Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19655
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張志中
dc.contributor.authorYu-Chun Kaoen
dc.contributor.author高幼鈞zh_TW
dc.date.accessioned2021-06-08T02:11:39Z-
dc.date.copyright2016-02-16
dc.date.issued2016
dc.date.submitted2016-01-22
dc.identifier.citation[1] Dudley, R.M., Central limit theorems for empirical measures. Ann. Probab. 6(6), 899–929 (1979) (1978)
[2] Dudley, R.M., Uniform central limit theorems, Cambridge Studies in Advanced Mathematics, vol. 63. Cambridge University Press, Cambridge (1999)
[3] Dudley, R.M., Gin’e, E., Zinn, J., Uniform and universal Glivenko-Cantelli classes. J. Theoret. Probab. 4(3), 485–510 (1991)
[4] van Handel, R., The universal Glivenko-Cantelli property. Probab. Theory Re- lated Fields 155(3-4), 911–934 (2013)
[5] van Handel, R., Probability in High Dimension. ORF 570 Lecture Notes Princeton University, June 30, 2014
[6] McDiarmid, C., On the method of bounded differences. In: Surveys in combi- natorics, 1989 (Norwich, 1989), London Math. Soc. Lecture Note Ser., vol. 141, pp. 148–188. Cambridge Univ. Press, Cambridge (1989)
[7] Olivier Bousquet, St’ephane Boucheron, and Ga’bor Lugosi, Introduction to Statistical Learn- ing Theory
[8] Panchenko, D., Symmetrization approach to concentration inequalities for em- pirical pro- cesses. Ann. Probab. 31(4), 2068–2081 (2003)
[9] Sauer, N., On the density of families of sets. J. Combinatorial Theory Ser. A 13, 145–147 (1972)
[10] Slepian, D., The one-sided barrier problem for Gaussian noise. Bell System Tech. J. 41, 463–501 (1962)
[11] Vladimir N. Vapnik, An Overview of Statistical Learning Theory. IEEE Transcations on Neu- ral Networks, Vol. 10, No. 5, SEP. 1999
[12] Vapnik, V.N., Cervonenkis, A.J., The uniform convergence of frequencies of the appearance of events to their probabilities. Teor. Verojatnost. i Primenen. 16, 264–279 (1971)
[13] Vapnik, V.N., Chervonenkis, A.Y., Necessary and su cient conditions for the uniform conver- gence of empirical means to their true values. Teor. Veroyatnost. i Primenen. 26(3), 543–563 (1981)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19655-
dc.description.abstract在統計學習中對於特定演算法產生的風險函數估計一直是重要課題,分析相關問題時Vapnik-Chervonenkis維度扮演了相當重要的角色。VC維度是一個測量集合複雜度的指標,大數法則在一VC維度有限之集合上可以有與機率分佈無關的均勻收斂速度估計。VC維度無窮大時,對於特定的機率分佈大數法則依然可能均勻成立。此論文中我們將探討一個VC維度無窮大但對特定機率分佈大數法則均勻成立的特殊情形來展示集合複雜度與機率分佈之間的關係,亦即:當集合越複雜,機率分佈的限制就越多。我們也將VC維度有限的相關討論適當地整理、濃縮後,附在本論文主要結果之後,以便讀者參照。而後半部的內容大部分是由Vapnik, V.N.和Chervonenkis, A.Y.完成,從van Handel, R.編寫之'Probability in High Dimension'中擷取 。zh_TW
dc.description.abstractIn statistical learning, an estimation of the risk function over a certain algorithm is of prime importance and the notion of Vapnik-Chervonenkis dimension plays an important role in analyzing and understanding such problems. It's known that the law of large number holds uniformly over classes with less complexity, and VC-dimension is an important number giving quantitative description of their complexity. Having finite VC-dimension is a necessary and sufficient condition for a class of characteristic functions to be a uniform Glivenko-Cantelli class. However there are cases that VC-dimension is infinite but LLN still holds. We elaborate on a specific circumstance that VC-dimension is infinite but the Glivenko-Cantelli property still holds(but not uniformly) over any distribution which is absolutely continuous with respect to Lebesgue measure. This example demonstrates the trade off between the complexity of the class and of the probabilistic measures. Discussions of finite VC-dimension cases are also attached at the end for reference. Most of the work in the second half of this thesis is first established by Vapnik, V.N. and Chervonenkis, A.Y. and cited from 'Probability in High Dimension' by van Handel, R. This thesis only serves as a terse introduction for those who want to get a quick grasp of Glivenko-Cantelli property and VC-dimension.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:11:39Z (GMT). No. of bitstreams: 1
ntu-105-R00221032-1.pdf: 644004 bytes, checksum: c0dae2115da8c5096f429af458276563 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 i 中文摘要 ii 英文摘要 iii
1 Introduction 1
2 Class with infinite VC-dimension 2
2.1 Random entropy condition........................ 2
2.2 Random VC-dimension.......................... 4
2.3 The class of all compact and convex subsets . . . . . . . . . . . . . . 5
3 Finite Vapnik-Chervonenkis dimension 10
3.1 Subgaussian process ........................... 10
3.2 Chaining.................................. 11
3.3 Gaussian process ............................. 12
3.4 Empirical measure and process ..................... 13
3.5 Symmetrization.............................. 13
3.6 Weak and strong μ-Glivenko-Cantelliclass . . . . . . . . . . . . . . . 15
3.7 Vapnik-Chervonenkis dimension..................... 16
3.8 A finer bound on N(C,∥·∥L2(μn),ε).................... 17
4 Appendix 20
4.1 Subgaussian random variables ...................... 20
4.2 Duality between covering and packing.................. 23
4.3 Separable process............................. 23
4.4 Sudakov’s lower bound .......................... 24
4.5 μ-Glivenko-Cantelliclasses........................ 27
參考書目 29
dc.language.isoen
dc.titleGlivenko-Cantelli集合相關探討zh_TW
dc.titleA study on Glivenko-Cantelli classesen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee江金倉,陳宏
dc.subject.keyword統計學習,Vapnik-Chervonenkis維度,zh_TW
dc.subject.keywordVapnik-Chervonenkis dimension,Glivenko-Cantelli class,en
dc.relation.page30
dc.rights.note未授權
dc.date.accepted2016-01-22
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
628.91 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved