadenylation-induced Translation on Metazoan Development and Neuronal Synaptic Function.
Riparbelli, M.G., Tagu, D., Bonhomme, J., and Callaini, G. (2005). Aster self-organization at meiosis: a conserved mechanism in insect parthenogenesis Developmental biology 278, 220-230.
Rouhana, L., Wang, L., Buter, N., Kwak, J.E., Schiltz, C.A., Gonzalez, T., Kelley, A.E., Landry, C.F., and Wickens, M. (2005). Vertebrate GLD2 poly(A) polymerases in the germline and the brain. Rna 11, 1117-1130.
Saffman, E.E., Styhler, S., Rother, K., Li, W., Richard, S., and Lasko, P. (1998). Premature translation of oskar in oocytes lacking the RNA-binding protein bicaudal-C. Molecular and cellular biology 18, 4855-4862.
Schmidt, K., and Butler, J.S. (2013). Nuclear RNA surveillance: role of TRAMP in controlling exosome specificity. Wiley interdisciplinary reviews RNA 4, 217-231.
Schwander, T., and Crespi, B.J. (2009). Multiple direct transitions from sexual reproduction to apomictic parthenogenesis in Timema stick insects. Evolution; international journal of organic evolution 63, 84-103.
Stevenson, A.L., and Norbury, C.J. (2006). The Cid1 family of non-canonical poly(A) polymerases. Yeast (Chichester, England) 23, 991-1000.
Strahm, Y., Fahrenkrog, B., Zenklusen, D., Rychner, E., Kantor, J., Rosbach, M., and Stutz, F. (1999). The RNA export factor Gle1p is located on the cytoplasmic fibrils of the NPC and physically interacts with the FG-nucleoporin Rip1p, the DEAD-box protein Rat8p/Dbp5p and a new protein Ymr 255p. The EMBO journal 18, 5761-5777.
Stutz, F., Neville, M., and Rosbash, M. (1995). Identification of a novel nuclear pore-associated protein as a functional target of the HIV-1 Rev protein in yeast. Cell 82, 495-506.
Suh, N., Jedamzik, B., Eckmann, C.R., Wickens, M., and Kimble, J. (2006). The GLD-2 poly(A) polymerase activates gld-1 mRNA in the Caenorhabditis elegans germ line. Proceedings of the National Academy of Sciences of the United States of America 103, 15108-15112.
The International Aphid Genomics, C. (2010). Genome Sequence of the Pea Aphid Acyrthosiphon pisum. PLoS biology 8, e1000313.
Tutucci, E., and Stutz, F. (2011). Keeping mRNPs in check during assembly and nuclear export. Nature reviews Molecular cell biology 12, 377-384.
van der Spek, P.J., Smit, E.M., Beverloo, H.B., Sugasawa, K., Masutani, C., Hanaoka, F., Hoeijmakers, J.H., and Hagemeijer, A. (1994). Chromosomal localization of three repair genes: the xeroderma pigmentosum group C gene and two human homologs of yeast RAD23. Genomics 23, 651-658.
Van Doren, M., Broihier, H.T., Moore, L.A., and Lehmann, R. (1998). HMG-CoA reductase guides migrating primordial germ cells. Nature 396, 466-469.
Wang, L., Eckmann, C.R., Kadyk, L.C., Wickens, M., and Kimble, J. (2002). A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans. Nature 419, 312-316.
Watkins, J.F., Sung, P., Prakash, L., and Prakash, S. (1993). The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Molecular and cellular biology 13, 7757-7765.
Watkins, J.L., Murphy, R., Emtage, J.L., and Wente, S.R. (1998). The human homologue of Saccharomyces cerevisiae Gle1p is required for poly(A)+ RNA export. Proceedings of the National Academy of Sciences of the United States of America 95, 6779-6784.
Wickens, M., Goodwin, E.B., Kimble, J., Strickland, S., and Hentze, M.W. (2000). Translational Control of Developmental Decisions.
Wilson, A.C.C., Sunnucks, P., and Hales, D.F. (2003). Heritable genetic variation and potential for adaptive evolution in asexual aphids (Aphidoidea). Biological Journal of the Linnean Society 79, 115-135.
Zhang, B.X., Huang, H.J., Yu, B., Lou, Y.H., Fan, H.W., and Zhang, C.X. (2015). Bicaudal-C plays a vital role in oogenesis in Nilaparvata lugens (Hemiptera: Delphacidae). Journal of insect physiology 79, 19-26.
Zhao, J., Hyman, L., and Moore, C. (1999). Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiology and molecular biology reviews : MMBR 63, 405-445.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19666-
dc.description.abstract豌豆蚜 (Acyrthosiphon pisum) 受日照時間的改變刺激會有有性生殖和無性生殖的模式。有性及無性生殖模式成蟲的微卵管型態具有獨特發育多型性,無性胎生微卵管內含有卵及胚胎;而有性卵生微卵管只有充滿卵黃的未受精卵。Gallot et al (2012) 檢測 33 個基因在有性及無性微卵管的卵細胞中有不同的表現,推論這些基因有一些同時參與有性及無性卵發育的分化,有一些只有參與有性或是無性卵發育。然而 33 個基因當中有 7 個卵生成基因被表現在無性胎生豌豆蚜胚胎發育 Stage 6 的初始生殖細胞中,分別是:ApGle1、ApBic-C、ACYPI25088 (Trf4-like)、ACYPI010052、ACYPI007465、ACYPI39770 以及 ACYPI54656。這些卵生成基因是否參與生殖細胞的發育還未知。ApGle1、ApBic-C 以及 ACYPI25088 (Trf4-like) 推測參與 mRNA polyadenylation,而其他 4 個卵生成基因為蚜蟲特有的基因。我採用整體原位雜合技術檢測 7 個卵生成相關的基因在胚胎發育時期的表現,實驗結果為無性豌豆蚜生殖細胞在胚胎發育過程中,這些卵生成基因全都被專一地表現在早期胚胎中。其中 5 個 ApBic-C、ACYPI25088 (Trf4-like)、ACYPI010052、ACYPI007465、ACYPI39770 被表現在移動中的生殖細胞以及後期胚胎的生殖細胞,而 ApGle1 亦被表現在後期胚胎的生殖細胞中。根據實驗結果推測無性豌豆蚜卵生成基因可能與胚胎時期的生殖細胞發育有關。zh_TW
dc.description.abstractPea aphid (Acyrthosiphon pisum) display parthenogenetic viviparous and sexual oviparous phases of reproduction in response to the change of photoperiods. Morphological structures of the ovarioles in asexual and sexual aphids display distinct developmental polyphenism – egg chambers of the parthenogenetic viviparous ovarioles accommodate oocytes and embryos whilst the sexual oviparous ovarioles only contain unfertilized eggs full of yolk. Gallot et al (2012) identified 33 genes differentially expressed in developing oocytes in asexual and sexual pea aphids, suggesting that some of these genes are involved in the differentiation of asexual and sexual oogenesis. However, there are 7 oogenesis genes from 33 genes are expressed in the primordial germ cells at stage 6 in asexual embryos including: ApGle1、ApBic-C、ACYPI25088 (Trf4-like)、ACYPI010052、ACYPI007465、ACYPI39770 and ACYPI54656. Whether they are involved in germline development remain unknown. Analyze the protein sequence of ApGle1、ApBic-C、ACYPI25088 (Trf4-like) suggested they might be involved in mRNA polyadenylation and the remain 4 genes are suggested to be aphid-specific genes. I detected expression of 7 oogenesis genes in embryos and analyzed whether they were specifically restricted to germ cells by whole-mount in situ hybridization. Results show all of them are expressed in early embryos. 5 of them, ApBic-C、ACYPI25088 (Trf4-like)、ACYPI010052、ACYPI007465 and ACYPI39770 are expressed in the migrating germ cells and germ cells in somatic gonads. ApGle1 is expressed in germ cells during late embryogenesis. Results show oogenesis gene may play a role in embryonic germline development in asexual pea aphids.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:12:17Z (GMT). No. of bitstreams: 1
ntu-104-R02632007-1.pdf: 60213622 bytes, checksum: 12a0a955ae72561672345bed5bc239dd (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
摘要 i
Abstract ii
第一章 前言 1
1.1豌豆蚜的生物特性 1
1.2 豌豆蚜的卵生成 2
1.3 無性豌豆蚜的生殖細胞發育 4
1.4 Gle1 基因的簡介 5
1.5 Bicaudal-C 基因的簡介 6
1.6 研究動機 7
1.7 研究目的 7
第二章 材料與方法 8
2.1 豌豆蚜蟲的飼養 8
2.2 合成探針 8
2.2.1 萃取 total RNA 8
2.2.2 RNA 反轉錄成 cDNA 9
2.2.3 設計專一性引子 9
2.2.4 PCR 操作和產物回收 10
2.2.5 PCR 產物電泳分析 11
2.2.6 PCR 產物回收 11
2.2.7 接合到載體及轉型到勝任細胞 11
2.2.8 養菌及質體萃取 12
2.2.9 限制酶反應 DNA 沉澱 14
2.2.10 DNA 沉澱反應 14
2.2.11 胞外轉錄 (in vitro transcription) 14
2.2.12 RNA 沉降 15
2.3 原位雜合反應 (Whole mount in situ hybridization) 15
2.3.1 固定 (Fixation) 15
2.3.2 再水合 (Rehydration) 16
2.3.3 雜合前處理 (Prehybridization) 16
2.3.4 雜合反應 (Hybridization) 16
2.3.5 清洗 (Wash) (清洗溫度為 65℃) 16
2.3.6 偵測探針 (Detection) 17
2.3.7 偵測 DIG 標記探針 (Detection of DIG-labelled probe) 17
2.4 微卵管 RNA 抽取與反轉錄 PCR 17
2.4.1 使用 TRIzol 抽取微卵管 RNA 17
2.4.2 使用反轉錄 PCR 檢測微卵管中 ACYPI54656 RNA 的表現量 18
第三章 實驗結果 19
3.1 基因的選殖 19
3.1.1 ApGle1 的選殖 19
3.1.2 ApBic-C 的選殖 19
3.1.3 Hypothetical gene 的選殖 20
3.3 整體原位雜合法結果 24
3.3.1 ApGle1 mRNA 在微卵管的表現分析 24
3.3.2 ApBic-C mRNA 在微卵管的表現分析 25
3.3.3 ACYPI25088 mRNA在微卵管的表現分析 26
3.3.4 ACYPI010052 mRNA 在微卵管的表現分析 27
3.3.5 ACYPI39770 mRNA 在微卵管的表現分析 28
3.3.6 ACYPI007465 mRNA在微卵管的表現分析 29
3.3.7 ACYPI54656 mRNA在微卵管的表現分析 30
第四章 討論 33
4.1 實驗結果與 Gallot et al (2012) 文獻的比較 33
4.1.1 基因的選殖結果與 Gallot et al (2012) 文獻的比較 33
4.1.2 整體原位雜合反應與 Gallot et al (2012) 文獻的比較 34
4.2 卵生成基因與 Polyadenylation 的關係 35
4.3 豌豆蚜卵生成基因在胚胎發育過程中的表現 37
4.3.1 ApGle1 在胚胎發育之表現分析 37
4.3.2 ApBic-C在胚胎發育之表現分析 38
4.3.3 ACYPI25088 (Trf4-like) 在胚胎發育之表現分析 39
4.3.4 ACYPI010052在胚胎發育之表現分析 40
4.3.5 ACYPI39770、ACYPI007465 以及 ACYPI54656在胚胎發育之表現分析 41
4.4 卵生成基因的表現與移動中的生殖細胞的關係 43
4.5 重要性與未來展望 44
參考文獻 46

圖一、豌豆蚜生活史 53
圖二、無性胎生豌豆蚜胚胎發育時期的定義 54
圖三、7 個被表現在無性豌豆蚜第 6 時期生殖細胞的基因 57
圖四、無性豌豆蚜的生殖細胞發育 58
圖五、ApGle1 的選殖 61
圖六、ApBic-C 選殖區域與預測片段的核苷酸及胺基酸序列的比較 63
圖七、ApBic-C 轉型到 pGEM-Teasy vector 之示意圖 65
圖八、ACYPI25088 的選殖序列比較 66
圖九、NT_PAP_TUTase domain 以及 PAP_assoc domain 之胺基酸序列在各物種
之間的比較 68
圖十、ACYPI25088 轉型到 pGEM-Teasy vector 之示意圖 69
圖十一、ACYPI010052 選殖區域與預測片段胺基酸序列的比較 70
圖十二、ACYPI010052 轉型到 pGEM-Teasy vector 之示意圖 72
圖十三、ACYPI39770 的選殖 74
圖十四、ACYPI007465的選殖 77
圖十五、ACYPI54656的選殖 79
圖十六、偵測 ApGle1 mRNA 在豌豆蚜卵細胞和胚胎發育的表現 80
圖十七、偵測 ApBic-C mRNA 在豌豆蚜卵細胞和胚胎發育的表現 82
圖十八、偵測 ACYPI25088 mRNA在豌豆蚜卵細胞和胚胎發育的表現 84
圖十九、偵測 ACYPI010052 mRNA在豌豆蚜卵細胞和胚胎發育的表現 86
圖二十、偵測 ACYPI010052 mRNA 在豌豆蚜胚胎翻轉 (Katatrepsis) 的表現 88
圖二十一、偵測 ACYPI39770 mRNA 在豌豆蚜卵細胞和胚胎發育的表現 89
圖二十二、偵測 ACYPI007465 mRNA 在豌豆蚜卵細胞和胚胎發育的表現 91
圖二十三、偵測 ACYPI54656 mRNA 在豌豆蚜卵細胞和胚胎發育的表現 93
圖二十四、偵測 ACYPI54656 mRNA 在豌豆蚜一齡若蟲微卵管的表現 95
圖二十五、使用反轉錄 PCR 檢測 ACYPI54656 mRNA 在微卵管的表現分析 96

表一、33 個在有性以及無性胚胎表現量有差異的基因描述 (Gallot et al., 2012) 97
表二、7 個卵生成基因的專一性引子序列 98
表三、ACYPI25088 比對資料庫整理表 99
表四、ACYPI010052 比對資料庫整理表 105
表五、ACYPI39770 比對資料庫整理表 114
表六、ACYPI007465 比對資料庫整理表 116
表七、ACYPI54656比對資料庫整理表 121
表八、基因選殖結果以及蛋白保守區域之預測功能與 Gallot et al (2012) 文獻的 比較整理 125
表九、基因表現形式與 Gallot et al (2012) 文獻的比較整理 127
dc.language.isozh-TW
dc.title豌豆蚜卵生成基因在胚胎發育之表現分析zh_TW
dc.titleAnalysis of the expression of oogenesis genes during embryogenesis in the pea aphid Acyrthosiphon pisumen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭信宏,劉逸軒,林明德
dc.subject.keyword豌豆蚜,卵生成基因,生殖細胞發育,Gle1,Bicaudal-C,Trf4,mRNA polyadenylation,zh_TW
dc.subject.keywordPea aphid,Oogenesis genes,Germline development,Gle1,Bicaudal-C,Trf4,mRNA polyadenylation,en
dc.relation.page137
dc.rights.note未授權
dc.date.accepted2016-01-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
58.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved