請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19614完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡睿哲 | |
| dc.contributor.author | Nai-Wen Chang | en |
| dc.contributor.author | 張乃文 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:08:40Z | - |
| dc.date.copyright | 2016-02-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-01-29 | |
| dc.identifier.citation | [1] N. Xia, T. P. Hunt, B.T. Mayers, E. Alsberg, G. M. Whitesides, R. M. Westervelt, and D. E. ingber, 'Combined microfluidic-micromagnetic separation of living cells in continuous flow,' Biomedical Microdevices, 8(4), pp. 299-308, 2006.
[2] C. H. Ahn, M. G. Allen, W. Trimmer, Y. N. Jun, and S. Erramilli, 'A fully integrated micromachined magnetic particle separator,' Journal of Microelectromechnical Systems, 5(3), pp. 181-158, 1996. [3] N. Pamme and A. Manz, 'On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates,' Analytical Chemistry,' 76(24), pp. 7250-7256, 2004. [4] S. S. Tsai, I. M. Griffiths, and H. A. Stone, 'Microfluidic immunomagnetic multi-target sorting a model for controlling deflection of paramagnetic beads,' Lab on a Chip, 11(15), pp. 2577-2582, 2011. [5] J. W. Choi, C. H. Ahn, S. Bhansali, and H. T. Henderson, 'A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems,' Sensors and Actuators B: Chemical, 68(1), pp. 34-39, 2000. [6] X. Wang, X. B. Wang, P. R. C. Gascoyne, Journal of Electrostatics, 39, pp. 277-295, 1997. [7] T. B. Jones, M. Washizu, Journal of Electrostatics, 37, pp. 121-134, 1996. [8] D. S. Clague and E. K. Wheeler, Phys. Rev. E, 64, 026605, 2001. [9] H. A. Pohl, Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields, pp. 171-210, 1978. [10] C. Y. Huang, S. K. Fan, and W. Hsu, 'Capillary electrophoresis in virtual microchannel based on dielectrophoresis,' 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Oct. 2011. [11] P. Y. Chiou, A. T. Ohta, and M. C. Wu, 'Massively parallel manipulation of single cells and microparticles using optical images,' Nature, 436(7049), pp. 370-372, 2005. [12] H. H. Chen, W. T. Tien, H. H. Lo, C. C. Lin, and J. C. Chen, 'Optically-induced dielectrophoretic technology for particles manipulation and separation, 8th International Conference in Microsystems, Packaging, Assembly and Circuits Technology (IMPACT), pp. 258-259, 2013. [13] A. Cowen, B. Dudley, E. Hill, M. Walters, R. Wood, S. Johnson, … and B. Hardy, 'MetalMUMPs design handbook, 'MEMSCAP Inc. , Durham. [14] H. W. Chiang, 'Virtual Channels for Achieving a Dynamically Reconfigurable Network of Flowing Magnetic Beads,' M.S. thesis, National Taiwan University, Taipei, Taiwan, July 2013. [15] Q. A. Pankhurst, J. Connolly, S. K. Jones and J. Dobson, 'Applications of magnetic nanoparticles in biomedicine,' Journal of Physics D: Applied Physics, 36 pp. 167-181, 2003. [16] M. C. Hsien, 'Virtual channels for magnetic beads in static fluid,' M.S. thesis, National Taiwan University, Taipei, Taiwan, June 2012. [17] M. A. Gijs, 'Magnetic bead handling on-chip: new opportunities for analytical applications, ' Microfluidics and Nanofluidics, l(1), pp. 22-40, 2004. [18] T. J. Huang, 'Standing surface acoustic wave (SSAW) based multichannels cell sorting,' Lab Chip, 12(21), pp. 4228-4231, Nov. 2012. [19] Y. D. Chang, 'Design, fabrication and characterization of Virtual Channels for Magnetic Beads in Fluid,' M.S. thesis, National Taiwan University, Taipei, Taiwan, July 2011. [20] S. H. Tang, 'Implementation of Virtual Channels for Flowing Magnetic Beads,' M.S. thesis, National Taiwan University, Taipei, Taiwan, July 2014. [21] S. H. Tang, H. W. Chiang, M. C. Hsieh, Y. D. Chang, P. F. Yeh, W. Y. Shieh and J. C. Tsai, 'An approach to implement virtual channels for flowing magnetic beads,' Journal of Micromechanics and Microengineering, 24(7), 075016, 2014. [22] H. W. Chiang, M. C. Shieh, Y. D. Chang, P. F. Yeh and J. C. Tsai, 'Virtual channels for a dynamically reconfigurable network of flowing magnetic beads.' The 17th International Conference on In Solid-State Sensors, Actuators and Microsystems(TRANSDUCERS & EUROSENSORS XXⅦ), pp. 1306-1309. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19614 | - |
| dc.description.abstract | 近年來生醫科技朝向儀器微小化、快速分析、大量樣本檢測的目標發展。透過微機電系統技術,可以將傳統生醫檢測設備的功能整合於一片釐米大小的晶片上,進行生物分析如混合、操作、傳輸、分離等功能。在生醫領域中,這類晶片被稱為微流道晶片。
微流道晶片因具有「實體」的通道,將無可避免地造成流道的阻塞和汙染,導致晶片壽命減少。為了解決此問題,有科學家運用了介電泳動(Dielectrophoresis)原理建構「虛擬」通道,雖然沒有阻塞和汙染的問題,但漏電問題在充滿液體的操作環境中是一大隱憂。 為了解決實體通道和介電泳虛擬通道的缺點,本研究提出了以磁建構之虛擬通道。將會用理論闡述在外加磁場的影響下,被磁化的鎳金屬結構如何地影響磁性粒子在虛擬通道中流動;最後會呈現虛擬通道導引磁性粒子的效果,分別是擴大端口收集範圍的漏斗型流道、進行轉彎角度測試的轉彎流道、將不同功能流道進行連結的動態分流結構以及改變粒子導引方向的動態旁引結構。 | zh_TW |
| dc.description.abstract | Recently, biomedical technology tends to achieve the goal of miniaturization of instruments, high-speed analysis and mass operation. The micro-electro-mechanical systems (MEMS) technology allows us to integrate the functions of a conventional biomedical analysis instrument into a centimeter-sized chip, which can be used for mixing, manipulation, transport and separation, etc. In the field of biomedical science, such a chip is called microfluidic chip.
Owing to “substantial” channels of microfluidic chip, clogging and contamination are inevitable. The chip has a limited lifetime. To solve this problem, some researcher has proposed a “virtual” channel by using the theory of dielectrophoresis (DEP). Despite of no clogging and contamination, leakage current has a chance to cause safety problem when operating. In this study, we propose a novel virtual channel by the theory of magnetism in order to solve the drawbacks of both substantial channels and virtual channels by DEP. This work illustrates how the magnetized nickel structure affects magnetic beads on the condition of utilizing an external magnetic field. Furthermore, we also demonstrate the results of guiding magnetic beads in virtual channel. Collecting more magnetic beads via funneled channel, testing the angle of turning channel, connecting two functional channels through shunting structure and changing the direction of bead movement via branching structure. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:08:40Z (GMT). No. of bitstreams: 1 ntu-105-R02941046-1.pdf: 6419116 bytes, checksum: 819c000756ab8258878adb04add644be (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 ix Chapter 1 文獻回顧與研究動機 1 1.1 前言……………………….. 1 1.2 實體通道搭配磁性粒子之應用 2 1.3 虛擬通道微流道 6 1.4 研究動機 10 Chapter 2 實驗架構與原理 11 2.1 設計與製程 11 2.2 實驗架構與流程 14 2.3 實驗原理 17 2.3.1 外加磁場磁化方向影響 19 Chapter 3 實驗素材 21 3.1 磁性粒子 21 3.2 外加磁場 22 3.3 壓克力載具 24 Chapter 4 實驗結果與分析 27 4.1 虛擬流道基礎因素分析 27 4.1.1 玻片厚度影響 27 4.2 虛擬流道設計結果分析 28 4.2.1 漏斗形流道 28 4.2.2 轉彎流道 31 4.2.3 動態分流流道 34 4.3 旁引結構效果測試 39 Chapter 5 結論與未來工作 47 5.1 結論 47 5.2 未來工作 48 REFERENCE 49 | |
| dc.language.iso | zh-TW | |
| dc.title | 導引磁性粒子之虛擬通道網路 | zh_TW |
| dc.title | Network of Virtual Channels for Guiding Magnetic Beads | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫家偉,呂志偉 | |
| dc.subject.keyword | 微流道,磁性粒子,鎳,非實體通道, | zh_TW |
| dc.subject.keyword | microfluidic channel,magnetic bead,nickel,virtual channel, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-01-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 6.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
