請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19561完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧彥文(Yen-Wen Lu) | |
| dc.contributor.author | Yin-min Chang | en |
| dc.contributor.author | 張胤民 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:05:36Z | - |
| dc.date.copyright | 2016-03-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-02-04 | |
| dc.identifier.citation | References
Botstein, D., R. L. White, M. Skolnick and R. W. Davis 1980. Construction Of A Genetic-Linkage Map In Man Using Restriction Fragment Length Polymorphisms. American Journal of Human Genetics, 32, 314-331. Chen, X. and P.-Y. Kwok 1997. Template-directed dye-terminator incorporation (TDI) assay a homogeneous DNA diagnostic method based on fluorescence resonance energy transfer. Nucleic Acids Research, 25, 347-353. Fan, Z. H., S. Mangru, R. Granzow, P. Heaney, W. Ho, Q. Dong and R. Kumar 1999. Dynamic DNA Hybridization on a Chip Using Paramagnetic Beads. Analytical chemistry, 71, 4851-4859. Giordano, B. C., E. R. Copeland and J. P. Landers 2001. Towards dynamic coating of glass microchip chambers for amplifying DNA via the polymerase chain reaction. Electrophoresis, 22, 334-340. Grover, W. H. and R. A. Mathies 2005. An integrated microfluidic processor for single nucleotide polymorphism-based DNA computing. Lab Chip, 5, 1033-40. Hache., R. J. G., R. Wiskocil., M. Vasa., R. N. Roy., P. C. K. Lau. and R. G. Deeley. 1983. The 5' noncoding and flanking regions of the avian very low density apolipoprotein II and serum albumin genes. Homologies with the egg white protein genes. The Journal of Biological Chemistry, 258, 4556-4564. Jiang, X., W. Jing, L. Zheng, S. Liu, W. Wu and G. Sui 2014. A continuous-flow high-throughput microfluidic device for airborne bacteria PCR detection. Lab Chip, 14, 671-6. Jung, Y. K., J. Kim and R. A. Mathies 2015. Microfluidic linear hydrogel array for multiplexed single nucleotide polymorphism (SNP) detection. Anal Chem, 87, 3165-70. Kim, J. A., J. Y. Lee, S. Seong, S. H. Cha, S. H. Lee, J. J. Kim and T. H. Park 2006. Fabrication and characterization of a PDMS–glass hybrid continuous-flow PCR chip. Biochemical Engineering Journal, 29, 91-97. Kim, S. and A. Misra 2007. SNP Genotyping: Technologies and Biomedical Applications. Annual Review of Biomedical Engineering, 9, 289-320. Kopp., M. U., A. J. d. Mello. and A. Manz. 1998. Chemical Amplification Continuous-Flow PCR on a Chip. Science, 280, 1046-1048. Kragh-Hansen, U. 1981. Molecular aspects of ligand binding to serum albumin. Pharmacological Reviews, 33, 17-53. Landegren, U., R. Kaiser, J. Sanders and L. Hood 1988. A ligase-mediated gene detection technique. Science, 241, 1077-1080. Li, K. C., S. T. Ding, E. C. Lin, L. A. Wang and Y. W. Lu 2014. Melting analysis on microbeads in rapid temperature-gradient inside microchannels for single nucleotide polymorphisms detection. Biomicrofluidics, 8, 064109. Lin, E. C., Y. H. Wang, C. X. Wang, J. J. Chen, S. C. Lu, C. F. Chen, C. W. Yeh, C. H. Hsieh, H. S. Sun, S. T. Ding, M. C. Huang, S. H. Chiou, B. R. Ou, Y. P. Lee and W. T. K. Cheng 2011. Detection of novel SNPs in Taiwan Country chicken EST libraries. Proceedings of the 9th Asia Pacific Poultry Conference, 343. Lyamichev, V., A. L. Mast, J. G. Hall, J. R. Prudent, M. W. Kaiser, T. Takova, R. W. Kwiatkowski, T. J. Sander, M. d. Arruda, D. A. Arco, B. P. Neri and M. A. D. Brow 1999. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nature biotechnology, 17, 292-296. Moschou, D., N. Vourdas, G. Kokkoris, G. Papadakis, J. Parthenios, S. Chatzandroulis and A. Tserepi 2014. All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification. Sensors and Actuators B: Chemical, 199, 470-478. Ng, J. K., H. Feng and W. T. Liu 2007. Rapid discrimination of single-nucleotide mismatches using a microfluidic device with monolayered beads. Anal Chim Acta, 582, 295-303. Redon, R., S. Ishikawa, K. R. Fitch, L. Feuk, G. H. Perry, T. D. Andrews, H. Fiegler, M. H. Shapero, A. R. Carson, W. Chen, E. K. Cho, S. Dallaire, J. L. Freeman, J. R. Gonzalez, M. Gratacos, J. Huang, D. Kalaitzopoulos, D. Komura, J. R. MacDonald, C. R. Marshall, R. Mei, L. Montgomery, K. Nishimura, K. Okamura, F. Shen, M. J. Somerville, J. Tchinda, A. Valsesia, C. Woodwark, F. Yang, J. Zhang, T. Zerjal, J. Zhang, L. Armengol, D. F. Conrad, X. Estivill, C. Tyler-Smith, N. P. Carter, H. Aburatani, C. Lee, K. W. Jones, S. W. Scherer and M. E. Hurles 2006. Global variation in copy number in the human genome. Nature, 444, 444-54. Rödiger, S., C. Liebsch, C. Schmidt, W. Lehmann, U. Resch-Genger, U. Schedler and P. Schierack 2014. Nucleic acid detection based on the use of microbeads: a review. Microchimica Acta, 181, 1151-1168. Seong, G. H., W. Zhan and R. M. Crooks. 2002. Fabrication of Microchambers Defined by Photopolymerized Hydrogels and Weirs within Microfluidic Systems Application to DNA Hybridization. Analytical chemistry, 74, 3372-3377. Shin, Y. S., K. Cho, S. H. Lim, S. Chung, S.-J. Park, C. Chung, D.-C. Han and J. K. Chang 2003. PDMS-based micro PCR chip with Parylene. Journal of Micromechanics and Microengineering, 13, 768. Sun, K., A. Yamaguchi, Y. Ishida, S. Matsuo and H. Misawa 2002. A heater-integrated transparent microchannel chip for continuous-flow PCR. Sensors and Actuators B: Chemical, 84, 283-289. Syvänen, A.-C. 2001. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nature Reviews Genetics, 2, 930-942. Todd, A. V., C. J. Fuery, H. L. Impey, T. L. Applegate and M. A. Haughton 2000. DzyNA-PCR: use of DNAzymes to detect and quantify nucleic acid sequences in a real-time fluorescent format. Clinical chemistry, 46, 625-630. Tost, J. and I. G. Gut 2005. Genotyping single nucleotide polymorphisms by MALDI mass spectrometry in clinical applications. Clin Biochem, 38, 335-50. Wittwer, C. T. and D. J. Garling 1991. Rapid cycle DNA amplification: time and temperature optimization. Biotechniques, 10, 76-83. Xu, H., Q. Yang, F. Li, L. Tang, S. Gao, B. Jiang, X. Zhao, L. Wang and C. Fan 2013. A graphene-based platform for fluorescent detection of SNPs. Analyst, 138, 2678-82. Zhang, H., X. Fu, L. Liu, Z. Zhu and K. Yang 2012. Microfluidic bead-based enzymatic primer extension for single-nucleotide discrimination using quantum dots as labels. Anal Biochem, 426, 30-9. Yang, K.-T., C.-Y. Lin, J.-S. Liou, Y.-H. Fan, S.-H. Chiou, C.-W. Huang, C.-P. Wu, E.-C. Lin, C.-F. Chen, Y.-P. Lee, W.-C. Lee, S.-T. Ding, W. T.-K. Cheng and M.-C. Huang 2007. Differentially expressed transcripts in shell glands from low and high egg production strains of chickens using cDNA microarrays. Animal Reproduction Science, 101, 113-124. Zhu, J., M. Palla, S. Ronca, R. Warpner, J. Ju and Q. Lin 2013. A MEMS-Based Approach to Single Nucleotide Polymorphism Genotyping. Sens Actuators A Phys, 195, 175-182. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19561 | - |
| dc.description.abstract | 單核苷酸多型性 (Single Nucleotide Polymorphism, SNP) 為去氧核醣核酸(DNA)的序列中發生一個鹼基對的變異。這種變異為一重要的生物分子遺傳標記,其影響了物種個體間性狀的差異,目前多數的單核苷酸多型性檢測技術仍存在缺點,如須要耗費大量的試劑以及繁複之處理過程。因此,本研究致力於發展微小化之等位基因特異性引子延伸(primer extension)反應技術,並整合微珠微流道(bead-based microfluidics)技術以減少試劑使用量、改善反應動力學、增強訊號強度。本系統採用微珠作為固態載體,將參與聚合酶連鎖反應之正向引子固定於微珠表面,而後利用反向引子於微流道系統中進行等位基因特異性引子延伸反應,以進行擴增曲線分析達成單核苷酸多型性之基因分型。本研究中以白蛋白突變基因(Albumin mutated, ALB)為例,成功以整合了聚合酶連鎖反應與單核苷酸多型性檢測程序之微珠微流道系統完成台灣土雞取得之基因體DNA位點ALB之基因分型。 | zh_TW |
| dc.description.abstract | Single nucleotide polymorphism (SNP), a single nucleotide variation occurring in sequence of deoxyribonucleic acid (DNA), can serve a crucial bio-marker affecting individuals’ phenotypes and draw great attention in medical, agriculture and breeding fields. Most of the SNP genotyping techniques today utilize enzymes or modification of DNA, leading to the requirement of high reagent cost and a series of complex procedures. Herein, we present our recent effort to integrate the SNP genotyping procedures onto a microchip by adapting a primer extension technique onto microbeads, which permit better hybridization kinetics and higher signal-to-noise ratio. The primer extension is based on allele-specific quantitative polymerase chain reaction (AS-qPCR) techniques for SNP allelic discrimination by the capability of the reverse primer extended with nucleotides during thermal cycles. In addition, our bead-based microfluidic chip can provide a rapid thermal response, which minimize the non-specific reactions, thus greatly improve the specificity. With only six thermal cycles, our proposed device successfully distinguishes the SNP genotypes of Albumin (ALB) from genomic DNA of Taiwan country chicken. The results show a much quicker detection while the DNA amplification and detection procedures are integrated for Lab-on-a-Chip applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:05:36Z (GMT). No. of bitstreams: 1 ntu-105-R02631032-1.pdf: 7121559 bytes, checksum: ac06bb22bc35a320f7c6ad3b38e90c79 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Table of Contents
誌謝 .....................................................i 中文摘要.......................................................ii Abstract................................................iii Table of Contents........................................v List of Figures........................................viii List of Tables..........................................xiv List of Abbreviations....................................xv Chapter 1 Introduction....................................1 1.1 Single Nucleotide Polymorphism and Polymerase Chain Reactions...........1 1.2 Bead-Based Microfluidic Device.............................2 1.3 Overall Structure of Thesis...........................................................................3 Chapter 2 Literature Review.........................................................................................4 2.1 SNP Genotyping Mechanisms......................................................................4 2.1.1 Primer Extension for SNP Genotyping.............................................7 2.2 Polymerase Chain Reaction in Microfluidics...............................................7 2.3 Integrated temperature control system with microfluidic device.................8 2.4 Bead-Based Microfluidic for Nucleic Acid Detection.................................9 2.5 Primer Extension for SNP Genotyping in Microfluidics.............................11 Chapter 3 Materials and Methods...............................................................................16 3.1 Materials for Polymerase Chain Reactions................................................17 3.1.1 Albumin (ALB) Mutated Gene Extraction.....................................17 3.2 SNP Genotyping by Bead-based Primer Extension Design and Principle.20 3.3 Real-time PCR Microfluidics.....................................................................25 3.3.1 Real-time PCR Design and Principle.............................................25 3.3.2 Heater and Thermometer Design....................................................28 3.3.3 Fabrication for ITO Heater and Thermometers..............................29 3.3.4 Fabrication for Microchannel.........................................................30 3.4 Real Time Temperature Control.................................................................35 3.4.1 Temperature Calibration.................................................................35 3.4.2 Temperature Control Method.........................................................36 3.5 Fluorescence Signal Quantification............................................................36 3.6 Solution-based qPCR (or Real-time PCR) Process....................................38 3.7 Bead-based Primer Extension process for SNP detection..........................39 Chapter 4 Results and Discussion...............................................................................42 4.1 Temperature Control System......................................................................42 4.2 Microbeads Manipulation Experiment.......................................................45 4.3 Real-time Polymerase Chain Reactions on a Microchip............................46 4.3.1 Solution-based real-time polymerase chain reactions....................46 4.3.2 PCR Efficiency in our Bead-Based Microfluidics Device.............49 4.4 SNP Genotyping by Bead-Based Primer Extension...................................53 4.4.1 Optimization of bead-based allele-specific primer extension process.........................................................................53 4.4.2 SNP Genotyping by Bead-Based Primer Extension by Developed System.........................................................................56 4.4.3 Comparison Between Bead-based with Tube-based Primer Extension.........................................................................64 4.5 Comparison Bead-based Primer Extension with Bead-based Melting.......66 Chapter 5 Conclusions................................................................................................70 5.1 Conclusions................................................................................................70 5.2 Prospective.................................................................................................71 Appendix I.....................................................................................................................74 References......................................................................................................................77 | |
| dc.language.iso | en | |
| dc.title | 利用引子延伸反應於微珠微流道系統進行單核苷酸多態性分型 | zh_TW |
| dc.title | Single Nucleotide Polymorphisms Genotyping Using Primer Extension in Bead-based Microfluidic | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 丁詩同(Shih-Torng Ding),王倫(Lon A. Wang),林恩仲(En-Chung Lin),鄭郅言(Ji-Yen Cheng) | |
| dc.subject.keyword | 微珠,微流道,單核?酸多型性,等位基因特異性引子延伸反應,白蛋白突變基因, | zh_TW |
| dc.subject.keyword | single nucleotide polymorphism,allele specific primer extension,Albumin mutated gene,breeding, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-02-04 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 6.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
