Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19636
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭明良
dc.contributor.authorKai-Chun Lien
dc.contributor.author李凱君zh_TW
dc.date.accessioned2021-06-08T02:10:08Z-
dc.date.copyright2016-02-26
dc.date.issued2016
dc.date.submitted2016-01-27
dc.identifier.citationChapter 1
1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 2011, 61:69-90.
2. Chen LH, Tsai KL, Chen YW, Yu CC, Chang KW, Chiou SH, Ku HH, Chu PY, Tseng LM, Huang PI, Lo WL: MicroRNA as a Novel Modulator in Head and Neck Squamous Carcinoma. J Oncol 2010, 2010:135632.
3. Chen YJ, Chang JT, Liao CT, Wang HM, Yen TC, Chiu CC, Lu YC, Li HF, Cheng AJ: Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis. Cancer Sci 2008, 99:1507-1514.
4. Argiris A, Karamouzis MV, Raben D, Ferris RL: Head and neck cancer. Lancet 2008, 371:1695-1709.
5. Brockstein B, Haraf DJ, Rademaker AW, Kies MS, Stenson KM, Rosen F, Mittal BB, Pelzer H, Fung BB, Witt ME, et al: Patterns of failure, prognostic factors and survival in locoregionally advanced head and neck cancer treated with concomitant chemoradiotherapy: a 9-year, 337-patient, multi-institutional experience. Ann Oncol 2004, 15:1179-1186.
6. Schmitz S, Ang KK, Vermorken J, Haddad R, Suarez C, Wolf GT, Hamoir M, Machiels JP: Targeted therapies for squamous cell carcinoma of the head and neck: current knowledge and future directions. Cancer Treat Rev 2014, 40:390-404.
7. Dawson MA, Kouzarides T: Cancer epigenetics: from mechanism to therapy. Cell 2012, 150:12-27.
8. Virani S, Colacino JA, Kim JH, Rozek LS: Cancer epigenetics: a brief review. ILAR J 2012, 53:359-369.
9. Baylin SB: DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2005, 2 Suppl 1:S4-11.
10. Bird A: DNA methylation patterns and epigenetic memory. Genes Dev 2002, 16:6-21.
11. Bannister AJ, Kouzarides T: Regulation of chromatin by histone modifications. Cell Res 2011, 21:381-395.
12. Strahl BD, Allis CD: The language of covalent histone modifications. Nature 2000, 403:41-45.
13. Holoch D, Moazed D: RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 2015, 16:71-84.
14. Aguilera O, Fernandez AF, Munoz A, Fraga MF: Epigenetics and environment: a complex relationship. J Appl Physiol (1985) 2010, 109:243-251.
15. Feil R, Fraga MF: Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 2011, 13:97-109.
16. Hou L, Zhang X, Wang D, Baccarelli A: Environmental chemical exposures and human epigenetics. Int J Epidemiol 2012, 41:79-105.
17. Clark SJ, Melki J: DNA methylation and gene silencing in cancer: which is the guilty party? Oncogene 2002, 21:5380-5387.
18. Lo PK, Sukumar S: Epigenomics and breast cancer. Pharmacogenomics 2008, 9:1879-1902.
19. Ellis L, Atadja PW, Johnstone RW: Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 2009, 8:1409-1420.
20. Hock H: A complex Polycomb issue: the two faces of EZH2 in cancer. Genes Dev 2012, 26:751-755.
21. Simon JA, Lange CA: Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 2008, 647:21-29.
22. Zeidler M, Varambally S, Cao Q, Chinnaiyan AM, Ferguson DO, Merajver SD, Kleer CG: The Polycomb group protein EZH2 impairs DNA repair in breast epithelial cells. Neoplasia 2005, 7:1011-1019.
23. Jung HY, Jun S, Lee M, Kim HC, Wang X, Ji H, McCrea PD, Park JI: PAF and EZH2 induce Wnt/beta-catenin signaling hyperactivation. Mol Cell 2013, 52:193-205.
24. Yoo KH, Hennighausen L: EZH2 methyltransferase and H3K27 methylation in breast cancer. Int J Biol Sci 2012, 8:59-65.
25. Hua KT, Wang MY, Chen MW, Wei LH, Chen CK, Ko CH, Jeng YM, Sung PL, Jan YH, Hsiao M, et al: The H3K9 methyltransferase G9a is a marker of aggressive ovarian cancer that promotes peritoneal metastasis. Mol Cancer 2014, 13:189.
26. Hung SY, Lin HH, Yeh KT, Chang JG: Histone-modifying genes as biomarkers in hepatocellular carcinoma. Int J Clin Exp Pathol 2014, 7:2496-2507.
27. Chen MW, Hua KT, Kao HJ, Chi CC, Wei LH, Johansson G, Shiah SG, Chen PS, Jeng YM, Cheng TY, et al: H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. Cancer Res 2010, 70:7830-7840.
28. Zhang J, He P, Xi Y, Geng M, Chen Y, Ding J: Down-regulation of G9a triggers DNA damage response and inhibits colorectal cancer cells proliferation. Oncotarget 2015, 6:2917-2927.
29. Shankar SR, Bahirvani AG, Rao VK, Bharathy N, Ow JR, Taneja R: G9a, a multipotent regulator of gene expression. Epigenetics 2013, 8:16-22.
30. Shinkai Y, Tachibana M: H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev 2011, 25:781-788.
31. Brown SE, Campbell RD, Sanderson CM: Novel NG36/G9a gene products encoded within the human and mouse MHC class III regions. Mamm Genome 2001, 12:916-924.
32. Gupta-Agarwal S, Franklin AV, Deramus T, Wheelock M, Davis RL, McMahon LL, Lubin FD: G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. J Neurosci 2012, 32:5440-5453.
33. Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H, Shinkai Y: G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 2002, 16:1779-1791.
34. Kim JK, Esteve PO, Jacobsen SE, Pradhan S: UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells. Nucleic Acids Res 2009, 37:493-505.
35. Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T, et al: Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 2013, 23:316-331.
36. Dong C, Wu Y, Yao J, Wang Y, Yu Y, Rychahou PG, Evers BM, Zhou BP: G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clin Invest 2012, 122:1469-1486.
37. Levine B, Yuan J: Autophagy in cell death: an innocent convict? J Clin Invest 2005, 115:2679-2688.
38. Mizushima N: Autophagy: process and function. Genes Dev 2007, 21:2861-2873.
39. Jung CH, Ro SH, Cao J, Otto NM, Kim DH: mTOR regulation of autophagy. FEBS Lett 2010, 584:1287-1295.
40. Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J, Levine B: Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 2012, 338:956-959.
41. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP: Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005, 121:179-193.
42. Wang J, Whiteman MW, Lian H, Wang G, Singh A, Huang D, Denmark T: A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J Biol Chem 2009, 284:21412-21424.
43. Kim J, Kundu M, Viollet B, Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011, 13:132-141.
44. Inoki K, Kim J, Guan KL: AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 2012, 52:381-400.
45. Kondo Y, Kanzawa T, Sawaya R, Kondo S: The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005, 5:726-734.
46. Gozuacik D, Kimchi A: Autophagy as a cell death and tumor suppressor mechanism. Oncogene 2004, 23:2891-2906.
47. Nozawa H, Tadakuma T, Ono T, Sato M, Hiroi S, Masumoto K, Sato Y: Small interfering RNA targeting epidermal growth factor receptor enhances chemosensitivity to cisplatin, 5-fluorouracil and docetaxel in head and neck squamous cell carcinoma. Cancer Sci 2006, 97:1115-1124.
48. Yorimitsu T, Klionsky DJ: Autophagy: molecular machinery for self-eating. Cell Death Differ 2005, 12 Suppl 2:1542-1552.
49. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007, 282:24131-24145.
50. Zhang X, Yang Z, Khan SI, Horton JR, Tamaru H, Selker EU, Cheng X: Structural basis for the product specificity of histone lysine methyltransferases. Mol Cell 2003, 12:177-185.
51. Arantes LM, de Carvalho AC, Melendez ME, Carvalho AL, Goloni-Bertollo EM: Methylation as a biomarker for head and neck cancer. Oral Oncol 2014, 50:587-592.
52. Zhao L, Yu Y, Wu J, Bai J, Zhao Y, Li C, Sun W, Wang X: Role of EZH2 in oral squamous cell carcinoma carcinogenesis. Gene 2014, 537:197-202.
53. Liu M, Scanlon CS, Banerjee R, Russo N, Inglehart RC, Willis AL, Weiss SJ, D'Silva NJ: The Histone Methyltransferase EZH2 Mediates Tumor Progression on the Chick Chorioallantoic Membrane Assay, a Novel Model of Head and Neck Squamous Cell Carcinoma. Transl Oncol 2013, 6:273-281.
54. Oh SH, Whang YM, Min HY, Han SH, Kang JH, Song KH, Glisson BS, Kim YH, Lee HY: Histone deacetylase inhibitors enhance the apoptotic activity of insulin-like growth factor binding protein-3 by blocking PKC-induced IGFBP-3 degradation. Int J Cancer 2012, 131:2253-2263.
55. Haigentz M, Jr., Kim M, Sarta C, Lin J, Keresztes RS, Culliney B, Gaba AG, Smith RV, Shapiro GI, Chirieac LR, et al: Phase II trial of the histone deacetylase inhibitor romidepsin in patients with recurrent/metastatic head and neck cancer. Oral Oncol 2012, 48:1281-1288.
56. Dwivedi N, Chandra S, Kashyap B, Raj V, Agarwal A: Suprabasal expression of Ki-67 as a marker for the severity of oral epithelial dysplasia and oral squamous cell carcinoma. Contemp Clin Dent 2013, 4:7-12.
57. Watanabe H, Soejima K, Yasuda H, Kawada I, Nakachi I, Yoda S, Naoki K, Ishizaka A: Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells. Cancer Cell Int 2008, 8:15.
58. Li E, Bestor TH, Jaenisch R: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992, 69:915-926.
59. Yang Q, Lu Z, Singh D, Raj JU: BIX-01294 treatment blocks cell proliferation, migration and contractility in ovine foetal pulmonary arterial smooth muscle cells. Cell Prolif 2012, 45:335-344.
60. Rufini A, Tucci P, Celardo I, Melino G: Senescence and aging: the critical roles of p53. Oncogene 2013, 32:5129-5143.
61. Elias J, Dimitrio L, Clairambault J, Natalini R: The p53 protein and its molecular network: modelling a missing link between DNA damage and cell fate. Biochim Biophys Acta 2014, 1844:232-247.
62. Huang J, Dorsey J, Chuikov S, Perez-Burgos L, Zhang X, Jenuwein T, Reinberg D, Berger SL: G9a and Glp methylate lysine 373 in the tumor suppressor p53. J Biol Chem 2010, 285:9636-9641.
63. Baehrecke EH: Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 2005, 6:505-510.
64. Yuan Y, Tang AJ, Castoreno AB, Kuo SY, Wang Q, Kuballa P, Xavier R, Shamji AF, Schreiber SL, Wagner BK: Gossypol and an HMT G9a inhibitor act in synergy to induce cell death in pancreatic cancer cells. Cell Death Dis 2013, 4:e690.
65. Ding J, Li T, Wang X, Zhao E, Choi JH, Yang L, Zha Y, Dong Z, Huang S, Asara JM, et al: The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to sustain cancer cell survival and proliferation. Cell Metab 2013, 18:896-907.
66. Kim Y, Kim YS, Kim DE, Lee JS, Song JH, Kim HG, Cho DH, Jeong SY, Jin DH, Jang SJ, et al: BIX-01294 induces autophagy-associated cell death via EHMT2/G9a dysfunction and intracellular reactive oxygen species production. Autophagy 2013, 9:2126-2139.
67. Hotamisligil GS: Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010, 140:900-917.
68. Artal-Martinez de Narvajas A, Gomez TS, Zhang JS, Mann AO, Taoda Y, Gorman JA, Herreros-Villanueva M, Gress TM, Ellenrieder V, Bujanda L, et al: Epigenetic regulation of autophagy by the methyltransferase G9a. Mol Cell Biol 2013, 33:3983-3993.
69. Wang L, Xu S, Lee JE, Baldridge A, Grullon S, Peng W, Ge K: Histone H3K9 methyltransferase G9a represses PPARgamma expression and adipogenesis. EMBO J 2013, 32:45-59.
70. Son HJ, Kim JY, Hahn Y, Seo SB: Negative regulation of JAK2 by H3K9 methyltransferase G9a in leukemia. Mol Cell Biol 2012, 32:3681-3694.
71. Misra-Press A, Rim CS, Yao H, Roberson MS, Stork PJ: A novel mitogen-activated protein kinase phosphatase. Structure, expression, and regulation. J Biol Chem 1995, 270:14587-14596.
72. Kondoh K, Nishida E: Regulation of MAP kinases by MAP kinase phosphatases. Biochim Biophys Acta 2007, 1773:1227-1237.
73. Sieben NL, Oosting J, Flanagan AM, Prat J, Roemen GM, Kolkman-Uljee SM, van Eijk R, Cornelisse CJ, Fleuren GJ, van Engeland M: Differential gene expression in ovarian tumors reveals Dusp 4 and Serpina 5 as key regulators for benign behavior of serous borderline tumors. J Clin Oncol 2005, 23:7257-7264.
74. Saigusa S, Inoue Y, Tanaka K, Toiyama Y, Okugawa Y, Shimura T, Hiro J, Uchida K, Mohri Y, Kusunoki M: Decreased expression of DUSP4 is associated with liver and lung metastases in colorectal cancer. Med Oncol 2013, 30:620.
75. Britson JS, Barton F, Balko JM, Black EP: Deregulation of DUSP activity in EGFR-mutant lung cancer cell lines contributes to sustained ERK1/2 signaling. Biochem Biophys Res Commun 2009, 390:849-854.
76. Zoncu R, Efeyan A, Sabatini DM: mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011, 12:21-35.
Chapter 2
1. Ross SA, Milner JA: Epigenetic modulation and cancer: effect of metabolic syndrome? Am J Clin Nutr 2007, 86:s872-877.
2. Jaenisch R, Bird A: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003, 33 Suppl:245-254.
3. Yang P, Guo L, Duan ZJ, Tepper CG, Xue L, Chen X, Kung HJ, Gao AC, Zou JX, Chen HW: Histone methyltransferase NSD2/MMSET mediates constitutive NF-kappaB signaling for cancer cell proliferation, survival, and tumor growth via a feed-forward loop. Mol Cell Biol 2012, 32:3121-3131.
4. Schneider R, Bannister AJ, Kouzarides T: Unsafe SETs: histone lysine methyltransferases and cancer. Trends Biochem Sci 2002, 27:396-402.
5. Kuo AJ, Cheung P, Chen K, Zee BM, Kioi M, Lauring J, Xi Y, Park BH, Shi X, Garcia BA, et al: NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell 2011, 44:609-620.
6. Tian X, Zhang S, Liu HM, Zhang YB, Blair CA, Mercola D, Sassone-Corsi P, Zi X: Histone lysine-specific methyltransferases and demethylases in carcinogenesis: new targets for cancer therapy and prevention. Curr Cancer Drug Targets 2013, 13:558-579.
7. Hamamoto R, Silva FP, Tsuge M, Nishidate T, Katagiri T, Nakamura Y, Furukawa Y: Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci 2006, 97:113-118.
8. Ren TN, Wang JS, He YM, Xu CL, Wang SZ, Xi T: Effects of SMYD3 over-expression on cell cycle acceleration and cell proliferation in MDA-MB-231 human breast cancer cells. Med Oncol 2011, 28 Suppl 1:S91-98.
9. Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y: SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 2004, 6:731-740.
10. Chang CJ, Hung MC: The role of EZH2 in tumour progression. Br J Cancer 2012, 106:243-247.
11. Volkel P, Dupret B, Le Bourhis X, Angrand PO: Diverse involvement of EZH2 in cancer epigenetics. Am J Transl Res 2015, 7:175-193.
12. Li KC, Hua KT, Lin YS, Su CY, Ko JY, Hsiao M, Kuo ML, Tan CT: Inhibition of G9a induces DUSP4-dependent autophagic cell death in head and neck squamous cell carcinoma. Mol Cancer 2014, 13:172.
13. Chen MW, Hua KT, Kao HJ, Chi CC, Wei LH, Johansson G, Shiah SG, Chen PS, Jeng YM, Cheng TY, et al: H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. Cancer Res 2010, 70:7830-7840.
14. Hsiao SM, Chen MW, Chen CA, Chien MH, Hua KT, Hsiao M, Kuo ML, Wei LH: The H3K9 Methyltransferase G9a Represses E-cadherin and is Associated with Myometrial Invasion in Endometrial Cancer. Ann Surg Oncol 2015, 22 Suppl 3:1556-1565.
15. Hua KT, Wang MY, Chen MW, Wei LH, Chen CK, Ko CH, Jeng YM, Sung PL, Jan YH, Hsiao M, et al: The H3K9 methyltransferase G9a is a marker of aggressive ovarian cancer that promotes peritoneal metastasis. Mol Cancer 2014, 13:189.
16. Dong C, Wu Y, Yao J, Wang Y, Yu Y, Rychahou PG, Evers BM, Zhou BP: G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clin Invest 2012, 122:1469-1486.
17. Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T, et al: Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 2013, 23:316-331.
18. Kim Y, Kim YS, Kim DE, Lee JS, Song JH, Kim HG, Cho DH, Jeong SY, Jin DH, Jang SJ, et al: BIX-01294 induces autophagy-associated cell death via EHMT2/G9a dysfunction and intracellular reactive oxygen species production. Autophagy 2013, 9:2126-2139.
19. Zhang J, He P, Xi Y, Geng M, Chen Y, Ding J: Down-regulation of G9a triggers DNA damage response and inhibits colorectal cancer cells proliferation. Oncotarget 2015, 6:2917-2927.
20. Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT, Ping B, Otte AP, Hung MC: Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 2005, 310:306-310.
21. Wei Y, Chen YH, Li LY, Lang J, Yeh SP, Shi B, Yang CC, Yang JY, Lin CY, Lai CC, Hung MC: CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat Cell Biol 2011, 13:87-94.
22. Wan J, Zhan J, Li S, Ma J, Xu W, Liu C, Xue X, Xie Y, Fang W, Chin YE, Zhang H: PCAF-primed EZH2 acetylation regulates its stability and promotes lung adenocarcinoma progression. Nucleic Acids Res 2015, 43:3591-3604.
23. Chu CS, Lo PW, Yeh YH, Hsu PH, Peng SH, Teng YC, Kang ML, Wong CH, Juan LJ: O-GlcNAcylation regulates EZH2 protein stability and function. Proc Natl Acad Sci U S A 2014, 111:1355-1360.
24. Ueda J, Ho JC, Lee KL, Kitajima S, Yang H, Sun W, Fukuhara N, Zaiden N, Chan SL, Tachibana M, et al: The hypoxia-inducible epigenetic regulators Jmjd1a and G9a provide a mechanistic link between angiogenesis and tumor growth. Mol Cell Biol 2014, 34:3702-3720.
25. Takahashi A, Imai Y, Yamakoshi K, Kuninaka S, Ohtani N, Yoshimoto S, Hori S, Tachibana M, Anderton E, Takeuchi T, et al: DNA damage signaling triggers degradation of histone methyltransferases through APC/C(Cdh1) in senescent cells. Mol Cell 2012, 45:123-131.
26. Ueda J, Tachibana M, Ikura T, Shinkai Y: Zinc finger protein Wiz links G9a/GLP histone methyltransferases to the co-repressor molecule CtBP. J Biol Chem 2006, 281:20120-20128.
27. Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T, Shinkai Y: Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 2005, 19:815-826.
28. Link PA, Gangisetty O, James SR, Woloszynska-Read A, Tachibana M, Shinkai Y, Karpf AR: Distinct roles for histone methyltransferases G9a and GLP in cancer germ-line antigen gene regulation in human cancer cells and murine embryonic stem cells. Mol Cancer Res 2009, 7:851-862.
29. Roje S: S-Adenosyl-L-methionine: beyond the universal methyl group donor. Phytochemistry 2006, 67:1686-1698.
30. Tchantchou F, Graves M, Falcone D, Shea TB: S-adenosylmethionine mediates glutathione efficacy by increasing glutathione S-transferase activity: implications for S-adenosyl methionine as a neuroprotective dietary supplement. J Alzheimers Dis 2008, 14:323-328.
31. Sauter M, Moffatt B, Saechao MC, Hell R, Wirtz M: Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 2013, 451:145-154.
32. Mato JM, Martinez-Chantar ML, Lu SC: Methionine metabolism and liver disease. Annu Rev Nutr 2008, 28:273-293.
33. Zhuge J, Cederbaum AI: Depletion of S-adenosyl-l-methionine with cycloleucine potentiates cytochrome P450 2E1 toxicity in primary rat hepatocytes. Arch Biochem Biophys 2007, 466:177-185.
34. Martinez-Lopez N, Varela-Rey M, Ariz U, Embade N, Vazquez-Chantada M, Fernandez-Ramos D, Gomez-Santos L, Lu SC, Mato JM, Martinez-Chantar ML: S-adenosylmethionine and proliferation: new pathways, new targets. Biochem Soc Trans 2008, 36:848-852.
35. Ramani K, Yang H, Kuhlenkamp J, Tomasi L, Tsukamoto H, Mato JM, Lu SC: Changes in the expression of methionine adenosyltransferase genes and S-adenosylmethionine homeostasis during hepatic stellate cell activation. Hepatology 2010, 51:986-995.
36. Lu SC, Mato JM: S-adenosylmethionine in liver health, injury, and cancer. Physiol Rev 2012, 92:1515-1542.
37. Garcia-Trevijano ER, Latasa MU, Carretero MV, Berasain C, Mato JM, Avila MA: S-adenosylmethionine regulates MAT1A and MAT2A gene expression in cultured rat hepatocytes: a new role for S-adenosylmethionine in the maintenance of the differentiated status of the liver. FASEB J 2000, 14:2511-2518.
38. Halim AB, LeGros L, Geller A, Kotb M: Expression and functional interaction of the catalytic and regulatory subunits of human methionine adenosyltransferase in mammalian cells. J Biol Chem 1999, 274:29720-29725.
39. Mato JM, Alvarez L, Ortiz P, Pajares MA: S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacol Ther 1997, 73:265-280.
40. Reytor E, Perez-Miguelsanz J, Alvarez L, Perez-Sala D, Pajares MA: Conformational signals in the C-terminal domain of methionine adenosyltransferase I/III determine its nucleocytoplasmic distribution. FASEB J 2009, 23:3347-3360.
41. Horne DW, Holloway RS, Wagner C: Transport of S-adenosylmethionine in isolated rat liver mitochondria. Arch Biochem Biophys 1997, 343:201-206.
42. Ji C: Mechanisms of alcohol-induced endoplasmic reticulum stress and organ injuries. Biochem Res Int 2012, 2012:216450.
43. Mato JM, Martinez-Chantar ML, Lu SC: S-adenosylmethionine metabolism and liver disease. Ann Hepatol 2013, 12:183-189.
44. Charlton CG, Mack J: Substantia nigra degeneration and tyrosine hydroxylase depletion caused by excess S-adenosylmethionine in the rat brain. Support for an excess methylation hypothesis for parkinsonism. Mol Neurobiol 1994, 9:149-161.
45. Lu SC, Mato JM: Role of methionine adenosyltransferase and S-adenosylmethionine in alcohol-associated liver cancer. Alcohol 2005, 35:227-234.
46. Lu SC, Mato JM: S-Adenosylmethionine in cell growth, apoptosis and liver cancer. J Gastroenterol Hepatol 2008, 23 Suppl 1:S73-77.
47. Yang H, Huang ZZ, Wang J, Lu SC: The role of c-Myb and Sp1 in the up-regulation of methionine adenosyltransferase 2A gene expression in human hepatocellular carcinoma. FASEB J 2001, 15:1507-1516.
48. Chen H, Xia M, Lin M, Yang H, Kuhlenkamp J, Li T, Sodir NM, Chen YH, Josef-Lenz H, Laird PW, et al: Role of methionine adenosyltransferase 2A and S-adenosylmethionine in mitogen-induced growth of human colon cancer cells. Gastroenterology 2007, 133:207-218.
49. Tomasi ML, Ryoo M, Ramani K, Tomasi I, Giordano P, Mato JM, Lu SC: Methionine adenosyltransferase alpha2 sumoylation positively regulate Bcl-2 expression in human colon and liver cancer cells. Oncotarget 2015, 6:37706-37723.
50. Zhang T, Zheng Z, Liu Y, Zhang J, Zhao Y, Liu Y, Zhu H, Zhao G, Liang J, Li Q, Xu H: Overexpression of methionine adenosyltransferase II alpha (MAT2A) in gastric cancer and induction of cell cycle arrest and apoptosis in SGC-7901 cells by shRNA-mediated silencing of MAT2A gene. Acta Histochem 2013, 115:48-55.
51. Tomasi ML, Ryoo M, Skay A, Tomasi I, Giordano P, Mato JM, Lu SC: Polyamine and methionine adenosyltransferase 2A crosstalk in human colon and liver cancer. Exp Cell Res 2013, 319:1902-1911.
52. Katoh Y, Ikura T, Hoshikawa Y, Tashiro S, Ito T, Ohta M, Kera Y, Noda T, Igarashi K: Methionine adenosyltransferase II serves as a transcriptional corepressor of Maf oncoprotein. Mol Cell 2011, 41:554-566.
53. Kera Y, Katoh Y, Ohta M, Matsumoto M, Takano-Yamamoto T, Igarashi K: Methionine adenosyltransferase II-dependent histone H3K9 methylation at the COX-2 gene locus. J Biol Chem 2013, 288:13592-13601.
54. Morikawa K, Walker SM, Jessup JM, Fidler IJ: In vivo selection of highly metastatic cells from surgical specimens of different primary human colon carcinomas implanted into nude mice. Cancer Res 1988, 48:22905-22917.
55. Kim JK, Esteve PO, Jacobsen SE, Pradhan S: UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells. Nucleic Acids Res 2009, 37:493-505.
56. Ibar C, Orellana A: The import of S-adenosylmethionine into the Golgi apparatus is required for the methylation of homogalacturonan. Plant Physiol 2007, 145:504-512.
57. Sessler RJ, Noy N: A ligand-activated nuclear localization signal in cellular retinoic acid binding protein-II. Mol Cell 2005, 18:343-353.
58. Rodriguez M, Benito A, Tubert P, Castro J, Ribo M, Beaumelle B, Vilanova M: A cytotoxic ribonuclease variant with a discontinuous nuclear localization signal constituted by basic residues scattered over three areas of the molecule. J Mol Biol 2006, 360:548-557.
59. Ramani K, Donoyan S, Tomasi ML, Park S: Role of methionine adenosyltransferase alpha2 and beta phosphorylation and stabilization in human hepatic stellate cell trans-differentiation. J Cell Physiol 2015, 230:1075-1085.
60. Yang HB, Xu YY, Zhao XN, Zou SW, Zhang Y, Zhang M, Li JT, Ren F, Wang LY, Lei QY: Acetylation of MAT IIalpha represses tumour cell growth and is decreased in human hepatocellular cancer. Nat Commun 2015, 6:6973.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19636-
dc.description.abstract組蛋白甲基轉移酶G9a過量表現導致組蛋白3離胺酸9位點甲基化活化已在數種癌症被證實。抑制G9a可有效減緩癌症進程,顯示G9a於癌症發展扮演關鍵角色。因此,進一步研究癌細胞G9a的相關網絡將有助於發展更有效地抑制癌症的策略。於論文的第一章節,我們闡明了G9a於頭頸部鱗狀上皮細胞癌之臨床意義,並且也發現其下游所調控的致癌機制。我們發現於頭頸部鱗狀上皮細胞癌組織中,G9a與細胞增生指標Ki-67有共同表現之趨勢,且與病人預後呈現負相關性。利用RNA干擾技術抑制G9a基因表現抑或是以專一性抑制劑抑制其酵素活性顯著降低癌細胞增生,然而此現象並非起因於促進癌細胞凋亡或是壞死,而是由於活化了細胞自噬依賴型死亡機制所致。進一步發現,此機制係因抑制G9a會促進雙特異性去磷酸酶DUSP4表現,導致細胞外信號調節激酶ERK去活化,進而造成癌細胞進行細胞自噬依賴性死亡而降低其增生能力。最後利用小鼠原位腫瘤移植模式,我們證實了上述抑制G9a導致細胞自噬死亡機制的發生,並且也有效降低腫瘤生長情形。此結果提供了以G9a作為頭頸癌治療標的可能性。於論文的第二個章節,我們則探討G9a與其結合蛋白間的交互作用於癌症進程之角色。藉由液相層析串聯式質譜儀分析,我們發現甲硫胺酸腺苷轉移酶 MATIIα參與細胞核G9a蛋白複合體,且可直接與G9a結合。我們意外地發現MATIIα可維持G9a蛋白穩定性,然而此現象並非經由MATIIα酵素活性所調控,而是透過MATIIα與G9a的直接結合,進而抑制G9a經由APC/CCdh1依賴型泛素化降解所致。利用細胞及動物實驗,我們也證實了細胞核MATIIα—G9a交互作用於癌症進程之重要角色,且細胞核MATIIα與G9a之表現可作為有效評估大腸癌病患預後之指標。最後我們利用動物實驗證實阻斷癌細胞內生性G9a與MATIIα結合將有助於抑制大腸癌細胞轉移至肝臟。綜合以上,上述兩章節實驗結果說明了阻斷G9a以及其相關網絡可作為控制癌症進程之策略,期望我們所發現的G9a相關網絡於癌症發展之重要性可進一步作為G9a被異常調控之癌症治療新標的的發展。zh_TW
dc.description.abstractHistone methyltransferase G9a overexpression causing hyperactive of following histone 3 lysine 9 (H3K9) methylations has been identified in diverse cancers. Inhibition of G9a shows a significant anti-tumor effect, supposing G9a plays a pivotal role in mediating cancer development. Therefore, investigation of G9a-related networks may be benefit to develop more effective therapeutic approaches for cancers. In the first chapter, we revealed the clinical significance of G9a and its downstream oncogenic mechanism in head and neck squamous cell carcinoma (HNSCC). We found that G9a is co-expressed with proliferation marker Ki-67 in HNSCC specimen and is correlated to poor prognosis of patients. Genetic