請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19623完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林晃巖 | |
| dc.contributor.author | Shih-Yu Tu | en |
| dc.contributor.author | 塗時雨 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:09:17Z | - |
| dc.date.copyright | 2016-02-15 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2016-01-29 | |
| dc.identifier.citation | [1] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, vol. 187, no. 4736, pp. 493-494, 1960.
[2] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent Light Emission From GaAs Junctions,” Physical Review Letters, vol. 9, no. 9, pp. 366-369, 1962. [3] 'High-Power Blue-Violet Laser Diode for Blu-ray Disc Drives,' http://www.sony.net/Products/SCHP/cx_news/vol49/pdf/sld3234vf_vfi.pdf [4] Y. Zhang, H. Dong, R. Wang et al., “Demonstration of a home projector based on RGB semiconductor lasers,” Appl. Opt., vol. 51, no. 16, pp. 3584-3589, 2012. [5] 'Sony VPL-FHZ55 Data projector (Laser cinema projector),' http://pro.sony.com/bbsccms/assets/files/show/projectors/vplfhz55_brochure.pdf. [6] M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projector: Seeing the Big Picture (with a Small Device),” Optics and Photonics News, vol. 20, no. 5, pp. 31-34, 2009. [7] K. Li, 'High-Power Laser Phosphor Light Source with Liquid Cooling for Digital Cinema Applications.' p. 1. [8] Y. Komatsu, Y. Kashihara, J. Nishikawa et al., “61.4: New 4000-Lm Solid-State Light-Source Data Projector,” SID Symposium Digest of Technical Papers, vol. 45, no. 1, pp. 900-902, 2014. [9] S. Mann, “Through the Glass, Lightly [Viewpoint],” Technology and Society Magazine, IEEE, vol. 31, no. 3, pp. 10-14, 2012. [10] O. Utsuboya, T. Shimizu, and A. Kurosawa, “40.1: Invited Paper: Augmented Reality Head Up Display for Car Navigation System,” SID Symposium Digest of Technical Papers, vol. 44, no. 1, pp. 551-554, 2013. [11] J. W. Raring, M. C. Schmidt, C. Poblenz et al., 'High-performance blue and green laser diodes based on nonpolar/semipolar bulk GaN substrates.' pp. 79390Y-79390Y-7. [12] 'Osram high power laser diode,' http://www.osram-os.com/osram_os/en/press/press-releases/ir-devices-and-laser-diodes/2014/osram-creates-a-milestone-with-laser-diodes-for-projectors/index.jsp. [13] L. Golan, and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt Express, vol. 17, no. 3, pp. 1330-9, Feb 2, 2009. [14] J. G. Manni, and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Optics Express, vol. 20, no. 10, pp. 11288-11315, 2012/05/07, 2012. [15] B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat Photon, vol. 6, no. 6, pp. 355-359, 06//print, 2012. [16] 'LED color temperature chart,' http://www.seesmartled.com/kb/choosing_color_temperature/. [17] D. Huang, E. A. Swanson, C. P. Lin et al., “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178-1181, 1991. [18] K. Wlodarczyk, J. J. Kaakkunen, P. Vahimaa et al., “Efficient speckle-free laser marking using a spatial light modulator,” Applied Physics A, vol. 116, no. 1, pp. 111-118, 2014/07/01, 2014. [19] J. P. Parry, Beck, R. J. , Shephard, J. D., Hand, D. P., “Application of a liquid crystal spatial light modulator to laser marking,” Appl Opt, vol. 50, no. 12, pp. 1779-85, Apr 20, 2011. [20] D. Hawkins, and H. Abrahamse, “Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts,” Photomed Laser Surg, vol. 24, no. 6, pp. 705-14, Dec, 2006. [21] A. Rubinov, “Physical grounds for biological effect of laser radiation,” Journal of Physics D: Applied Physics, vol. 36, no. 19, pp. 2317, 2003. [22] E. Mester, A. F. Mester, and A. Mester, “The biomedical effects of laser application,” Lasers Surg Med, vol. 5, no. 1, pp. 31-9, 1985. [23] B. Dingel, and S. Kawata, “Speckle-free image in a laser-diode microscope by using the optical feedback effect,” Optics Letters, vol. 18, no. 7, pp. 549-551, 1993/04/01, 1993. [24] 'Headlights explained,' http://www.caradvice.com.au/278125/headlights-explained-halogen-v-hid-v-led-v-laser/. [25] S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story: Springer Science & Business Media, 2000. [26] S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Applied Physics Letters, vol. 64, no. 13, pp. 1687-1689, 1994. [27] H. Amano, N. Sawaki, I. Akasaki et al., “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Applied Physics Letters, vol. 48, no. 5, pp. 353-355, 1986. [28] H. Amano, M. Kito, K. Hiramatsu et al., “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Japanese Journal of Applied Physics, vol. 28, no. 12A, pp. L2112, 1989. [29] G. Ledru, C. Catalano, P. Dupuis et al., “Efficiency and stability of a phosphor-conversion white light source using a blue laser diode,” AIP Advances, vol. 4, no. 10, pp. 107134, 2014. [30] K. A. Denault, M. Cantore, S. Nakamura et al., “Efficient and stable laser-driven white lighting,” AIP Advances, vol. 3, no. 7, pp. 072107, 2013. [31] R. Zhang, H. Lin, Y. Yu et al., “A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass,” Laser & Photonics Reviews, vol. 8, no. 1, pp. 158-164, 2014. [32] J. Kinoshita, Y. Ikeda, Y. Takeda et al., “Suppressed speckle contrast of blue light emission out of white lamp with phosphors excited by blue laser diodes for high-brightness lighting applications,” Optical Review, vol. 19, no. 6, pp. 427-431, 2012/11/01, 2012. [33] F. P. Shevlin, 'Speckle reduction for illumination with lasers and stationary, heat sinked, phosphors.' p. 4. [34] C. CIE, 'Commission Internationale de l'Eclairage Proceedings, 1931,' Cambridge University Press Cambridge, 1932. [35] 'How BMW's New Laser Headlights Will Work And Not Kill You,' http://jalopnik.com/how-bmws-new-laser-headlights-will-work-and-not-kill-y-1521586271. [36] N. E. Yu, J. W. Choi, H. Kang et al., “Speckle noise reduction on a laser projection display via a broadband green light source,” Optics Express, vol. 22, no. 3, pp. 3547-3556, 2014/02/10, 2014. [37] L. Wang, T. Tschudi, T. Halldórsson et al., “Speckle reduction in laser projection systems by diffractive optical elements,” Applied Optics, vol. 37, no. 10, pp. 1770-1775, 1998/04/01, 1998. [38] G. Ouyang, Z. Tong, M. N. Akram et al., “Speckle reduction using a motionless diffractive optical element,” Optics Letters, vol. 35, no. 17, pp. 2852-2854, 2010/09/01, 2010. [39] İ. İ. Tarhan, and G. H. Watson, “Polarization microstatistics of laser speckle,” Physical Review A, vol. 45, no. 8, pp. 6013-6018, 04/01/, 1992. [40] J. M. Zavislan, Imaging system using polarization effects to enhance image quality, 2000. [41] T.-K.-T. Tran, X. Chen, Ø. Svensen et al., “Speckle reduction in laser projection using a dynamic deformable mirror,” Optics Express, vol. 22, no. 9, pp. 11152-11166, 2014/05/05, 2014. [42] D. S. Mehta, D. N. Naik, R. K. Singh et al., “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Applied Optics, vol. 51, no. 12, pp. 1894-1904, 2012/04/20, 2012. [43] M. N. Akram, Z. Tong, G. Ouyang et al., “Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror,” Applied Optics, vol. 49, no. 17, pp. 3297-3304, 2010/06/10, 2010. [44] S. Kubota, and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Applied Optics, vol. 49, no. 23, pp. 4385-4391, 2010/08/10, 2010. [45] Y. Kuratomi, K. Sekiya, H. Satoh et al., “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J Opt Soc Am A Opt Image Sci Vis, vol. 27, no. 8, pp. 1812-7, Aug 1, 2010. [46] S. C. Shin, S. S. Yoo, S. Y. Lee et al., “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays, vol. 27, no. 3, pp. 91-96, 2006. [47] P. Memmolo, V. Bianco, M. Paturzo et al., “Encoding multiple holograms for speckle-noise reduction in optical display,” Optics Express, vol. 22, no. 21, pp. 25768-25775, 2014/10/20, 2014. [48] 'Mircro projector '; http://www.lemoptix.com/technology/laser-microprojector. [49] N. A. Dodgson, “Autostereoscopic 3D displays,” Computer, no. 8, pp. 31-36, 2005. [50] A. Medina Puerta, “The power of shadows: shadow stereopsis,” J Opt Soc Am A, vol. 6, no. 2, pp. 309-11, Feb, 1989. [51] C. Qin, B. Ren, L. Guo et al., 'Synthesis multi-projector content for multi-projector three dimension display using a layered representation.' pp. 927320-927320-7. [52] V. Milanovic, A. Kasturi, and V. Hachtel, 'High brightness MEMS mirror based head-up display (HUD) modules with wireless data streaming capability.' pp. 93750A-93750A-8. [53] P. Surman, and S. Xiao Wei, 'Towards the reality of 3D imaging and display.' pp. 1-4. [54] N. Madamopoulos, and F. Papageorgiou, “Laser Based Projection System for Displays, Signageand Illumination,” Journal of Display Technology, vol. 10, no. 10, pp. 804-811, 2014/10/01, 2014. [55] S. T. S. Holmstrom, U. Baran, and H. Urey, “MEMS Laser Scanners: A Review,” Microelectromechanical Systems, Journal of, vol. 23, no. 2, pp. 259-275, 2014. [56] X. Li, S. He, Y. Huang et al., 'Investigation of homogenizing the light field in laser display.' pp. 92960J-92960J-4. [57] P. Sabella, “A rendering algorithm for visualizing 3D scalar fields,” SIGGRAPH Comput. Graph., vol. 22, no. 4, pp. 51-58, 1988. [58] G. Wetzstein, D. Lanman, W. Heidrich et al., “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph., vol. 30, no. 4, pp. 1-12, 2011. [59] M. Levoy, and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, 1996, pp. 31-42. [60] J.-H. Lee, J. Park, D. Nam et al., “Optimal projector configuration design for 300-Mpixel multi-projection 3D display,” Optics Express, vol. 21, no. 22, pp. 26820-26835, 2013/11/04, 2013. [61] Z. Zhang, Z. Geng, T. Li et al., 'Integration of real-time 3D capture, reconstruction, and light-field display.' pp. 93910H-93910H-15. [62] W.-C. Chen, J.-Y. Bouguet, M. H. Chu et al., “Light field mapping: efficient representation and hardware rendering of surface light fields,” ACM Trans. Graph., vol. 21, no. 3, pp. 447-456, 2002. [63] M. Levoy, R. Ng, A. Adams et al., “Light field microscopy,” ACM Trans. Graph., vol. 25, no. 3, pp. 924-934, 2006. [64] A. Jones, I. McDowall, H. Yamada et al., “Rendering for an interactive 360° light field display,” ACM Trans. Graph., vol. 26, no. 3, pp. 40, 2007. [65] D. N. Wood, D. I. Azuma, K. Aldinger et al., “Surface light fields for 3D photography,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques, 2000, pp. 287-296. [66] J. C. Yang, M. Everett, C. Buehler et al., “A Real-Time Distributed Light Field Camera,” Rendering Techniques, vol. 2002, pp. 77-86, 2002. [67] D.-Y. Chen, X.-P. Tian, Y.-T. Shen et al., “On Visual Similarity Based 3D Model Retrieval,” Computer Graphics Forum, vol. 22, no. 3, pp. 223-232, 2003. [68] K. Huang, C.-H. Tsai, K. Lee et al., 'Measurement of contrast ratios for 3D display.' pp. 78-86. [69] S. Tay, P. A. Blanche, R. Voorakaranam et al., “An updatable holographic three-dimensional display,” Nature, vol. 451, no. 7179, pp. 694-698, 02/07/print, 2008. [70] J. Geng, “Volumetric 3D Display for Radiation Therapy Planning,” Display Technology, Journal of, vol. 4, no. 4, pp. 437-450, 2008. [71] K. Langhans, C. Guill, E. Rieper et al., 'SOLID FELIX: a static volume 3D-laser display.' pp. 161-174. [72] H. Nakanuma, H. Kamei, and Y. Takaki, 'Natural 3D display with 128 directional images used for human-engineering evaluation.' pp. 28-35. [73] A. Sullivan, 'DepthCube solid-state 3D volumetric display.' pp. 279-284. [74] W. Matusik, and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph., vol. 23, no. 3, pp. 814-824, 2004. [75] T. S. M. Kuwata, K. Kojima, A. Michimori, H. Sugiura, Y. Hirano, and T. Endo, “Reducing speckle in laser displays with moving screen system,” J. Inst. Image Inform. Televis. Eng., vol. 65, pp. 224-228, 2011. [76] C. Davies. 'GlassUP wearable display takes on Google Glass,' http://www.slashgear.com/glassup‑wearable‑display‑takes‑ongoogle‑glass‑17290726/. [77] D. Lanman, and D. Luebke. 'Near-eye light field displays,' http://lightfield‑forum.com/2013/07/refocus‑your‑eyes‑nvidia‑presents‑near‑eye‑light‑fielddisplay‑prototype/. [78] S. Mann, M. A. Ali, R. Lo et al., 'FreeGlass for developers, “haccessibility”, and Digital Eye Glass + Lifeglogging research in a (sur/sous) veillance society.' pp. 48-53. [79] S. Mann, 'Veilance and reciprocal transparency: Surveillance versus sousveillance, AR glass, lifeglogging, and wearable computing.' pp. 1-12. [80] C. Wheatstone, “Contributions to the Physiology of Vision. Part the First. On Some Remarkable, and Hitherto Unobserved, Phenomena of Binocular Vision,” Philosophical Transactions of the Royal Society of London, vol. 128, pp. 371-394, January 1, 1838, 1838. [81] Y. Neih, S.-Y. Tu, and H. Y. Lin, “Frame-Rate Reducing Technique for a 360-degree 3D Light Field Display,” in IMID, 2014. [82] Y. Nieh, “Frame-Rate Reducing Technique for a 360-Degree 3D Light Field Display and Image Analysis,” Nation Taiwan University, Taipei, 2014. [83] 'Stereo_display,' http://en.wikipedia.org/wiki/Stereo_display. [84] T. Inoue, and Y. Takaki, “Table screen 360-degree holographic display using circular viewing-zone scanning,” Optics Express, vol. 23, no. 5, pp. 6533-6542, 2015/03/09, 2015. [85] S.-H. Shin, and B. Javidi, “Speckle-reduced three-dimensional volume holographic display by use of integralimaging,” Applied Optics, vol. 41, no. 14, pp. 2644-2649, 2002/05/10, 2002. [86] J. I. Trisnadi, 'Speckle contrast reduction in laser projection displays.' pp. 131-137. [87] J. W. Goodman, Introduction to Fourier Optics: McGraw-Hill, 1968. [88] J. W. Goodman, 'Statistical properties of laser speckle patterns,' Laser Speckle and Related Phenomena, Topics in Applied Physics, pp. 9-75: Springer Berlin Heidelberg, 1975. [89] J. W. Goodman, “Some fundamental properties of speckle,” Journal of the Optical Society of America, vol. 66, no. 11, pp. 1145-1150, 1976/11/01, 1976. [90] E. G. Rawson, A. B. Nafarrate, R. E. Norton et al., “Speckle-free rear-projection screen using two close screens in slow relative motion,” Journal of the Optical Society of America, vol. 66, no. 11, pp. 1290-1294, 1976/11/01, 1976. [91] J. I. Trisnadi, “Hadamard speckle contrast reduction,” Optics Letters, vol. 29, no. 1, pp. 11-13, 2004/01/01, 2004. [92] S. Kubota, and Y. Tomita, 'Advanced speckle contrast reduction by moving diffuser.' pp. 1-2. [93] T. Thi-Kim-Trinh, S. Subramaniam, L. Cuong-Phu et al., “Design, Modeling, and Characterization of a Microelectromechanical Diffuser Device for Laser Speckle Reduction,” Microelectromechanical Systems, Journal of, vol. 23, no. 1, pp. 117-127, 2014. [94] S.-Y. Tu, H. Y. Lin, and M.-C. Lin, “Efficient speckle reduction for a laser illuminating on a micro-vibrated paper screen,” Applied Optics, vol. 53, no. 22, pp. E38-E46, 2014/08/01, 2014. [95] S. Okagaki, J. Kondo, K. Kojima et al., “Reliability of prototype microcapsule diffuser for speckle noise reduction in laser displays,” Journal of the Society for Information Display, vol. 22, no. 6, pp. 316-322, 2014. [96] S.-Y. Tu, and H. Y. Lin, “31.2: Speckle Contrast Reduction with a Small-Vibrated Reflective Intermediate Screen for a MEMS Scanning Laser Projector,” SID Symposium Digest of Technical Papers, vol. 45, no. 1, pp. 415-418, 2014. [97] J. Amako, H. Miura, and T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator,” Applied Optics, vol. 34, no. 17, pp. 3165-3171, 1995/06/10, 1995. [98] L. Wang, T. Tschudi, T. Halldorsson et al., “Speckle reduction in laser projection systems by diffractive optical elements,” Appl Opt, vol. 37, no. 10, pp. 1770-5, Apr 1, 1998. [99] V. Yurlov, A. Lapchuk, S. Yun et al., “Speckle suppression in scanning laser display,” Applied Optics, vol. 47, no. 2, pp. 179-187, 2008/01/10, 2008. [100] F. S. MacAdam, Improvements in or relating to translucent diffusion screens, British, 1947. [101] C. E. H. a. R. E. Kittredge, Optical screen orbital movement system, USA, 1969. [102] F. Riechert, G. Bastian, and U. Lemmer, “Laser speckle reduction via colloidal-dispersion-filled projection screens,” Applied Optics, vol. 48, no. 19, pp. 3742-3749, 2009/07/01, 2009. [103] Y. M. Lee, D. U. Lee, J. M. Park et al., “P-45: A Study on the Relationships between Human Perception and the Physical Phenomenon of Speckle,” SID Symposium Digest of Technical Papers, vol. 39, no. 1, pp. 1347-1350, 2008. [104] S.-Y. Tu, H. Y. Lin, and T.-X. Lee, “Speckle suppressed blue laser light in a micro-vibrated phosphor paper ” in Optics & Photonics Taiwan, the International Conference (OPTIC), 2014, pp. 2014-Thu-S0802-O004. [105] 'Basics of Polarizing Microscopy, Olympus,' http://physics.berkeley.edu/research/yildiz/Teaching/PHYS250/Lecture_PDFs/polarization%20microscopy.pdf. [106] S. Svenberg, Atomic and Molecular Spectroscopy: Springer-Verlag, 2004. [107] I. Leifer, C. J. D. Spencer, W. T. Welford et al., “Grainless Screens for Projection Microscopy,” Journal of the Optical Society of America, vol. 51, no. 12, pp. 1422-1423, 1961/12/01, 1961. [108] S.-Y. Tu, and H. Y. Lin, 'Speckle-suppressed partial random laser illumination system by vibrating a phase-only random phase diffuser.' pp. 1-2. [109] H. A. Haus, Wave and Fields in Optoeletronics: Prentices Hall, 1984. [110] T. Wriedt, 'Mie Theory: A Review,' The Mie Theory, Springer Series in Optical Sciences W. Hergert and T. Wriedt, eds., pp. 53-71: Springer Berlin Heidelberg, 2012. [111] H. C. Hulst, and H. Van De Hulst, Light scattering by small particles: Courier Corporation, 1957. [112] C. Mätzler, “Mie Scattering With and Without Diffraction,” IAP Res. Rep, vol. 2, 2004. [113] J. D. Wilson, and T. H. Foster, “Mie theory interpretations of light scattering from intact cells,” Optics letters, vol. 30, no. 18, pp. 2442-2444, 2005. [114] D. W. Hahn, “Light scattering theory,” Department of Mechanical and Aerospace Engineering, Florida, 2006. [115] T. Okamoto, and T. Asakura, “III: The Statistics of Dynamic Speckles,” Progress in Optics, vol. 34, pp. 183-248, 1995. [116] J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications: Roberts, 2007. [117] C. Leising. 'Paper roughness measurement,' http://www.nanovea.com/Application%20Notes/paperroughness.pdf. [118] J. W. Goodman, Introduction to Fourier optics, 2nd ed.: McGraw-hill, 1968. [119] W.-D. XIANG, B.-Y. ZHAO, X.-J. LIANG et al., “Packaging Technologies and Luminescence Properties of Ce:YAG Single Crystal for White Light-emitting Diode,” Journal of Inorganic Materials, vol. 29, no. 6, pp. 614-620, 2014-06-14, 2014. [120] J. M. Elson, and J. M. Bennett, “Relation between the angular dependence of scattering and the statistical properties of optical surfaces,” Journal of the Optical Society of America, vol. 69, no. 1, pp. 31-47, 1979/01/01, 1979. [121] L. Jong-Sen, “A simple speckle smoothing algorithm for synthetic aperture radar images,” Systems, Man and Cybernetics, IEEE Transactions on, vol. SMC-13, no. 1, pp. 85-89, 1983. [122] P. Janssens, “Speckle Suppression in Laser Projection,” in EOS Topical Meeting on Diffractive Optics 2010, 2010. [123] S. Mann, “Through the glass, lightly,” IEEE Technology & Society, vol. 31, no. 3, pp. 10-14, 2012. [124] 'Lemoprix Inc.,' http://www.lemoptix.com/technology/lasermicroprojector. [125] E. Buckley, “Eye-safety analysis of current laser-based scanned-beam projection systems,” Journal of the Society for Information Display, vol. 18, no. 11, pp. 944-951, 2010. [126] 'Speckle measurement system,' http://www.opt-oxide.com/en/laserprojector. [127] J. Bennewitz, T. Dudderar, and J. Gilbert, 'Objective speckle measurement.' pp. 113-118. [128] L. Tchvialeva, I. Markhvida, H. Zeng et al., “Surface roughness measurement by speckle contrast under the illumination of light with arbitrary spectral profile,” Optics and Lasers in Engineering, vol. 48, no. 7–8, pp. 774-778, 7//, 2010. [129] S. Roelandt, Y. Meuret, G. Craggs et al., “Standardized speckle measurement method matched to human speckle perception in laser projection systems,” Optics Express, vol. 20, no. 8, pp. 8770-8783, 2012/04/09, 2012. [130] T. C. Schmidt, “31.4: Standardization of Speckle Measurement for Large Screen Laser Illuminated Video Projection Systems,” SID Symposium Digest of Technical Papers, vol. 45, no. 1, pp. 423-426, 2014. [131] M. Kurashige, K. Ishida, and Y. Ohyagi, “31.3: Classification of Subjective Speckle for Evaluation of Laser Display,” SID Symposium Digest of Technical Papers, vol. 45, no. 1, pp. 419-422, 2014. [132] 'Oxide inc. : Speckle measurement system,' http://www.opt-oxide.com/en/laserprojector/. [133] J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Research & Application, vol. 3, no. 3, pp. 125-128, 1978. [134] 'Wincam CCD user manual:,' http://www.dataray.com/assets/pdf/WinCamD_Man.pdf. [135] Z. B.-Y. X. Wei-Dong, L. Xiao-Juan, C. Zhao-Ping, X. Cui-Ping, L. Le, Z. Zhi-Min, Z. Jing-Feng, and Z. Jia-Song, , “Packaging Technologies and Luminescence Properties of Ce:YAG Single Crystal for White Light-emitting Diode,” Journal of Inorganic Materials, vol. 29, no. 6, pp. 614-620, 2014. [136] S. Nakamura, and G. Fasol, The Blue Laser Diode: Spring-Verlag, 1997. [137] Y. Pan, M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” Journal of Physics and Chemistry of Solids, vol. 65, no. 5, pp. 845-850, 2004. [138] W. Klippel. 'Assessment of voice coil peak displacement Xmax,' http://www.klippel.de/. [139] R. Rolli, S. Ronchin, M. Montagna et al., “Yellow-to-blue frequency upconversion in Pr3+-doped aluminium fluoride glasses,” Journal of Non-Crystalline Solids, vol. 280, no. 1–3, pp. 269-276, 2//, 2001. [140] H. Zhu, C. C. Lin, W. Luo et al., “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat Commun, vol. 5, 07/08/online, 2014. [141] C.-C. Sun, C.-Y. Chen, C.-C. Chen et al., “High uniformity in angular correlated-color-temperature distribution of white LEDs from 2800K to 6500K,” Optics Express, vol. 20, no. 6, pp. 6622-6630, 2012/03/12, 2012. [142] H. Chen, Z. Luo, R. Zhu et al., “Tuning the correlated color temperature of white LED with a guest-host liquid crystal,” Optics Express, vol. 23, no. 10, pp. 13060-13068, 2015/05/18, 2015. [143] D. L. MacAdam, “Specification of small chromaticity differences,” Journal of the Optical Society of America, vol. 33, no. 1, pp. 18-26, 1943/01/01, 1943. [144] T. Smith, and J. Guild, “The CIE colorimetric standards and their use,” Transactions of the Optical Society, vol. 33, no. 3, pp. 73, 1931. [145] D. Huang, E. Swanson, C. Lin et al., “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178-1181, November 22, 1991, 1991. [146] 'Display resolution,' https://en.wikipedia.org/wiki/Display_resolution. [147] 'High resolution pico-projector,' http://www.sony.net/SonyInfo/News/Press/201402/14-024E/. [148] H. Schenk, J. Grahmann, T. Sandner et al., “Micro Mirrors for High-speed Laser Deflection and Patterning,” Physics Procedia, vol. 56, pp. 7-18, //, 2014. [149] C. B. Burckhardt, “Speckle in ultrasound B-mode scans,” Sonics and Ultrasonics, IEEE Transactions on, vol. 25, no. 1, pp. 1-6, 1978. [150] T. Loupas, W. McDicken, and P. Allan, “An adaptive weighted median filter for speckle suppression in medical ultrasonic images,” Circuits and Systems, IEEE Transactions on, vol. 36, no. 1, pp. 129-135, 1989. [151] Y. Yu, and S. T. Acton, “Speckle reducing anisotropic diffusion,” IEEE Trans Image Process, vol. 11, no. 11, pp. 1260-70, 2002. [152] I. Jaeger, J. Stiens, L. Zhang et al., “Comparison of speckle reduction diversity tools for active millimeter-wave imaging,” Journal of the Optical Society of America A, vol. 25, no. 7, pp. 1716-1721, 2008/07/01, 2008. [153] G. Koers, I. Ocket, Q. Feng et al., “Study of active millimeter-wave image speckle reduction by Hadamard phase pattern illumination,” J Opt Soc Am A Opt Image Sci Vis, vol. 25, no. 2, pp. 312-7, Feb, 2008. [154] M. A. Patrick, J. A. Holt, C. D. Joye et al., “Elimination of speckle and target orientation requirements in millimeter-wave active imaging by modulated multimode mixing illumination,” J Opt Soc Am A Opt Image Sci Vis, vol. 29, no. 12, pp. 2643-56, Dec 1, 2012. [155] M. A. Patrick, C. D. Joye, and F. C. De Lucia, “Multimode illumination for speckle reduction and angle neutrality in millimeter wave active imaging: range and time-resolved mode averaging,” Journal of the Optical Society of America A, vol. 31, no. 10, pp. 2135-2141, 2014/10/01, 2014. [156] J. Tsao, and B. D. Steinberg, “Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique,” Antennas and Propagation, IEEE Transactions on, vol. 36, no. 4, pp. 543-556, 1988. [157] F. Argenti, A. Lapini, T. Bianchi et al., “A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images,” Geoscience and Remote Sensing Magazine, IEEE, vol. 1, no. 3, pp. 6-35, 2013. [158] S.-Y. Tu, H. Y. Lin, and T.-X. Lee, “62.3: Invited Paper: Speckle Contrast Reduction in a Blue-LD Pumped Micro-Vibrated-Reflective Phosphor Paper for Lighting Source Applications,” SID Symposium Digest of Technical Papers, vol. 46, no. 1, pp. 923-926, 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19623 | - |
| dc.description.abstract | 近年來,由於雷射於顯示器與照明裝置應用愈來愈多,使得雷射光斑已漸漸成為一重要的研究課題。本論文主要在發展光斑抑制的雷射光源與探討其可能的應用,主要包括照明、顯示與影像等應用,亦包括生物與軍事等等領域。本論文希望對雷射光斑之產生與抑制進行探索,並發展光斑量測之系統與方法,同時發展有效率、簡單易用的雷射光斑抑制技術及方法,進而對這些光斑抑制方法做分析與比較。
第一章給予雷射光斑抑制的基本簡介,包括雷射光斑抑制的方法與應用。光斑抑制雷射於照明領域與2D、3D顯示領域中。光斑抑制雷射應用於其他領域,可包括生物科技、醫療、列印、光蝕刻、軍事等諸多應用。 第二章主要探討光斑的產生與抑制理論,並發展微擺動、混光、重疊與多投影單元等光斑抑制技術及其模型的建構。 第三章主要探討本論文所使用的光斑對比量測技術。藉由參考Goodman與其他學者所發展的相關光斑量測技術,我們能夠架構雷射光斑對比量測系統、定義光斑對比值與計算光斑對比值,可量測範圍為SC=3%至~100%之光斑量測系統,並用於光斑抑制技術的量測與開發。 第四章主要探討時間依賴與時間獨立光斑抑制技術應用於靜態雷射光束。藉由音圈馬達的擺動模式,我們將屏幕、螢光粉紙、擴散膜元件裝置於擺動元件上,已達到有效的光斑抑制成果。其中,微擺動技術、混光技術為相當有效、精巧、易於製作之光斑抑制方法。在對人眼一倍的影像尺寸下,可獲得無光斑結果。 第五章主要探討時間依賴與時間獨立光斑抑制技術應用於微機電掃描式雷射光束區塊。藉由微擺動技術、混光技術、重疊法、多投影單元法等光斑抑制技術,我們可以獲得有效的光斑抑制結果。採用一種以上的光斑抑制技術,在對人眼一倍的影像尺寸下,可獲得無光斑結果。 第六章為結論與未來展望。希望能藉由本論文的研究與討論,促進雷射於照明、顯示、影像及其他應用的發展。以期待光斑抑制雷射光源能對科學、教育、生活、醫療、軍事等用途上有所貢獻。 | zh_TW |
| dc.description.abstract | Since the invention of the laser in 1960, laser coherence has been at the forefront of many research ventures. When a rough surface is illuminated by a coherent laser beam, speckle patterns are generated. In recent years, lasers have been used in an increasing number of display and illumination devices. Speckle has the effect of causing harsh illumination, noisy images, and low contrast, and is an issue that must be solved at the early stage of development. In this dissertation, speckle suppression in laser sources and its applications to the fields such as illumination, display, imaging, biotechnology, and military applications, are explored and researched. The main discussion is on speckle generation and suppression, development of a speckle contrast measurement system, and the development of simple, efficient, and compact speckle reduction techniques. Furthermore, a comparison and analysis will be made for the speckle suppressing methods.
Laser speckle suppression is introduced in Chapter 1, which discusses suppression methods and applications. These methods could be applied for illumination and display applications. In Chapter 2, speckle generation and suppression is discussed. Micro-vibration, mixing, overlapping, and multi-unit projection techniques are developed and expected to contribute to science, education, and our daily lives. In Chapter 3, speckle contrast measurement technologies are discussed and referenced from Goodman and other scholars. We could construct our own laser speckle contrast measurement system and define the speckle contrast (SC) and mixing speckle contrast (MSC). SC is calculated and applied in the development and measurement of our speckle suppression technologies. The measured SC can be ranged from 3% to ~100%. In Chapter 4, time-dependent and time-independent speckle suppression techniques are applied on a static laser beam. By vibrating modes of voice coil motors (VCM), the screen, phosphor and diffuser papers are used on the vibrating VCM device to achieve efficient speckle reduction results. Among them, the micro-vibration and mixing are very efficient, compact, and easy-to-use speckle suppression methods. Under 1x image size for human eyes, the speckle free results can be achieved. In Chapter 5, the time-dependent and time-independent speckle suppressed techniques are applied on a MEMS scanning laser beam area. By micro-vibration, mixing, overlapping, and multi-projection, efficient speckle suppression results can be achieved. Under 1x image size for human eyes, using more than one technique, the speckle free results can be achieved. Finally, the conclusion and future works are shown in Chapter 6. We expect that, through the study and discussion in this dissertation, we will be able to promote laser development for future use in illumination, display, imaging, and other applications. In the meanwhile, we expect the developed speckle suppressed light source can make the contribution on science, education, human life, bio-medicine, military and so forth. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:09:17Z (GMT). No. of bitstreams: 1 ntu-104-D99941011-1.pdf: 27107106 bytes, checksum: a1fe7ada01216b58e7dcb9fdcf07765f (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | <Index>
口委審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES x LIST OF TABLES xxi Chapter1. Introduction speckle suppressed laser technologies for illumination, display, and others applications 1 1.1 Background and history 1 1.2 Speckle suppressed laser for illumination applications 3 1.3 Speckle suppressed laser for 2D and 3D display applications 6 1.4 History review and classification of 3D displays 9 1.5 Working principle and classification of speckle suppression technologies 13 1.6 Motivation 19 1.7 Dissertation organization 21 Chapter2. Theory of speckle reduction 23 2.1 Basic optics theory 23 2.1.1 Wave optics/ Fourier optics/ Gaussian beam optics relation 23 2.1.2 Micro-optics (Rayleigh scattering and Mie’ scattering) relation 28 2.1.3 Basic E-M wave characteristics from Maxwell’s equation 33 2.2 Speckle generation 35 2.2.1 Laser illumination on rough screen 36 2.2.2 Laser illumination on microstructure substrate 40 2.2.3 Laser illumination on nanostructure substrate 41 2.3 Speckle suppression 48 2.3.1 Sum of N independent speckle patterns 48 2.3.2 Speckle reduction diversities 55 2.3.3 Time-dependent speckle reduction-Micro-vibrated technique 61 2.3.4 Time-independent speckle reduction-Mixing technique 69 2.3.5 Time-independent speckle reduction-Overlapping technique 72 2.3.6 Time-independent speckle reduction-Multi-projection unit technique 74 Chapter3. System design and speckle contrast measurement 77 3.1 History review for speckle contrast measurement development 77 3.2 The classification of the subjective speckle for evaluation of laser display 79 3.3 The standard measurement for speckle contrast 81 3.3.1 Reflective type speckle contrast measurement 82 3.3.2 Transmitted-type speckle contrast measurement 83 3.3.3 Standardization of speckle measurement 84 3.3.4 A commercial SC measurement system 85 3.4 System design and speckle contrast measurement 87 3.4.1 Speckle contrast definition (Single-wavelength) 87 3.4.2 Mixing speckle contrast definition (Multi-wavelength) 92 3.4.3 SC measurement method, image capture and SC analysis 94 3.4.4 Temporal dependence 101 3.4.5 Background level analysis 101 3.5 Discussion 106 Chapter4. Speckle suppression for a static laser beam 107 4.1 Introduction-Speckle suppression for a static laser beam 107 4.2 Speckle suppressed green laser by micro-vibrated technique 108 4.2.1 Related work 108 4.2.2 Experimental setup and results 110 4.2.3 Short summary 118 4.3 Speckle suppressed blue laser light by a micro-vibrated and a mixing techniques 119 4.3.1 Related work 119 4.3.2 Experimental setup and results 121 4.3.3 Short summary 133 4.4 Case comparison 134 4.5 Discussion 140 Chapter5. Speckle suppression for a MEMS scanned laser area 143 5.1 Introduction- Speckle reduction using a MEMS-scanning laser beam 143 5.2 Speckle suppression by using overlapping diversity with a static and micro-vibrated reflective intermediate screen 144 5.2.1 Related work 145 5.2.2 Experimental setup and results 146 5.2.3 Short summary 164 5.3 Speckle suppression for a MEMS-scanning blue LD light in a micro-vibrated phosphor paper. 165 5.3.1 Related work 165 5.3.2 Experimental setup and results 166 5.3.3 Short summary 169 5.4 Speckle suppression with 2D display images by multi-projection units 170 5.4.1 Related work 170 5.4.2 Experimental setup and results 171 5.4.3 Short summary 174 5.5 Speckle-suppression with 3D display images by multi-projection units 176 5.5.1 Related works 176 5.5.2 Experimental setup and results 176 5.5.3 Short summary 184 5.6 Discussion 188 Chapter6. Conclusions 191 6.1 Conclusions 191 6.2 Future work 199 6.3 Funding information 199 6.4 Autobiography 200 6.5 References 205 | |
| dc.language.iso | en | |
| dc.title | 光斑抑制之雷射光源及其應用 | zh_TW |
| dc.title | Speckle-suppression of laser source and its applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 徐巍峰,陳政寰,孔慶昌,彭隆瀚 | |
| dc.subject.keyword | 雷射,光斑,擴散膜,微結構,奈米結構,投影機,顯示,照明,微機電,掃描, | zh_TW |
| dc.subject.keyword | Laser,speckle,diffuser,microstructure,nanostructure,projector,display,illumination,MEMS,DLP,LCoS,scanning, | en |
| dc.relation.page | 221 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-01-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 26.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