or pharmacological inhibition of G9a decreased cell proliferation without inducing necrosis or apoptosis. Instead, autophagic cell death was the major consequence, and our investigation of the mechanism suggested it is mediated via induction of dual specificity phosphatase-4 (DUSP4) caused ERK inactivation that followed by G9a suppression. By using orthotopic tumor model, the growth inhibiting effect and autophagy induction that followed suppression of G9a were both confirmed, providing proof for the possibility that targeting G9a may offer an additional avenue for curing HNSCC. In the second chapter, we investigated the interplay between G9a and its associated protein during cancer progression. By liquid chromatography-tandem mass spectrometry analysis, we identified methionine adenosyltransferase IIα (MATIIα) involves in G9a complex, and may directly interact with G9a. Surprisingly, we found that nuclear MATIIα stabilizes G9a protein that is independent of the enzymatic activity of MATIIα. The further mechanistic study suggested the interaction between MATIIα and G9a might help to maintain G9a protein stability through inhibition of APC/CCdh1-dependent ubiquitin-proteasome degradation of G9a. Moreover, the cooperation between nuclear MATIIα and G9a in promoting cancer progression was also demonstrated, and both high expressions of G9a and MATIIα in nucleus of tumor specimen reflected to the worse prognosis of colon cancer patients. A further therapeutic implication showed that blocking the interplay between nuclear MATIIα and G9a provided benefits for cancer treatment. In summary, the above findings suggest that disruption of G9a and its related networks may be effective approaches to eliminate cancer. We hope that our clarification of the importance of G9a-related networks in cancer progression will allow further development of promising therapeutic strategies for cancers driven by G9a dysregulation.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:10:08Z (GMT). No. of bitstreams: 1
ntu-105-D99447003-1.pdf: 9722949 bytes, checksum: b1e2d81acd32b03c900b97093a0db72d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要……………………………………………………….... 1
Abstract……………………………………………………….... 3
List of Tables…………………………………………………... 5
List of Figures………………………………………………….. 6
Chapter 1. The role of histone methyltransferase G9a in head and neck squamous cell carcinoma…………………….. 8
Introduction…………………………………………..9
Materials and Methods…………………………...16
Results………………………………………………23
Discussion…………………………………………...30
Figures and Figure Legends………………………35
References…………………………………………...47
Chapter 2. The interplay between G9a and nuclear MATIIα in cancer progression.....................................54
Introduction……………………………………………...55
Materials and Methods……………………………………61
Results……………………………………………69
Discussion………………………………………79
Tables……………………………………………………84
Figures and Figure Legends…………………………87
References……………………………………………103
Appendix……………………………………………………………109
dc.language.isoen
dc.title研究G9a相關網絡於癌症進程之角色zh_TW
dc.titleStudying the role of G9a-related networks in cancer progressionen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳瑞華,蕭宏昇,洪文俊,李明學
dc.subject.keyword表觀遺傳調控,組蛋白甲基轉移?,甲硫胺酸腺?轉移?,癌症進程,zh_TW
dc.subject.keywordepigenetic regulation,G9a,MATIIα,cancer progression,en
dc.relation.page109
dc.rights.note未授權
dc.date.accepted2016-01-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
9.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved